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1. Abstract 

There is hardly an industry which does not employ gravity 

flON bins for the storage of butk solids.Conseauently there 

has been considerable activity and research to provide the 

engineer with information that will enable him to design bulk 

solid storage facilities for unobstructed and predictable 

flow.There also has been an increasing tendency in industry 

to handle finer materials which has led to considerable 

difficulties especially in cases where the actual flow rate 

was considerably less than plant capacities.Such misfortunes 

have prompted a number of investigations in this field in an 

endeavour to understand the flow of fine materials and to 

make suitable modifications to gravity flow bins to improve 

the flow situation. 

This thesis is concerned with the prediction of the flow 

rates of fine bulk solids from mass fLow bins and hoppers.In 

this initiaL treatment the two-phase nature of the fLow wiLL 

become apparent.The analysis requires the simultaneous 

consideration of the continuity of the buLk soLid and the 

interstitiaL fLuid,and the incLusion of the effects of the 

interstitiaL gas pressure gradients in the equation of motion 

of the fLowing buLk soLid. 

This anaLysis wiLL be appLied ihitiaLLy to an incrementaL 

eLement of buLk soLid,the fLow through which is described by 

a number of partiaL differentiaL equations whose soLution 

requires considerabLe numericaL effort.An approximate 

anaLysis is then be deveLoped by considering the fLow through 

an assumed eLement . Three non-Linear totaL differentiaL 

equdtions resuLt which aLso require numericaL techniques for 
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t h e i r s o L u t i o n . 

By making suitabLe assumptions for the forni of the flow 

stress fieLd ,anaLyticaL soLutions for the fLow rate,the 

interstitiaL gas pressure distribution and the fLow stress 

fieLd are obtained for channeLs with or without 

surcharge.Pesults for coarse buLk soLids are then derived by 

negLecting the effects of interstitial fLiud pressure 

graaients. 

The predicted fLow rates compare favourabLy with observed 

fLow rates from an experimental pLane fLow bin. 

It must be stressed that this is onLy an initiaL treatment, 

extensive work stiLL is required to compLeteLy understand and 

predict the fLow of generaL buLk soLids from bins. 
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1 . Nomenc L at ure 

a - exponent used to reLate permeabiLity coefficient to 

consolidation stress,eqn.(3.19) 

A - area of fLow channeL 

A ,A ,A - variabLes defined by eqns . (6 . 27),(6.28),(6.29) 
•X i. o 

respect i ve Ly 

A ,A ,A - variables defined by eqns . (6 . 44),(6.45),(6.46) 
4 5 6 

respect i ve Ly 

A ,A ,A - variabLes defined by eqns . (7 . 23),(7.24),(7.25) 
7 8 9 

respect i ve Ly 

b - exponent used to reLate buLk density to 

consoLidation stress , eqn.(3.18) 

bj^^b^ - body forces used in eqns.(4.30) and (4.31) 

B - width or diameter of outLet of fLow channeL 

c - permeabiLity coefficient of buLk soLid,eqn.(3.19) 

C Q - permeability coefficient of buLk soLid when '^ - ^o 

C - constant reLating mean stress at hopper outLet to 

dynamic head at outLet,eqn.(5,111) 

C. - constant of integration used in e q n . ( 6 . 1 8 ) , 

defined in eqn.(A5.18) 

C_ - constant of integration used in e q n . ( 7 . 9 ) , 

defined in eqn.(7.17) 

C^ - constant of integration used in eqn.(7.10) 

C - constant of integration used in e q n . ( 8 . 1 6 ) , 

o 

defined in eqn.(8.2 ) . 

C - constant of integration used in eqn.(8.17) 



-x x i 

^1*^ 2 ~ •f'-^i^ drag force,used in eqns,(4,30) and (4.31) 

ff - fLow factor for a converging channeL 

ffg - 'actuaL' fLow factor for a fLow situation 

F - unconfined yieLd strength of a buLk soLid 

FF - fLow function of a buLk soLid 

g - acceLeration due to gravity 

^1**^2*^3* constants defined in eqns . ( 6 .11) , ( 7 .7) & (8.15) 

respec t i ve Ly 

H - moisture content 

I - integrand defined by eqn.(5.7) or by (5.14) 

respectively 

k - coeffici ent 

k = +1 for the major principal stress 

k=-1 for the minor principaL stress 

k=0 for the mean stress 

L - Length of a pLane fLow hopper outLet 

m - coefficient 

m=0 for pLane fLow (end effects negLected) 

m=1 for axisymmetric fLow 

m - suspended mass in experimentaL bin 
e 

M - buLk sqLid mass fLow rate 

M" - verticaL momentum component 

"»n.tn„ - exponents used in the anaLytical expressions for 
1 2 

the flow stress fieLd 

N - number of divisions over which approximate gas 

pressure distribution is evaLuated 



-X x i i 

p - i n t e r s t i t i a L gas p r e s s u r e 

p ( R ) - i n t e r s t i t i a L gas p r e s s u r e at d i s t a n c e R from hopper 

ve rt e X 

p ( r ) - f u n c t i o n d e f i n e d by e q n . ( A 5 . 3 ) 

Q - b u L k s o L i d m a s s fLow rate , e q n . ( 6 . 3 4 ) 

Q - d i m e n s i o n L e s s fLow r a t e , u s e d in e q n . ( 6 . 5 1 ) 

Q ( r ) - f u n c t i o n d e f i n e d by e q n , ( A 5 , 4 ) 

r - r a d i a L d i s t a n c e from the v e r t e x of the fLow channel 

r - r a d i a L d i s t a n c e to h o p p e r o u t L e t , e q n , ( 6 , 3 0 ) 
o 

r* - the d i s t a n c e from the v e r t e x of the c h a n n e L to 

w h e r e the s t r e s s is a s s u m e d to be zero , F i g . ( 1 , 5 ) 

R - r a d i a L d i s t a n c e from the vertex to the t r a n s i t i o n 

of a h o p p e r 

s - s t r e s s f u n c t i o n , u s e d in e q n s . (6 . 1 ) , ( 7 . 1 ) , ( 8 . 8 ) 

r e s p e c t i v e L y 

t - t i me 

T - t e m p e r a t u r e 

T - t e n s i L e f o r c e i n Load c e L L i n e x p e r i m e n t a L 
e 

i n s t a L L a t i o n , e q n . ( 9 , 1 ) 

T ,T ,T - v a r i a b l e s d e f i n e d by e q n s , ( 6 . 1 3 ) , ( 6 . 1 9 ) , ( 6 . 2 0 ) 
1 2 o 

r e s p e c t i v e L y 

T ,T ,T - v a r i a b l e s d e f i n e d by e q n s . ( 6 . 2 1 ) , ( 7 . 3 ) , ( 8 . 1 0 ) 
4 5 6 

r e s p e c t i v e L y 

u - i n t e r s t i t i a L fLuid v e L o c i t y 
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V - buLk soLid veLocity 

V^ - representative velocity in experimentaL instaLLation 

V Q - buLk soLid veLocity at the outLet of a channeL 

VI - major consoLidation Load 

W^ - variabLe defined by eqn,(6.17) 

X - variabLe used in Enstad theory,defined in eqn,(5,103) 

Y - variabLe used in Enstad theory , defined in eqn,(5,104) 

YY - variabLe defined in eqn,(5.82) 

z - component direction 

distance aLonc a pLane fLow hopper,Fig.3.2 

meridionaL direction in axisymmetry,Fig.3.3 

Z^ - variabLe defined by eqn.(6.14) 

Z^tZgtZj^- variables defined in eqns . (8 .26 ) , (8 .27) , (8 . 28 ) 

respectiveLy 

a - hopper haLf angLe 

3 - angLe between major principaL stress and normaL to 

hopper waLL for fLow conditions,defined in eqn,(3.16) 

r - porosity of a buLk soLid,defined in eqn.(3.20) 

6 - effective angLe of internaL friction of a buLk soLid 

6 - anguLar co-ordinate in pLane radiaL co-ordinates and 

in the meridionaL pLane i n a x i a L symmetry 

^ - integration variabLe 



- XXIV 

p - buLk density of a buLk soLid,eqn.(3.18) 

p - buLk density when o = a 
o o 

p^ - density of the interstitiaL fLuid 

p - density of the interstitiaL gas 

p - density of soLid particles 

o - mean stress 

o - mean stress at outLet of fLow channeL 
o 

a - normaL stress aLona the waLL 
w 

a ( R ) - vaLue of the mean stress at the transition 

major and minor consoLidation stresses 

consoLidation stresses in the r and 6 direction 

respec t i ve Ly 

(J) - kinematic angLe of friction between a buLk soLid 

and a b in wa L L 

T - shear stress 

T - shear stress along the waLL 

shear stress component defined in Fig. 3.6 

angLe between the co-ordinate ray and principaL 

stress direction,defined in Fig. 3,6 

\i)* ~ angLe defined in Fig, A2,1 

0) - angLe reLated to 6 and ^ ,defined in Fig. 3.6 

w 

're 



XXV 

e 

e 

f 

q 

s 

0 

R 

T 

Subsc r i pt s 

r c omponent 

c omponent 

expe ri ment a L 

i nterst it i a L f Lui d 

interstitiaL gas 

s o L i d p a r t i c L e s 

pertaining to the outLet of the fLow channeL 

pertaining to distance R from vertex of fLow channeL 

pertaining to the transition of the fLow channeL 

denotes conditions at the waLL 

c oni ca L 

D L ane f Low 

Supersc ript s 

' denotes Enstad co-ordinate system,defined 

in Fi g . 5 .1 

å -

Pref i X 

finite change 
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