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1. Abstract

There is hardly an industry which does nof employ gravity
flow bins fof the storage of bplk solids.Consequently there
has been considerable activity and research to provide the
engineer with information that will enable him to design bulk
solid storage facilities for unobstructed and predictable
flow.There also has.been an increasing tendency in industry
to handle finer materials which has led to considerable
difficulties especially in cases where the actual flow rate
was considerably less than plant capacities.Such misfortunes
have prompted a number of investigations in this field in an
endeavour to understand the flow of fine materials and to
make suifable modifications to gravity flow bins to improve
the flow situation.

This thesis is cdnéerned with the prediction of the flow
rates of fine bulk solids from mass flow bins and hoppers.In
this initial treatment the two-phase nature of the flow will
become apparent.The analysis requires the simultaneous
consideration of the continuity of the bulk solid and the
interstitial fluidyand the inclusion of the effects of the
interstitial gas pressure gradients in the equation of motion
of the flowing bulk solid;

This analysis will be applied initially to an incremental
element of bulk solidsythe flow through which 1s described by
a number of partial.differential equations whose solution
reqguires considerable nurerical effort.An approximate
analysis is then be developed Sy considering the flow through
an assumed element.Three non-linear total differential

equations result which also require numerical techniques for
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their solution.

By making suitable assumptions for the form of the flow
stress field ,analytical solutions for the flow rate,the
interstitial gas pressure distribution and the flow stress
field are obtained for channels wifh or without
surcharge«Results for coarse bulk solids are then derived by
neglecting the effects of interstitial fliud pressure
graacients.

The predicted flow rates compare favourably with observed
flow rates from an experimental plane flow bin.

It must be stressed that this is only an initial treatment,
extensive work still is required to completely understand and

predict the flow of general bulk solids from bins.
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1. Nomenclature

a -

A -

A ,A2,A
A 4A LA
4y 5
A WA LA
7 8

b -

exponent used to relate permeability coefficient to
consolidation stress,eqn.(3,19)

area of flow channel

3- variables defined by eqns.(6.27),(6.28),(6.29)

respectively
- variables defined by eaqns.(6.44),(6.45),(6.,46)

respectively

g_ variables defined by.eqns.(7.23),(7.24),(7.25)

respectively
exponent used to relate bulk density to
consolidation stress,ean.(3,.,18)
- body forces used in eqns.{(4.30) and (4.31)
width or diameter of outlet of flow channel
permeability coefficient of bu Lk solid,eqn.(3,19)
permeability coefficient of bulk solid when O = 04
constant relating mean stress at hopper outlet to
dynamic héad at outlet,eqn.(5,111)
constant of integration used in eqn.(6.18),
defined in ean.,(A5.18)
constant of integration used in eqn.(7.9),
defined in egn.(7.17)
constant of integration used in eqn.(7.10)
constant of integration used in egn.(8.16),
defined in ean.(8.20).

constant of integration used in ean.(8.17)



-x X

fl,{;- fluid drag forceyused in eqns.(4,30) and (4.,31)
ff - flow factor for a converging channel
ffa - “actual” flow factor for a flow situation
F - unconfined yield strength of a bulk solid
FF - flow function of a bulk solid
a - acceleration due to gravity
61,62,63 - constants defined in eqns.(6.11),(7.7) ¢& (8.15)
respectively
H - moisture content
1 - integrand defined by eqn.(5.7) or by (5.14)
respectively
k - <coefficient
k = +1 for the major principal stress
k==-1 for the minor principal stress
k=0 for the mean stress
L - Llength of a plane flow hopper outlet
m - <coefficient
m=0 for plane flow (end effects neglected)
m=1 for axisymmetric flow
L - suspended mass in experimental bin
é - bulk solid mass flow rate
M - wvertical momentum component

n,nl,n2 -~ exponents used in the analytical expressions for
the flow stress field
N - number of divisions over which approximate gas

pressure distribution is evaluated
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p - interstitial gas pressure

p(R) - interstitial gas pressure at distance R from hopper
vertex

p(r) - function defined by eqn. (A5,3)

Q - bulk solid mass flow rate,eqn.(6.34)

QD - dimensionless flow rateyused in eqn.(6.51)

@(r) = function defined by ean, (AS5.4)

r - radial distance from the vertex of the flow channel

ro - radijial distance to hopper outlet,ean.(6.30)

r* - the distance from the vertex of the channel to
where the stress is assumed to be zero,fFig.(1.5)

R - radial distance from the vertex to the transition
of a hopper

s - stress function,used in eaqns.(6.1),(7.1),(8.8)
respectively

t - time

T - temperature

Te - tensile force in load cell in experimental

installation,eqn.(9.1)
T ,7T ,7T_~ variables defined by eaqns.(6.13),(6.19),(6.20)
respectively
Tu'TS'T - variables defined by eqns.(6.21),(7.3),(8.10)
respectively

u - interstitial fluid velocity
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vV - bulk solid velocity

Ve - representative velocity in expérimental installation
Vo - bulk solid velocity at the outlet of a channel

vi - major consolidation load

L -~ variable defined by eqn.(6.17)

X - wvariable used in Enstad theory,defined in eqn,(5,103)
Y - variable used in Enstad theory,defined in eqn.(5.104)
Yy - wvariable defined in eqn.(5.82)

z - component direction

distance alonc a plane flow hopper,fig.3.?
meridional direction in axisymmetry,fFige3.3
Z1 - wvariable defined by eqn.(6.14)
ZQ’Za’Zu- variables defined in eaqns.(8.26),(8.27),(8.28)
respectively
a - hopper half angle
B - angle between major principal stress and normal to

hopper wall for flow conditions,defined in eaqn.(3.,16)

' - porosity of a bulk solid,defined in egn.(3.,20)
6 - effective angle of internal friction of a bulk solid
0 - angular co-brdinate in plane radial co-ordinates and

in the meridional plane in-axial symmetry

£ - 1integration variable
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bulk density of a bulk solidyeqn.(2,18)

bulk density when © =oo

density of the interstitial fluid

density of the intéfstitial gés

density of solid particles

mean stress

mean stress at outlet of flow channel

normal stress along the wall

value of the mean stress at the transition
major and minor consolidation stresses
consolidation stresses in the r and 6 direction
respectively

kinematic angle of friction between a bulk solid
and a bin wall

shear stress

shear stress along the wall

shear stress component defined in Fige. 3.6
angle between the co-ordinate ray and principal
stress direction,defined in Fig. 3.6

angle defined in Fige. AZ2.1

angle related to ® and V¥ ,defined in Fig. 3.6
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Subscripts
r component
component
experimental
interstitial fluid
interstitial gas
solid particles
pertaining to the outlet of the flow channel
pertaining to distance R from vertex of flow channel
pertaining to the transition of the flow channel
denotes conditions at the wall
conical

plane flow

Superscripts

denotes Enstad co-ordinate system,defined

in Fig.5.1

Prefix

finite change
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