2011

Potential control of risperidone-related cognitive deficits by adjunctive aripiprazole treatment

Chang-Hua Hu
University of Wollongong

Nagesh Pai
University of Wollongong, nagesh@uow.edu.au

Xu-Feng Huang
University of Wollongong, xhuang@uow.edu.au

Chao Deng
University of Wollongong, chao@uow.edu.au

Publication Details
Potential control of risperidone-related cognitive deficits by adjunctive aripiprazole treatment

Abstract
We have read with great interest Uchida and colleagues’ paper in your journal (2009; 29: 571–576), which reported that a high dosage of risperidone had a negative impact on cognition in older patients with schizophrenia. This finding is consistent with that of a previous study of a younger patient group showing that schizophrenia patients under high antipsychotic dosage have poor cognitive function performance....

Keywords
CMMB

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/1391
Title: Potential control of risperidone related cognitive deficits by adjunctive aripiprazole treatment

Authors: Chang-Hua Hu, PhD1,2, Nagesh Pai, MD3, Xu-Feng Huang, PhD, MD2,4, Chao Deng, PhD2,4,*
1: School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
2: Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, Wollongong, 2522, NSW, Australia
3: Graduate School of Medicine, University of Wollongong, NSW 2522, Australia
4: Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, 2010, NSW, Australia

*Corresponding author:
Dr Chao Deng, School of Health Sciences, University of Wollongong, Wollongong, 2522, NSW, Australia
E-mail: chao@uow.edu.au, Tel: (+61 2) 4221 4934, Fax: (+61 2) 4221 4096

Role of Funding Source

This study was supported by the University of Wollongong and the Schizophrenia Research Institute, Australia, utilising infrastructure funding from NSW Health; these sources had no further role in writing or the decision to submit the paper for publication.

Conflict of Interest:

All authors declare that they have no conflicts of interest.

Key words: Aripiprazole, risperidone, dopamine D2 receptor, cognitive function
Editors,

We have read with great interest Uchida and colleagues’ paper in your journal (2009; 29: 571–576), which reported that a high dosage of risperidone had a negative impact on cognition in older patients with schizophrenia. This finding is consistent with that of a previous study of a younger patient group showing that schizophrenia patients under high antipsychotic dosage have poor cognitive function performance. One key issue is how to control risperidone related attention deficit. Uchida and colleagues suggested minimizing the adverse effects of risperidone on cognitive function by identifying/using the lowest effective dose of antipsychotics in schizophrenia patients. Although very valuable, a low dosage of risperidone may also cause adverse effects on cognitive function, which could be particularly problematic in aged patients due to age-related pharmacodynamic and pharmacokinetic changes. It is very important that Uchida and colleagues identified that attention deficits induced by risperidone negatively correlated with dopamine D2 receptor blockade. We propose that an adjunctive aripiprazole administration with risperidone could be an effective method to control risperidone related attention deficits (and other cognitive deficits) through improving D2 receptor activity.

Aripiprazole is a newly introduced antipsychotic drug that has a favourable safety and tolerability profile, particularly in the elderly patients. Aripiprazole was developed as a potent D2 partial-agonist, 5-HT1A partial-agonist, and also 5-HT2A antagonist; however, recent studies have suggested that aripiprazole is not a simple
partial-agonist, but a functionally selective drug that can act as a D2 agonist or D2 antagonist depending on different brain regions6,7. It is possible that aripiprazole could be used to control risperidone related attention deficits (caused by dopamine D2 receptor blockage) through its D2 agonistic effect. In fact, aripiprazole can preferentially increase dopamine release in the medial prefrontal cortex and hippocampus8 and dopamine synthesis in the nucleus accumbens6. A recent study has shown that typical antipsychotic treatment resulted in hypoactivation in the dorsal anterior cingulated cortex, which could be improved after switching to aripiprazole and is correlated with improved performance of working memory9. Findling et al.10 examined the effectiveness and cognitive effects of aripiprazole in children with a primary diagnosis of attention-deficit/hyperactivity disorder (ADHD), and showed that aripiprazole led to clinical benefit in reducing ADHD symptoms and improving cognition functioning. Moreover, adjunctive aripiprazole treatment has been trialled in risperidone related hyperprolactinemia11,12 and olanzapine/clozapine-induced obesity13,14. These studies showed that adjunctive treatment using aripiprazole with other antipsychotics (such as risperidone and olanzapine) was generally safe and well tolerated, and is effective even without reducing the original doses of other antipsychotics4,11,13,14. Therefore, co-administration of aripiprazole and risperidone will result in multiple pharmacological actions and improve the adverse effects beyond the attention deficits (such as weight gain15). Of course, further animal studies and clinical trials are necessary for testing adjunctive aripiprazole/risperidone
treatment, especially in elderly patients that are at increased risk from drug–drug interactions.
References

