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Optimization of Task Processing Schedules in

Distributed Information Systems

Janusz R. Getta

School of Computer Science and Software Engineering,
University of Wollongong, Wollongong, Australia

jrg@uow.edu.au

Abstract. The performance of data processing in distributed informa-
tion systems strongly depends on the efficient scheduling of the applica-
tions that access data at the remote sites. This work assumes a typical
model of distributed information system where a central site is connected
to a number of remote and highly autonomous remote sites. An applica-
tion started by a user at a central site is decomposed into several data
processing tasks to be independently processed at the remote sites. The
objective of this work is to find a method for optimization of task pro-
cessing schedules at a central site. We define an abstract model of data
and a system of operations that implements the data processing tasks.
Our abstract data model is general enough to represent many specific
data models. We show how an entirely parallel schedule can be trans-
formed into a more optimal hybrid schedule where certain tasks are pro-
cessed simultaneously while the other tasks are processed sequentially.
The transformations proposed in this work are guided by the cost-based
optimization model whose objective is to reduce the total data trans-
mission time between the remote sites and a central site. We show how
the properties of data integration expressions can be used to find more
efficient schedules of data processing tasks in distributed information
systems.

Key words: Distributed information system, data processing, schedul-
ing, data integration, optimization

1 Introduction

The rapid growth in the number of distributed applications and the users of
these applications creates an ever increasing pressure on the performance of
data processing in distributed information systems. To satisfy the increasing
performance requirements we investigate more sophisticated and more efficient
algorithms for distributed data processing. A factor, that has a significant impact
on the performance of distributed data processing is scheduling of the individual
data processing tasks over the remote sites. In a typical approach a central site
decomposes a task submitted by a user into a number of individual tasks, to be
processed at one of the remote sites. A partial order in which the individual tasks
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are submitted to the remote sites and a way how their results are assembled into
the final result is called as a task processing schedule.

Two generic task processing schedules are either entirely sequential or en-

tirely parallel schedules. In an entirely sequential schedule the tasks t1, . . . , tn
are processed one by one in a way where a task ti can be processed only when
all results of the tasks t1, . . . , ti−1 are available at a central site. Accordingly to
an entirely parallel schedule all tasks t1, . . . , tn are simultaneously submitted for
processing at the remote sites. When looking at the performance, our intuition
always favor an entirely parallel schedule over a sequential one because process-
ing of several tasks is done in the same time at many remote sites. An entirely
parallel schedule attempts to save time on processing of all tasks. However, if we
consider time spent on transmission of the results from the remote sites then in
some cases a sequential schedule is more appropriate than a parallel one because
the intermediate results received so far can be used to reduce the size of the
other results. For example, if an individual task ti returns a lot of data then pro-
cessing of ti and transmission of its results to a central site may take more time
than parallel processing of the tasks t1, . . . , ti−1, modification of task ti with the
results r1, . . . , ri−1, processing of updated ti, and transmission of its results. In
such a case simultaneous processing of the tasks t1, . . . , ti−1 followed by simulta-
neous processing of the tasks ti−11, . . . , tn may provide better performance than
entirely parallel schedule.

An entirely sequential schedule attempts to minimize data transmission time
of the results while an entirely parallel schedule minimizes the total processing
time of the individual tasks. As the efficiency of both methods depend on a
number of factors like for instance the computational complexity of the individ-
ual tasks, computational power of local systems, data transmission speed, etc,
then usually a hybrid schedule where some of the individual tasks are processed
sequentially while the others simultaneously, provides the best results.

The objectives of this work are the following. We consider a model of dis-
tributed information system where a user application running at a central site
submits a data processing task T against a global view of the system. An ab-
stract model of data containers represents a data component of a distributed
system and a system of operations on data containers is used to implement the
data processing tasks. The task is decomposed into a number of individual tasks
t1, . . . , tn to be processed at the local sites of the distributed system. A data

integration expression e(t1, . . . , tn) determines how the results r1, . . . , rn of the
individual tasks suppose to be assembled into the final result of a task T . A
starting point for the optimization is an entirely parallel schedule where the
individual tasks are in the same moment submitted for the simultaneous pro-
cessing at the remote sites. We show how an entirely parallel task processing
schedule can be transformed into a hybrid schedule that minimizes the total
amount of time spent on transmission of data from the local sites. To minimize
total transmission time we estimate the amounts of time needed for transmission
of the results r1, . . . , rn and we find if it is possible to reduce the amounts of
transmission if some of the tasks are processed before the others. Then, we find
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how the results of the tasks processed earlier can be used to transform the tasks
processed later.

The paper is organized in the following way. An overview of the works related
to an area of optimization of data processing in distributed systems is included
in the next section. A section 3 introduces an abstract data model used in this
work. A method used for the estimation of the costs of alternative data process-
ing schedules is presented in a section 4. Transformation and optimization of
data processing schedules is described in the sections 5 and 6. Finally, section 7
concludes the paper.

2 Previous works

The previous works concentrated on three aspects of distributed data processing:
optimization of query processing in distributed systems, estimation of process-
ing time at the remote site and transmission time, and optimization of data
integration.

Optimization of data processing in distributed systems has its roots in opti-
mization of query processing in multidatabase and federated database systems
[17, 15]. Due to the syntactical and semantic heterogeneities of the remote sys-
tems [16] optimization of distributed query processing is conceptually different
from optimization of query processing in homogeneous and centralized systems
[14]. One of the recent solutions to speed up distributed query processing in
distributed systems considers the contents of cache in the remote systems and
prediction of cache contents [10]. Wireless networks and mobile devices triggered
research in mobile data services and in particular in location-dependent queries
that amalgamate the features of both distributed and mobile systems. The exist-
ing literature related to location-dependent query processing is reviewed in [7].
A framework for distributed query scheduling has been proposed in [13]. The
framework allows for the dynamic information gathering across distributed sys-
tems without relying on a unified global data model of the remote systems. [20]
introduces an adaptive distributed query processing architecture where fluctua-
tions in selectivities of operations, transmission speeds, and workloads of remote
systems, can change the operation order distributed query processing.

Optimization of data processing schedules in distributed systems strongly
depends on the precise estimation of data processing time at the remotes sites
and on the amounts of data transmitted from the remote sites. Due to the strong
autonomy of the remote sites a central site has no impact on processing of sub-
queries there and because of that the estimation of the local performance indica-
tors is pretty hard [21]. A solution proposed in [5] categorizes the local databases
into three groups and uses such classification to estimate the cost functions for
data processing at the remote sites. In [21] the query sampling methods is used
to estimated the query processing costs at the local systems. [11] proposes a clus-
tering algorithm to classify the queries and to derive the cost functions. Query
scheduling strategy in a grid-enabled distributed database proposed in [4] takes
under the consideration so called ”site reputation” for ranking response time of
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the remote systems. A new approach to estimation of workload completion time
based on sampling the query interactions has been proposed in [1] and in [2].
Query monitoring can be used to collect information about expected database
load, resource allocation, and expected size of the results [9].

Efficient integration of the partial results obtained from the remote sites
is one of subproblems in optimization data processing schedules in distributed
systems. Data integration combines data stored at the remote sites and provides
a single unified view of the contents of remote sites. The reviews of research on
data integration are included in [8],[22]. The implementations of experimental
data integration systems systems based on application of ontologies and data
sharing are described in [19],[18], [12]. A distributed and open query processor
that integrates Internet data sources was proposed in [3].

3 Basic concepts

To remain at a high level of generality we define an abstract data model where
a data component of an information system is a set D of data containers. A
data container d ∈ D includes data objects. A data object is either a simple

data object or a composite data object. A simple data object includes the pairs
of data items (name, value) where name is a name of data item and value is
a value of data item. An internal data structure can be used to ”assemble” the
data items into a simple data object. At an abstract level we do note refer to
any particular internal data structure. In a concrete data model an internal data
structure could be a sequence of tuples of data items, a hierarchical structure of
data items, a graph of data items, a vector of data items etc.

A composite data object is a pair (oi, oj) where oi and oj are either simple
data objects or composite data objects.

An operation of composition on data containers ri and rj is defined as

ri +f rj = {(oi, oj) : oi ∈ ri and oj ∈ rj and f(oi, oj)} (1)

where f is an evaluation function f : ri × rj → {true, false}.
An operation of semicomposition on data containers ri and rj is defined as

ri ⊣f rj = {(oi : oi ∈ ri and ∃oj ∈ rjf(oi, oj)} (2)

where f is an evaluation function f : ri × rj → {true, false}.
An operation of elimination on data containers ri and rj is defined as

ri −f rj = {oi : oi ∈ ri and not ∃oj ∈ rjf(oi, oj)} (3)

where f is an evaluation function f : ri × rj → {true, false}.
An operation of union on data containers ri and rj is defined as

ri ∪f rj = {oi : (oi ∈ ri or oi ∈ rj) and f(oi)} (4)

were f is an evaluation function f : ri → {true, false}.
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An operation of elimination on a data container ri is defined as

σf (ri) = {oi : oi ∈ ri and f(oi)} (5)

where f is an evaluation function f : ri → {true, false}.

Like for an internal structure of data objects, a precise syntax of an evaluation
function is not determined in the abstract data model. Selection of the particular
internal structures for the simple and composite data objects and a syntax for
an elimination function defines a concrete data model. For example, a choice
of n-tuples as a unified internal structure of all data objects and a syntax of
formulas of prepositional logic for an elimination function defines a relational
data model with the operations of join, semijoin, antijoin, union, and selection.

A query is an expression whose arguments are simple and composite data
objects and all its operations belong to a set {+f ,⊣f ,−f ,∪f , σf}.

Let f(x, y) be an evaluation function f : ri× rj → {true, false}. A signature

of f is a pair (ri, rj).

A Projection of function f(x, y) on an object oj ∈ rj is denoted as f(x|oj)
and it is defined as f(x|oj) : ri → {true, false}. A projection of a function
f(x, y) on an object oj ∈ rj is obtained through a systematic replacement of
an argument y with a constant object oj . For example if an evaluation function
f(x, y) is implemented as return((x.a+y.b)>5) then projection of the func-
tion on an object oj such that oj .b = 3 is a function f(x|oj) implemented as
return((x.a+3)>5).

Let T denotes a task submitted at a central site of a distributed information
system and let t1, . . . , tn be its decomposition into the individual tasks to be
processed at the remote sites of the system. Let S = {⊤,⊥, t1, . . . , tn} be a set
where ⊤ is a start of processing symbol, ⊥ is an end of processing symbol. Then,
a partial order P ⊆ S × S such that < S,P > is a lattice where sup(S) = ⊤
and inf(S) = ⊥ and any pair (ti, tj) ∈ P is called as a task processing schedule.
For instance, a lattice given in a Figure 1 represents a task processing schedule
where the system starts from the simultaneous submission of the tasks t1, t2, t3.
When the results of t2 are available, the system submits t4. When both results
of t2 and t3 are available the system submits t5.

1 2 3

4 5

t t t

t t

Fig. 1. A sample task processing schedule
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Let r1, . . . , rn denote the results of the tasks t1, . . . , tn. An expression that
determines how to combine r1, . . . , rn into the final answer is called as a data

integration expression and it is denoted as e(r1, . . . , rn).

4 Evaluation of integration strategies

Consider a task processing schedule S ⊆ T ×T where T = {⊤,⊥, t1, . . . , tn} The
cost of a schedule S is measured as the total amount of time required to transmit
the results r1, . . . , rn to a central site. The total transmission time depends on
the amounts of transmitted data and transmission speed of a network. With an
entirely parallel processing schedule the total transmission time is equal to

max(|r1|/τ1, . . . , |rn|/τn) (6)

where τi is a transmission speed from a remote system i and |ri| is the total
amount of data transmitted from a remote system i. When one of |ri|/τi is
significantly bigger then the others then it is beneficial to delay the processing
of ti until the results of r1, . . . , ri−1, ri+1, . . . , rn are available at a central site
and to use these results to modify ti to t′i such that its result r′i is smaller than
ri. Then, the total transmission time is equal to

max(|r1|/τ1, . . . , |ri−1|/τi−1, |ri+1|/τi+1, . . . , |rn|/τn) + |r′i|/τi, (7)

When a value of (7) is smaller than a value of (6) then a hybrid task process-
ing schedule, that delays processing of a task ti and transforms it to reduce
transmission time is better than entirely parallel schedule.

An important problem in the evaluation of alternative task processing sched-
ules is estimation of the sizes |ri| and |r′i|. In the database systems where the
query processors use cost based optimization techniques it is possible to get in-
formation about an estimated total amount of data returned by a query. For
example the cost based query optimizers in relational database systems use his-
tograms on columns of relational tables to estimate the total number of rows
returned by a query and SQL statement EXPLAIN PLAN can be used find a query
execution plan and estimated amounts of data processed accordingly to the plan.
Then, it is possible to estimate the values |r1|, . . . , |rn| before the queries are pro-
cessed. These results can also be used to estimate the reductions of data trans-
mission time when a task ti is transformed into t′i = σf(x|rj)(ti) where f(x|rj)
is a projection of elimination function on the results rj . The transformations of
ti are explained in the next section. If an elimination operation removes from ri
data objects that do not satisfy a condition f(x|rj) then smaller rj reduces ri to
a larger extent. On the other hand, if elimination removes from ri data objects
that do not have matching data items in the data objects in rj then larger rj
reduces ri more than smaller rj . When it is possible to get information about the
total number of data objects included in ri and rj then together with a known
projection of elimination function f(x|rj) and known the distributions of data
items in objects in ri and rj it is possible to estimate the size of σf(x|rj)(ti) and
find whether processing of tj before ti is beneficial.
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5 Transformations of task processing schedules

In this section we consider the tasks ti and tj to be processed at the remote
systems and we show when and how a task ti can be transformed by the results
rj . We start from an example that explains an idea of transformations of task
processing schedules.

Consider a task T submitted at a central site and decomposed into the tasks
t1, t2, t3, and t4 to be processed at the remote sites. Let r1, r2, r3, r4 denote data
containers with the results of the individual tasks and let a data integration ex-
pression (r1+f1 r2)+f3 (r3−f2 r4) determines how the results of individual tasks
must be ”assembled” into the final result. Assume, that an evaluation function
f3 has a signature (r1, r3). It means that implementation of f3 uses only the data
items from the data containers r1 and r3. Then it is possible to transform the data
integration expression into an equivalent form ((r1 ⊣f3 r3)+f1 r2)+f3 (r3−f2 r4).
The result of the transformed expression is the same as the result of the original
expression because a subexpression r1 ⊣f3 r3 removes from r1 data objects which
would not contribute to the result of operation +f3 in the transformed expres-
sion. It means that a task t1 can be transformed into an expression t1 ⊣f3 r3.
Unfortunately, due to a high level of autonomy of a remote system the expression
cannot be computed in its present form. A remote system does not accept any
tasks that include the input data containers like for example r3. Therefore the
expression must be transformed into a form that can be processed by a remote
system. We consider an evaluation function f3(x, y) : r1 × r3 → {true, false}
and its projections f3(x|o1), . . . , f3(x|on) on the objects o1, . . . on ∈ r3. Next,
we replace an expression t1 ⊣f3 r3 with σf3(x|o1) or ... or f3(x|on)(t1). It means
that we construct a new task that filters the results of t1 with a condition built
over the values of data items in the objects o1, . . . on ∈ r3. As a consequence,
an entirely parallel task processing schedule of can be changed into a schedule
where processing of t3 precedes processing of t1 while t2 and t4 are still processed
simultaneously.

A problem how to transform an entirely parallel schedule can be expressed in
the following way. Let T be a task submitted at a central site and decomposed
into the tasks t1, . . . , tn to be processed at the remote systems. Let e(r1, . . . , rn)
be a data integration expression build over the operations {+f ,−f ,∪f} and the
partial results r1, . . . , rn obtained from the processing of t1, . . . , tn at the remote
systems. A question is when and how a task ti can be transformed into a task
t′i using the results rj of a task tj such that a result of data integration expres-
sion e(r1, . . . , ri, . . . , rn) is the same as a result of expression e(r1, . . . , r

′
i, . . . , rn)

where r′i is the result of transformed task t′i.

We consider a syntax tree Te of data integration expression e(r1, . . . , rn) and
the smallest subtree Tij of Te that contain both arguments ri and rj . A syntax
tree Te is constructed such that the arguments r1, . . . , rn are located at the leaf
nodes and the operations of data integration expression are located at non-leaf
nodes. Let αf ∈ {+f ,−f ,∪f} be an operation located at the root node of a
subtree Tij . If a signature of an elimination function f is equal to (ri, rj) then
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a task ti can be transformed using a result rj or a task tj can be transformed
using a result ri of a task ti.

In the example above t1 can be reduced with the results of t3 and the opposite
because a signature of an operation +f3 in the root of the smallest syntax tree
that contains r1 and r3 is equal to (r1, r3).

In the specific cases the condition determined above may not be satisfied and
still it is possible to transform a data integration expression. For example if in ex-
pression (r1+f1r2)+f3(r3−f2r4) a signature of f3 is equal to (r2, r3) and signature
of f2 is equal to (r3, r4) and f2(x3, x4) is implemented as return(x3 = x4) then it
is still possible to transform a task t2 to a form σnot f3(x|o1) or ... or not f3(x|on)(t2)
where o1, . . . , on ∈ r4. This is because an equality condition x3 = x4 in imple-
mentation of a function f2 makes r3 in in a signature of f3 equal to r4 and the
second argument of an operation +f3 does not contain objects included in r4. In
the specific cases it is possible to transform the queries despite that signature
does not satisfy a condition above.

+f (left)−f −f (right) ∪f

d d− d− −d d∗

d− d− d− d∗ d∗

−d −d −d d∗ d∗

d∗ d∗ d∗ d∗ d∗

Table 1. The labeling rules for syntax trees of data integration expressions

The next problem is to find a transformation that in a general case can be
applied to a given task ti to reduce transmission time of its results ri. To discover
a transformation we label a syntax tree Te in the following way.

(i) An edge between a leaf node that represent an argument d is labeled with d.
(ii) If a node n in Te represents an operation α that produces a result r and

”child” edge of a node n is labeled with one of the symbols d, d−, −d, d∗
then a ”parent” edge of n can be labeled with a symbol located in a row
indicated by a label of ”child” edge and a column indicated by an operation
α in Table 1.

The interpretations of the labels are the following. A label d attached to a ”child”
edge of composition operation at root node of the tree indicate that all d data
objects are processed by the operation. A label d− attached to a ”child” edge of
the same operation indicates that only a subset of data objects of an argument d
are processed by the operation. A label −d attached to the same edge indicates
that none of data objects d are processed by the operation. A label d∗ indicates
that some of data objects in d and some other data objects are processed by the
operation.

As an example, consider an integration expression (r1 −f1 r2) +f2 r3. The
”parent” edges of the nodes r1, r2, and r3 obtain the labels r1, r2, and r3. A left
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”child” edge of the root node obtained a label r1− indicated by a location in the
first row and the second column in Table 1. Moreover, the same edge obtains a
label −r2 indicated by a location in the first row and the third column in Table
1. A complete labeling is given in a Figure 2.

−f1

+f2

r1
r2

r1
r2

r3

r −1

−r  2 r3

Fig. 2. A labeled syntax tree of data integration plan (r1 −f1 r2)) +f2 r3

+f rj rj− −rj rj∗

ri σf(x|rj)(ti) σf(x|rj)(ti) σnot f(x|rj)(ti) σf(ri|y)(tj)

σf(ri|y)(tj) σf(ri|y)(tj) σf(ri|y)(tj)

ri− σf(x|rj)(ti) σf(x|rj)(ti) σnot f(x|rj)(ti) σf(ri|y)(tj)

σf(ri|y)(tj) σf(ri|y)(tj) σnot f(ri|y)(tj)

−ri σnot f(ri|y)(tj) σnot f(x|rj)(ti) σnot f(ri|y)(tj) σnot f(ri|y)(tj)

σf(x|rj)(ti) σnot f(ri|y)(tj) σnot f(x|rj)(ti)

ri∗ σf(x|rj)(ti) σf(x|rj)(ti) σnot f(x|rj)(ti) none

Table 2. The transformations of arguments in task processing schedules (1)

−f rj rj− −rj rj∗

ri σf(ri|y)(tj) σf(ri|y)(tj) σf(ri|y)(tj) σf(ri|y)(tj)
σnot f(x|rj)(ti)

ri− σf(ri|y)(tj) σf(ri|y)(tj) σf(ri|y)(tj) σf(ri|y)(tj)

−ri σnot f(ri|y)(tj) σnot f(ri|y)(tj) σnot f(ri|y)(tj) σnot f(ri|y)(tj)
σnot f(x|rj)(ti) σnot f(x|rj)(ti)

ri∗ σnot f(x|rj)(ti) σnot f(x|rj)(ti) none none

Table 3. The transformations of arguments in task processing schedules (2)

The interpretation of the transformations included in the Tables 2 and 3 is
the following. Consider the arguments ri and rj included in the smallest subtree
of a syntax tree of data integration expression If an operation in the root of
the subtree is +f then the possible transformations ri and rj are included in
a Table 2. If an operation in the root of the subtree is −f then the possible
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transformations ri and rj are included in a Table 3. The replacements of the
arguments ri and rj can be found after the labeling of both paths from the leaf
nodes representing the both arguments towards the root node of the subtree.
The transformations of the arguments ri and rj are located at the intersection
of a row labeled with a label of left ”child” edge and a column labeled with
a label of ”right” child edge of the root node. For instance, consider a subtree
of the arguments ri and rj such that an operation +f is in the root node of
the subtree. If a left ”child” edge of the root node is labeled with −ri, and a
right ”child” edge of the root node is labeled with rj∗ then a Table 2 indicates
that it is possible to replace the contents of an argument tj with an expression
σnot f(ri|y)(tj).

As an example consider a data integration expression (r1 −f1 r2)) +f2 r3
and its labeling is given in a Figure 2. The following transformations of the
arguments are possible. A query t1 can be replaced with σnot f1(x|r2)(t1) or with
σf2(x|r3)(t1). A query t2 can be replaced with σf1(r1|y)(t2) or with σf2(x|r3)(t2). A
query t3 can be replaced with σnot f2(r2|y)(t3) or with σf2(r1|y)(t3). It is possible
to apply both transformations. For example, if we plan to process both t1 and
t2 before t3 then t3 can replaced with σnot f2(r2|y)(σf2(r1|y)(t3)).

6 Optimization of task processing schedules

At an early stage of data processing at a central site a task T is decomposed
into the tasks t1, . . . , tn to be submitted for processing at the remote sites and a
data integration expression e(r1, . . . , rn) determines how to combine the results
r1, . . . , rn into the final answer. Optimization of a task processing schedule finds
an order in which the individual tasks t1, . . . , tn are submitted for processing to
minimize the total data transmission time from the remote systems to a central
site. The initial task processing schedule is an entirely parallel schedule where all
tasks t1, . . . , tn are submitted for processing in one moment in time and processed
simultaneously at the remote systems. Optimization of an entirely parallel task
processing schedule consists of the following steps.
For all pairs of results (ri, rj) perform the following actions:

(1) Find in a syntax tree Te of a data integration expression e(r1, . . . , rn) the
smallest subtree that contain both arguments ri and rj . Find an operation
αf in the root node of the subtree. If a signature of an elimination function
f is (ri, rj) then progress to the next step, otherwise consider the next pair
of arguments (ri, rj).

(2) Use a Table 1 to label the paths from the leaf nodes ri and rj to the root
node αf of the subtree.

(3) Use the Tables 2 and 3 to find the transformations of ti by a result rj and
tj by a result ri.

(4) Compare the costs of the following data integrations plans: (i) ti processed
simultaneously with tj , (ii) ti processed before a transformed tj , (iii) tj
processed before a transformed t′i and record the best processing order, i.e.
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a pair (ti, tj) or a pair (ti, tj) or nothing if simultaneous processing of ti and
tj provides the smallest costs.

Next, we use the pairs of queries obtained from a procedure above to con-
struct a scheduling lattice. The queries t1, . . . , tn are the labels of the nodes in
the lattice and each pair (ti, tj) contributes to an edge from node ti to a node
tj where ti is located ”above” tj in the lattice. Finally the nodes labeled with ⊤
and ⊥ are added to the scheduling lattice.

As an example consider a data integration expression (r1 −f1 r2)) +f2 r3
and its labeling is given in a Figure 2. The following transformations of the
arguments are possible. A query t1 can be replaced with σnot f1(x|r2)(t1) or with
σf2(x|r3)(t1). A query t2 can be replaced with σf1(r1|y)(t2) or with σf2(x|r3)(t2). A
query t3 can be replaced with σnot f2(r2|y)(t3) or with σf2(r1|y)(t3). It is possible
to apply both transformations. For example, if we plan to process both t1 and t2
before t3 then t3 can replaced with σnot f2(r2|y)(σf2(r1|y)(t3)). If estimation of the
processing times indicated that the results r2 and r2 used to transformation of
task t3 into t′3 = σnot f2(r2|y)(σf2(r1|y)(t3)) reduce the transmission of the results
d′3 such that max(|r1|/τ1, |r2|/τ2)+ |d′3|/τ3| < max(|r1|/τ1, |r2|/τ2, |r3|/τ3|) then
simultaneous processing of the tasks t1 and t2 followed processing of t3 is more
efficient than entirely parallel processing of t1, t2, and t3.

7 Summary and open problems

In this work we consider optimization of task processing schedules in distributed
information system. A task submitted for processing at a central site of the
system is decomposed into a number of individual tasks to be processed at the
remote sites. A parallel processing schedule of the individual tasks does not
always minimize data transmission time and its transformation into a sequential
or hybrid schedule may provide shorter response time. This work shows how to
transforms entirely parallel task processing schedules into more optimal hybrid
schedules where certain tasks are processed simultaneously while the other tasks
are processed sequentially. The transformations are guided by the cost-based
optimizations whose objective is to reduce the total data transmission time. We
show that the properties of data integration expressions can be used to find more
efficient schedules. We propose a technique of labeling of syntax trees of data
integration expressions to find the coincidences between the arguments. Different
types of coincidences between the arguments determine possible transformations
of data processing tasks. We show how to use the results of the tasks processed
earlier to transform the tasks still waiting for processing in a way that reduce
transmission time of their results.

The avenues for further research in this area include the analysis of previ-
ous results to estimate the amounts of time needed to transfer the results of
individual tasks, and binding optimization of data processing schedules with
optimization of processing of data integration expressions. An important factor
in optimization of task processing schedules is the ability to precisely predict
the amounts of data transmitted from the remote sites by the individual tasks.
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Recording the characteristics of data processing tasks and the respective amount
of data would provide statistical information that later on can be used to more
precisely estimate the future transmission size. At the moment processing of data
integration expression is resumed only whenever the complete partial results of
task processing are available at a central site. An interesting idea would be to
process a data integration expression in an online mode where an increment of
the partial results would trigger the computations of data integration expres-
sion. Such technique would better utilize the available computing resources and
it will more evenly spread processing load in time. The other interesting prob-
lems include an extension of cost based optimization on both task processing
time at a remote site and data transmission time and investigation of an impact
of different types of elimination function on transformations of data processing
tasks.
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