Transmit antenna subset selection with power balancing for high data rate MIMO-OFDM UWB systems

Ngoc Phuc Le
University of Wollongong, pnl750@uowmail.edu.au

Le Chung Tran
University of Wollongong, lctran@uow.edu.au

Farzad Safaei
University of Wollongong, farzad@uow.edu.au

Publication Details
Transmit antenna subset selection with power balancing for high data rate MIMO-OFDM UWB systems

Abstract
This paper proposes per-subcarrier transmit antenna subset selection with power balancing for MIMO-OFDM UWB systems to simultaneously improve the system error performance and increase data rates. The deployment of the per-subcarrier antenna subset selection may result in a power unbalance across antennas, which could cause power amplifiers (PAs) to operate in their non-linear regions. To overcome this disadvantage, we formulate a linear optimization problem for the optimal allocation of data subcarriers under a constraint that all antennas have the same number of assigned data symbols. This optimization problem could be applied to systems with an arbitrary number of multiplexed data streams, antennas, and with different selection criteria. The efficacy of the proposed allocation scheme from the PA linearity perspective is validated by analyzing the distribution of the peak amplitude of timedomain signals. Simulation results demonstrate that the proposed system outperforms the system without a balancing constraint.

Keywords
uwb, ofdm, mimo, rate, data, systems, high, transmit, balancing, power, selection, subset, antenna

Disciplines
Engineering | Science and Technology Studies

Publication Details

This conference paper is available at Research Online: http://ro.uow.edu.au/eispapers/1529
Transmit Antenna Subset Selection with Power Balancing for High Data Rate MIMO-OFDM UWB Systems

Ngoc Phuc Le, Le Chung Tran, and Farzad Safaei
School of Electrical, Computer and Telecommunications Engineering
The University of Wollongong
Northfields Avenue, NSW 2522, Australia
Emails: {pnl750, letran, farzad}@uow.edu.au

Abstract—This paper proposes per-subcarrier transmit antenna subset selection with power balancing for MIMO-OFDM UWB systems to simultaneously improve the system error performance and increase data rates. The deployment of the per-subcarrier antenna subset selection may result in a power unbalance across antennas, which could cause power amplifiers (PAs) to operate in their non-linear regions. To overcome this disadvantage, we formulate a linear optimization problem for the optimal allocation of data subcarriers under a constraint that all antennas have the same number of assigned data symbols. This optimization problem could be applied to systems with an arbitrary number of multiplexed data streams, antennas, and with different selection criteria. The efficacy of the proposed allocation scheme from the PA linearity perspective is validated by analyzing the distribution of the peak amplitude of time-domain signals. Simulation results demonstrate that the proposed system outperforms the system without a balancing constraint.

Keywords—MIMO; OFDM-UWB; antenna subset selection; power balancing; linear optimization.

1. INTRODUCTION

Ultra-wideband (UWB) has been expected as a technology for delivering gigabit wireless. However, current OFDM-UWB (orthogonal frequency division multiplexing-UWB) systems suffer from issues of low data rates and very short transmission range [1]. One of the promising solutions to these issues is MIMO (multi-input multi-output) techniques [1]-[2]. Among various MIMO schemes, antenna selection appears to be promising for OFDM-UWB systems. This is mainly due to a low-cost implementation required for antenna selection [3], and the practicality of this technique in the context of UWB in terms of application scenarios (i.e. indoor operation) as well as equivalent isotropic radiated power (EIRP) restrictions [4].

Some research works have considered the application of antenna selection (AS) to OFDM-UWB systems, e.g. in [5]-[8]. In these works, selecting antenna on each subcarrier basis, referred to as per-subcarrier selection, was applied to exploit the frequency-selective nature of the UWB channel. Also, many implementation aspects were investigated, including AS with phase precoding for WiMedia compatibility [5], space-frequency AS with mismatch calibration [6]-[7], or AS with reduced feedback [8]. However, all of these proposed AS schemes were developed for the purpose of performance improvement only. To the best of our knowledge, in all the existing AS-based OFDM-UWB systems in the literature, data are transmitted from only one antenna on each subcarrier. Thus, the achieved spectral efficiency is limited. To fulfill the expectation of delivering gigabit speeds, per-subcarrier antennas subset selection, where multiple data symbols are transmitted simultaneously from multiple antennas on each subcarrier, should be considered for OFDM-UWB systems.

Intuitively, the deployment of per-subcarrier antenna subset selection in OFDM-UWB systems could simultaneously increase data rates resulting from multiplexed data streams and enhance performance by exploiting spatial diversity as well as the frequency-selective of the channel. Besides its advantages, this method has a disadvantage that a large number of data symbols may be assigned on some particular antennas. The power amplifiers (PAs) associated with those antennas may operate in the nonlinear region due to a large power, which degrades system performance. While the design of PAs with a larger dynamic range could alleviate this issue, it is so demanding for low-cost UWB devices. Another approach is selecting antenna subsets with a constraint that the number of data subcarriers allocated to each antenna is equal. Also, the constrained scheme should result in a minimal loss of performance compared to an unconstrained scheme. In [9], the authors have considered linear optimization to devise such a scheme. However, the formulated problem in [9] is only applicable to AS schemes where one antenna is active on each subcarrier, e.g. [5]-[8]. Moreover, even though the rationale of this method comes from the perspective of PAs, the analysis of its benefits from a PAs viewpoint has not been addressed.

In this paper, we propose per-subcarrier antenna subset selection with power balancing for MIMO-OFDM UWB systems. The major contributions of this work are as follows.

• A linear optimization problem is formulated to achieve an optimal solution for the constrained selection in the systems with an arbitrary number of multiplexed data streams.
• A reduced-complexity strategy that requires small feedback bits and lower effort to solve the optimization is proposed by exploiting the correlation between adjacent subcarriers.
• The effectiveness of the proposed per-subcarrier antenna subset selection with power balancing is analyzed from a PAs perspective by deriving the CCDF (complementary cumulative distribution function) of the peak amplitude of per-subcarrier antenna selection MIMO-OFDM signals. Numerical results are also provided to verify the analyses and demonstrate the improvement in terms of error performance.
demultiplexed into as shown in Fig. 1. At the transmitter, the input data are assigned the elements of \(\text{OFDM signals can be expressed as} \)

\[
x_k = \begin{bmatrix} x_{1k}^k & x_{2k}^k & \ldots & x_{n_{T}k}^k \end{bmatrix}^T, \]

where \(x_k \) is the element at position \(k \) of the \(x \) vector. The elements of \(x_k \) are from the \(\mathbb{C} \) (complex field) and \(x_k \) is an \(n \times 1 \) vector. The \(\text{det}(. \), \((.)^T \), \((.)^H \), \((.)^\ast \), \(\mathbb{I} \) denote determinant of a matrix, transpose, Hermitian transpose, inverse, the Kronecker product, expectation, and determinant of a matrix, respectively. \(\mathbb{I} \) indicates the \(n \times n \) identity matrix, and \(\mathbb{I}_k \) is a \(K \times 1 \) vector of ones. \(\mathbb{R} \) indicates the set of real numbers.

\section{II. PER-SUBCARRIER ANTENNA SUBSET SELECTION FOR MIMO-OFDM UWB SYSTEMS}

\subsection{A. System Model}

We consider a MIMO-OFDM UWB system with \(K \) antennas, \(n_T \) transmit antennas, and \(n_R \) receive antennas as shown in Fig. 1. At the transmitter, the input data are demultiplexed into \(n_D \) independent streams, where \(n_D \leq n_T \). Each data stream is then mapped onto \(M \)-QAM (Quadrature Amplitude Modulation) constellations. Denote \(u_l^k, 1 \leq l \leq n_D, 0 \leq k \leq K-1 \), and \(x_l^k, 1 \leq l \leq n_T \), to be the symbols that the subcarrier block takes at its \(l \)-th input and outputs at its \(k \)-th output, respectively. The allocation block assigns the elements of \(u_k = [u_{1k}, u_{2k}, \ldots, u_{n_{T}k}]^T \) to \(n_D \) selected antennas at the \(k \)-th, \(0 \leq k \leq K-1 \), subcarrier based on feedback information. As a result, only \(n_D \) elements in a vector \(x_k = [x_{1k}^k, x_{2k}^k, \ldots, x_{n_{T}k}^k]^T \) are assigned values from \(u_k \), whereas the others are zeros. Here, we assume that \(E[u_k u_k^H] = \sigma^2 \mathbb{I}_{n_T} \).

The output sequences from the subcarrier allocation block are then fed into \(K \)-point IFFT blocks. The discrete-time baseband OFDM signals can be expressed as

\[
s_j(n) = \frac{1}{\sqrt{K}} \sum_{k=0}^{K-1} x_k e^{j2\pi nk/K}, 0 \leq n \leq K-1, 1 \leq j \leq n_T. \tag{1}\]

Each time-domain OFDM signal is then added with a guard interval (GI) before being transmitted via its corresponding transmit antenna. At the receiver, the received signal at each antenna is fed into the FFT block after the GI is removed. The system model in the frequency domain corresponding to the \(k \)-th subcarrier can be expressed as

\[
y_k = H_k x_k + n_k = H_k u_k + n_k, \tag{2}\]

where

\[
x_k = \begin{bmatrix} x_{1k}^k & x_{2k}^k & \ldots & x_{n_{T}k}^k \end{bmatrix}^T, \]

\[
H_k = \begin{bmatrix} h_{1,1}^k & h_{1,2}^k & \ldots & h_{1,n_{R}}^k \\ h_{2,1}^k & h_{2,2}^k & \ldots & h_{2,n_{R}}^k \\ \vdots & \vdots & \ddots & \vdots \\ h_{n_{T},1}^k & h_{n_{T},2}^k & \ldots & h_{n_{T},n_{R}}^k \end{bmatrix}, \tag{3}\]

\[
y_k = \begin{bmatrix} y_{1}^k \\ y_{2}^k \\ \vdots \\ y_{n_{T}}^k \end{bmatrix}, \tag{4}\]

\[
n_k = \begin{bmatrix} n_{1}^k \\ n_{2}^k \\ \vdots \\ n_{n_{T}}^k \end{bmatrix}. \tag{5}\]

In the above equations, \(h_{ij}^k \) indicates the channel coefficient from the \(i \)-th transmit antenna to the \(j \)-th receive antenna. The effective channel matrix \(H_k \) is obtained by eliminating the columns of \(H_k \) corresponding to the unselected transmit antennas. Also, \(y_{ij}^k \) and \(n_{ij}^k \) denote the received signal and the noise at the \(j \)-th receive antenna, respectively. Here, the noise is modeled as a Gaussian random variable with zero mean and \(E[n_k n_k^H] = \sigma^2 \mathbb{I}_{n_{R}} \). We assume that per-subcarrier power loading is not an option due to the strict regulation of a power spectral mask in UWB systems. Finally, various MIMO detection techniques can be used to detect signals. For simplicity, we only consider a ZF (zero-forcing) receiver.

\subsection{B. Per-subcarrier Antenna Subset Selection}

In a MIMO-OFDM UWB system with per-subcarrier subset selection, antenna subsets are selected independently for each subcarrier. On each subcarrier, only \(n_D \) transmit antennas out of \(n_T \) available transmit antennas are active. Denote \(\Gamma_{\gamma} = \{1, 2, \ldots, \Gamma\} \) to be the \(\gamma \)-th subset consisting of \(n_D \) selected antennas, where \(\Gamma = \binom{n_T}{n_D} = \frac{n_T!}{n_D!(n_T-n_D)!} \) is the number of all possible \(n_T \)-element subsets. Each subset consists of \(n_D \) transmit antenna indices that are chosen based on the feedback information from the receiver. For example, when \(n_T = 4 \) and \(n_D = 2 \), then \(\Gamma = 6 \), and all possible subsets \(\Gamma_{\gamma}, \gamma = 1, 2, \ldots, 6 \) are defined in the Table I. The choice of the best antenna subset depends on a particular selection criterion.

Several antenna selection criteria, such as maximum capacity [10], maximum SNR (signal-to-noise ratio) [10], or MMSE (minimum mean-squared error) [11], can be extended
As all the subsets are chosen twice, from Table I, in Section II, we have described the MIMO-OFDM UWB systems with arbitrary numbers of multiplexed data streams \(n_D \) and transmit antennas \(n_T \) (\(n_D < n_T \)).

We define a variable \(z^k_\gamma \), where \(z^k_\gamma = 1 \) if \(\Gamma_\gamma \) is chosen for the \(k^{th} \) subcarrier, and \(z^k_\gamma = 0 \) otherwise. Also, denote \(c^k_\gamma \) to be the cost associated with the chosen subset \(\Gamma_\gamma \). The type of the cost depends on antenna selection criteria, e.g. \(c^k_\gamma = \text{trace}(\text{MSE}_\gamma^k) \) if the MMSE selection criterion is used. The total cost function can be expressed as

\[
 f = \sum_{k=0}^{K-1} \sum_{\gamma=1}^{K} c^k_\gamma z^k_\gamma. \tag{10}
\]

As mentioned earlier, in this system, only \(n_D \) antennas transmit data symbols on each subcarrier. This is equivalent to choosing only one subset of \(n_D \) elements \(\Gamma_\gamma, \gamma=1,2,\ldots,\Gamma \) per subcarrier. Thus, the first constraint can be expressed as

\[
 \sum_{\gamma=1}^{\Gamma} z^k_\gamma = 1, \forall k = 0,1,\ldots,K-1. \tag{11}
\]

The second constraint is that all transmit antennas have the same number of allocated data subcarriers. Note that, in the case of \(K n_D \) is not divisible by \(n_T \), some antennas will allowed to have one more subcarrier than others. This will guarantee that the transmit power will be evenly distributed over the transmit antennas as much as it could. This constraint can be expressed as

\[
 \sum_{k=0}^{K-1} z^k_\gamma = \lambda_\gamma, \gamma=1,2,\ldots,\Gamma, \tag{12}
\]

where the parameter \(\lambda_\gamma \) is the number of times that the subset \(\Gamma_\gamma \) is chosen, and its value depends on the specific values of \(K, n_D, \) and \(n_T \). In case of \(K \) is divisible by \(\Gamma \), the expression for calculating \(\lambda_\gamma \) can be given by

\[
 \lambda_\gamma = \frac{K}{\Gamma}, \forall \gamma=1,2,\ldots,\Gamma. \tag{13}
\]

For example, if \(n_T = 4, n_D = 2 \), and \(K = 12 \), then \(\lambda_\gamma = \frac{12}{6} = 2 \), \(\forall \gamma=1,\ldots,6 \). As all the subsets are chosen twice, from Table I,
we know that all transmit antennas will have six data symbols (cf. Fig. 2b).

The optimization problem in the proposed system is now a minimization of the cost function (10) subject to two constraints (11) and (12). Note that, in the system without power balancing, a subcarrier allocation problem is equivalent to minimizing (10) subject to the constraint (11) only.

In the following, we will represent the above optimization problem in a matrix form. Let us define a vector
\[z = (z_1, ..., z_L) \]
and a cost vector \(c = (c_1, ..., c_L) \). Then, (10) can be rewritten as \(f = c^T z \). Also, the first and the second constraints can now be expressed as
\[A_1 z = 1_K, \]
where \(A_1 = I_K \odot I_L^T \in \{0,1\}^{K \times L} \), and
\[A_2 z = \lambda, \]
where \(A_2 = I_K \odot I_{1 \times 1} \in \{0,1\}^{K \times 1} \) and \(\lambda = (\lambda_1, ..., \lambda_L) \).

Consequently, the optimization problem becomes
\[\min_{z \in \{0,1\}^{K \times L}} c^T z, \]
\[\text{s.t.} \quad A z = a. \]

It is obvious that (17) has a canonical form of a binary linear optimization problem. Moreover, it can be shown that the constraint matrix \(A \) is a totally unimodular matrix. Thus, this binary linear optimization problem can be relaxed to linear programming [12]. As a result, the optimization problem in (17) can be solved efficiently by well-known linear programming methods, such as simplex methods or interior point method [13].

In the proposed system with reduced feedback, the optimization problem is formulated on a cluster basis rather than on a subcarrier basis. More specifically, the optimization is similar to (17), excepting that: i) the number of variable is \(K \Gamma L \), i.e., \(z \in \{0,1\}^{(K \Gamma L) \times 1} \); ii) a cost vector \(c \in \Re^{(K \Gamma L) \times 1} \) and its elements are now \(c_{\gamma} = \sum_{i=1}^{KL} \text{trace}(\text{MSE}_{\gamma}^i) \); iii) matrix \(A \) and vector \(a \) in the constraint will need to be changed accordingly. It is well-known that the complexity to solve linear optimization is polynomial in the number of variables and the bit size of the problem [13]. In other words, the complexity depends on the values of \(\Gamma \) and \(K \). Therefore, performing the optimization in this case will require much lower computational effort compared to that on a subcarrier basis (i.e. (17)). As a result, with this combined strategy, the proposed system could enjoy both small feedback overhead and low complexity for optimization.

IV. STATISTICAL DISTRIBUTION OF PEAK AMPLITUDES

In this section, we analyze the efficacy of the antenna subset selection MIMO-OFDM UWB system with power balancing over its counterpart. As mentioned earlier, when there is no power balancing constraint, the number of data symbols (i.e. data subcarriers) allocated on each antenna might be significantly different depending only on the channel condition. On the other hand, it is highly likely that a larger number of allocated data subcarriers will lead to a higher peak power of a time-domain signal. As a result, the peak power on each antenna might vary significantly between OFDM symbol periods as well as among antennas. This will definitely affect the efficiency of the PAs, which in turn reduces the potential benefits of the system [14]. Therefore, it is important to investigate the statistical distribution of the peak amplitude (or the peak power) of the antenna selection MIMO-OFDM signals. To this end, we derive the complementary cumulative distribution function (CCDF) of the peak amplitude \(A \) of the per-subcarrier antenna selection MIMO-OFDM signals. This CCDF is defined as the probability that the peak amplitude \(A \) of the OFDM signals exceeds a given threshold \(A_0 \), i.e.

\[\text{CCDF}(A_0) = \text{Pr}(A > A_0). \] (18)

Let us begin with the discrete-time OFDM signal \(s_i(n), n = 0, 1, ..., K - 1 \), corresponding to the \(i \)-th transmit antenna. The peak amplitude of this signal is defined as

\[A_i = \max_{0 \leq n < K - 1} |s_i(n)|. \] (19)

For analytical tractability, we assume that both the real part and imaginary part of the signal \(s_i(n) \) are asymptotically independent and identically distributed Gaussian random variables. Note that this assumption, which is based on the central limit theorem [15], only holds when the number of assigned data subcarriers on the \(i \)-th antenna, denoted as \(K_i \), is large enough. As a result, \(|s_i(n)| \) follows the Rayleigh distribution with the probability density function [15]

\[p_{\text{V}}(|s_i|) = \frac{2 |s_i| e^{-|s_i|^2/\sigma_{\text{Ki}}^2}}{\sigma_{\text{Ki}}}, \] (20)

where \(\sigma_{\text{Ki}}^2 = \sigma^2 K_i/K \) is the variance of the signal \(|s_i(n)| \).

Note that \(\sum_{i=1}^{K} K_i = n_0 K \), thus we have \(\sum_{i=1}^{K} \sigma_{\text{Ki}}^2 = n_0 \sigma^2 \).

The CDF (cumulative distribution function) of the signal \(|s_i(n)| \) is given as

\[\text{Pr}(|s_i| \leq \rho) = 1 - e^{-\rho^2/\sigma_{\text{Ki}}^2}, \rho \geq 0. \] (21)

Suppose that \(K \) samples of \(|s_i(n)|, n = 0, 1, ..., K - 1 \), are independent, the CDF of the peak amplitude \(A_i \) can be expressed as

\[\text{CDF}_{A_i} = \text{Pr}(A_i \leq A_0) \]
\[= \text{Pr}(|s_i(0)| \leq A_0) \text{Pr}(|s_i(1)| \leq A_0) ... \text{Pr}(|s_i(K - 1)| \leq A_0) \]
\[= (1 - e^{-A_0^2/\sigma_{\text{Ki}}^2})^K. \] (22)

\[\text{2} \text{ Proof is similar to that in [9, Appendix A].} \]
In a MIMO-OFDM UWB system with nonlinear power amplifiers, the peak amplitudes of signals on all transmit antennas should be simultaneously as small as possible. The peak amplitude \(A \) of the system could be defined as

\[
A = \max_{1 \leq i \leq n_T} A_i. \tag{23}
\]

Given the statistical independence of data among transmit antennas, which is the case in the considered spatial multiplexed OFDM system, the \(CDF \) of the peak amplitude \(A \) is calculated as

\[
CDF_A = \Pr(A \leq A_0) = \Pr(A_1 \leq A_0) \Pr(A_2 \leq A_0) \ldots \Pr(A_{n_T} \leq A_0) = \prod_{i=1}^{n_T} (1 - e^{-\frac{A_0^2}{\sigma_i^2}})^K. \tag{24}
\]

Therefore, the \(CCDF \) of the peak amplitude of the antenna selection MIMO-OFDM signals can be expressed as

\[
CCDF_{\text{unbalanced}}(A_0) = 1 - CDF_A = 1 - \prod_{i=1}^{n_T} (1 - e^{-\frac{A_0^2}{\sigma_i^2}})^K. \tag{25}
\]

For the case of the MIMO-OFDM UWB system with a power balancing constraint, the total number of allocated data subcarriers per transmit antenna is equal to one another. Thus, we have \(\sigma_i^2 = n_T \sigma_i^2 / n_T = \sigma_i^2, \forall i = 1, 2, \ldots, n_T \). As a result, the \(CCDF \) expression could be simplified to as

\[
CCDF_{\text{balanced}}(A_0) = 1 - (1 - e^{-\frac{A_0^2}{\sigma_i^2}})^{n_T K}. \tag{26}
\]

It can be shown that the value \(CCDF_{\text{balance}}(A_0) \) is smaller than \(CCDF_{\text{unbalance}}(A_0) \). Therefore, from the PAs perspective, the proposed system with power balancing is better than its counterpart. In addition, a large power back-off is required in the system without power balancing constraint to avoid error floor. As a result, performance degradation is inevitable in this system. Performance comparison based on numerical results will be provided and discussed in the next section.

V. SIMULATION RESULTS

We consider a MIMO-OFDM UWB system with \(n_T = 4 \) and \(n_D = 2 \) in our simulations. The simulation parameters are listed in Table II. These parameters are chosen based on the legacy WiMedia MB-OFDM UWB (Multiband-OFDM UWB) standard [16] for a data rate of 960 Mbps. Therefore, the data rate in the proposed system when \(n_D = 2 \) is 1920 Mbps. We measure the system performance in terms of packet-error rate (PER) over the channel models of CM1 defined in the IEEE 802.15.3a channel model [17]. The channel CM1 is based on a measurement of a line-of-sight scenario where the distance between the transmitter and the receiver (Tx-Rx) is up to 4 m. Moreover, the multipath gains are modeled as independent log-normally distributed random variables. We assume that perfect channel state information is available at the receiver. Also, the feedback link has no delay and is error-free.

In Fig. 3, we plot the \(CCDFs \) of the peak amplitude of antenna selection MIMO-OFDM signals. Both theoretical and simulation results are presented in the figure. Here, subcarrier allocation patterns are obtained by running simulations with a ZF receiver and the MMSE selection criterion at SNR = 15 dB. Also, the average energy of transmitted data symbols is normalized to unity, i.e. \(\sigma^2 = 1 \). The simulation results confirm that the proposed system with power balancing offers a better \(CCDF \) than its counterpart. In addition, it is important to note that the analytic curves according to (25) and (26) are close to the simulation curves. The small gaps exist due to the fact that the assumptions in the derivation described in Section IV do not strictly hold. In particular, the assumption of independent samples \(|s(n)| \) to obtain (22) is not strictly true as we have \(\sum_{i=0}^{K-1} |s_i(n)|^2 = K \) by Parseval’s relation [15]. Moreover, the number of allocated data symbols on some antennas may be not large enough for (20) to be fully valid.

To demonstrate the superiority of the proposed system over the system without the power-balancing constraint in terms of error performance, we simulate the systems with nonlinear power amplifiers. We consider nonlinear PAs with ideal predistortion (i.e. soft envelope limiter) with input back-off of 8 dB. The power back-off is required on the antennas where the number of assigned data symbols is large to avoid error floor. We remind that power loading is not considered in this paper due to the EIRP restrictions. Also, to obtain proper decision variables for symbol detection, compensation for all attenuations introduced by the nonlinear PAs need to be included [18]. Fig. 4 compares the performance of the two systems. It can be seen that there is a significant improvement in terms of PER performance in the proposed system. Also, a value of \(PER = 10^{-2} \) could be achieved at a low SNR region. The performance of the system without power balancing is degraded due to the fact that the large power back-offs will reduce the received signal-to-noise-plus-distortion ratio.

<table>
<thead>
<tr>
<th>TABLE II. SIMULATION PARAMETERS [16].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Sampling frequency</td>
</tr>
<tr>
<td>FFT size</td>
</tr>
<tr>
<td>Number of samples in zero-padded suffix</td>
</tr>
<tr>
<td>Modulation scheme</td>
</tr>
<tr>
<td>LDPC code (Table 6.31 in [16])</td>
</tr>
<tr>
<td>IEEE 802.15.3a channel model</td>
</tr>
</tbody>
</table>

Fig. 3 Comparison of the CCDFs of the peak amplitudes of antenna selection MIMO-OFDM signals.
of the peak amplitudes of the time-domain MIMO-OFDM signals and have shown that, from the perspective of PAs, the proposed optimal allocation scheme outperforms the scheme without power balancing. Simulation results have been provided to confirm this benefit. The results have also shown that a significant improvement in terms of error performance could be achieved in the system with power balancing compared to its counterpart when the nonlinear PAs are considered.

VI. CONCLUSIONS

In this paper, we have proposed per-subcarrier antenna subset selection with power balancing for MIMO-OFDM UWB systems to simultaneously increase data rates and improve system performance (and/or extend transmission range). To deal with the issue of power unbalancing across antennas, we have formulated a linear optimization problem to equally allocate data subcarriers among the transmit antennas.

This formulated optimization can be solved efficiently by existing methods. Moreover, we have developed the reduced-complexity approach that requires small feedback overhead and lower computational effort for solving the optimization problem. We have derived the CCDF of the peak amplitudes of the time-domain MIMO-OFDM signals and have shown that, from the perspective of PAs, the proposed optimal allocation scheme outperforms the scheme without power balancing. Simulation results have been provided to confirm this benefit. The results have also shown that a significant improvement in terms of error performance could be achieved in the system with power balancing compared to its counterpart when the nonlinear PAs are considered.

REFERENCES