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Abstract Knowledge that teachers bring to the teaching context is of interest to key
stakeholders in improving levels of numeracy attained by learners. In this regard, the
centrality of, and the need to investigate, the quality of teachers’ mathematical knowl-
edge for teaching mathematics has been gaining momentum in recent years. There is a
general consensus that teachers need a robust body of content and pedagogical
knowledge related to mathematics and that one impacts on the other. However, in
current debates about this interconnection between content knowledge and pedagogical
content knowledge, there is limited analysis about the procedural-conceptual nature of
content knowledge that, we argue, has significant impact on the development of
pedagogical content knowledge. In this report, this issue is investigated by examining
the state of procedural and conceptual knowledge of two cohorts of pre-service teachers
and analyzing the impact of a representational reasoning teaching and learning (RRTL)
approach aimed at supporting a balanced development of these two dimensions of
Content Knowledge.

Keywords Pre-service teacher knowledge . Fractions . Procedural knowledge .

Conceptual knowledge .Mathematical knowledge for teaching

Background

Discussions about mathematics teaching and teacher quality bring into focus the
knowledge base that drives teachers’ practice. More than two decades ago, Shulman
(1986), in examining the kinds of knowledge that are important to teachers’ work,
identified two categories of knowledge that were necessary for effective practice,
namely: subject matter (content) knowledge and pedagogical content knowledge.
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Within mathematics education, there is an emerging consensus that teachers’ profes-
sional knowledge for teaching mathematics must be rooted in a robust body of Content
Knowledge and Pedagogical Content Knowledge (Frid et al. 2009; Walshaw 2012).
Research indicates that teachers’ mathematics content knowledge contributes signifi-
cantly to their students’ achievement (Bobis et al. 2012; Senk et al. 2012).

The seminal work of Shulman has spawned a number of studies in various subject
domains including mathematics. Ball and her associates (Ball et al. 2005, 2008; Hill
et al. 2008), in seeking to analyze the knowledge necessary for teaching mathematics
effectively, have developed two major strands for these knowledge clusters namely:
content knowledge and pedagogical content knowledge. Content knowledge refers to
knowledge of the concepts, principles, procedures, and conventions of mathematics,
and pedagogical content knowledge involves teachers’ understanding of students’
mathematical thinking (including conceptions and misconceptions) and representing
mathematics content knowledge in a learner-friendly manner. In unpacking the content
knowledge category further, Ball et al. (2005), identified common content knowledge
(knowledge of mathematics common to most educated adults) and specialized content
knowledge (specific and detailed knowledge of mathematics required to teach it). It is
the latter knowledge that is of interest to the present study but in the context of
fractions.

While the connections between content knowledge and pedagogical content knowl-
edge continue to receive attention (Ma 1999; Ball et al. 2005), discussions about the
nature of content knowledge that lends itself to transformation to pedagogical content
knowledge and vice versa have commanded limited visibility among researchers. For
example, Chick (2010) analyzed the link between teachers’ understanding of ratio and
their knowledge for teaching ratio and suggested that mathematical considerations have
important pedagogical consequences (p. 151). What are these “mathematical consider-
ations”? We argue that conceptual and procedural underpinnings of the mathematics
content that teachers bring to their teaching constitute important ingredients of the
mathematical considerations which Chick (2010) alluded to.

Pre-service understanding of fractions and misconceptions

Within most primary mathematics curricula, fractions receive a great deal of
attention. Conceptually, fractions present a hurdle as students attempt to transfer
their understanding of whole numbers to a new but related class of numbers.
Several researchers (Mack 2001; Lamon 2007) and, more recently, Harvey (2012)
showed us that fractions are a problematic area of learning for both students and
their teachers. Investigations conducted by Tirosh (2000) showed that pre-service
teachers tended to have a mechanical understanding of fractions and this knowl-
edge is less likely to help them support their students develop conceptual knowl-
edge that girds fraction problems that involve division. A potential misconception
includes ordering of fractions by focusing on the denominator or numerator. A key
construct that underpins the learning of fractions is the part-whole relationship.
Students and teachers need to understand the part-whole relationship between the
numerator and the denominator or they may treat these numbers as wholes. This
misconception could also lead students to compute by adding or subtracting the
numerators and denominators separately.
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Ball (1990) found that prospective teachers were able to solve fraction division
problems using the traditional invert-and-multiply algorithm but only a few could
provide the correct pictorial representation. We regard Ball’s work as representing a
case of future teachers having developed procedural or algorithmic knowledge without
understanding the conceptual base. Following an extensive review of research in pre-
service teachers’ difficulties with fractions, Newton (2008) commented that knowledge
that underpins the teaching of fractions is complex and multidimensional and that
“more studies should examine knowledge from multiple perspectives, including an
examination of correct solution methods,’ (p.26) an approach that was adopted in the
present study.

Procedural and conceptual knowledge

Broadly speaking, procedural knowledge involves understanding the rules and routines
of mathematics while conceptual knowledge involves an understanding of
mathematical relationships. While these two strands of knowledge are differentiable,
they are related and impact on each other. Schneider and Stern (2010) have highlighted
the complexities of the connections between procedural and conceptual knowledge,
and the dependency of one on the other. They argue that the study of the development
of these knowledge components continues to be a legitimate concern for mathematics
teachers and researchers alike, suggesting that research into teaching and learning to
examine their parallel development is warranted.

Within the context of teaching primary school fractions, Mack (2001) suggests that
children’s uses of strategies for representing and solving fraction problems involve the
application of both these knowledge strands. In decoding and solving fraction prob-
lems, the relative roles and connections between these two dimensions of knowledge
need further clarification. The debate on this issue appears to proceed along three lines.
One view is that children learn conceptual knowledge of fractions before the develop-
ment of procedural knowledge (Groth and Bergner 2006). A second view is that
children learn procedural knowledge before conceptual knowledge (Baroody et al.
2005). Finally, it would seem that children’s conceptual knowledge and procedural
knowledge grow in tandem with one building on the other (Schneider and Stern 2010).
This study is based on the latter assumption that conceptual knowledge plays a
significant role in learners’ generation and application of procedural knowledge. At
the same time, as learners’ procedural knowledge develops, it can influence their
conceptual knowledge. Thus, the relation between the two strands of knowledge is
not unidirectional as suggested by Rittle-Johnson and Alibali (1999). The argument
about interdependency between the conceptual and procedural has gained support in a
recent research by Hallett et al. (2010) suggesting that (a) some children rely on
procedural knowledge to inform conceptual knowledge and (b) those who rely on
conceptual knowledge of fractions tend to have an advantage over those who rely on
procedural knowledge.

The above line of thinking and associated findings suggests that prospective and
practicing teachers need to have a sound understanding of both knowledge categories
that involve fractions. That is, despite a growing call by some quarters to underplay the
role of procedural knowledge in favor of conceptual knowledge (Rittle-Johnson et al.
2001), teachers need to develop a repertoire of both these streams of knowledge as
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these are legitimate and necessary parts of the corpus of knowledge used by learners. In
this sense, conceptual and procedural knowledge are important components of pre-
service and in-service teachers’ specialized content knowledge, and the investigation of
this knowledge is a major aim of this study.

The examination of conceptual and procedural knowledge in mathematical under-
standing and subsequent performance also addresses a topical issue for mathematics
teachers, the research community, and other stakeholders (Council of the Australian
Government 2008) about the link between teaching and the quality learning in
mathematics. In relation to this issue, Skemp (1976) took the early steps in highlighting
the relative roles of the two in characterizing mathematical performance by focusing on
instrumental and relational understanding. Instrumental understanding involves
knowing a rule and being able to use it. Instrumental understanding, we argue, is
based on and supported by procedural knowledge. Relational understanding is about
knowing what to do and why. In order to demonstrate relational understanding, teachers
will have to draw on their conceptual knowledge.

More recently, Chinnappan and Chandler (2010) elucidated the role of mathematics
teachers’ conceptual knowledge in reducing information processing loads that could be
associated with problem solving. In a similar vein, the decoding of structures underly-
ing complex mathematics concepts, which is necessary for deep mathematical under-
standing, was deemed to be buttressed by robust conceptual knowledge, both by
teachers and learners (Mason et al. 2009). Taken together, these studies highlight the
need to improve current understandings about the conceptual-procedural knowledge
interface.

Conceptual framework

The research questions and the interpretation of data in the present study were guided
by a representational reasoning (RR) model of mathematical understanding developed
by Barmby et al. (2009). This is a theoretical model of understanding mathematical
concepts. In developing the model, Barmby et al. were concerned with both the
characterization and demonstration of understanding. Central to the RR model of
understanding is the notion of connections or relations between mental representations
of a concept. The RR model posits that individuals’ depth of understanding is depen-
dent on the quality of their internal representations of a concept and the relationships
among these representations. These relationships can be established in varied ways, but
the key to building these relationships are reasoning processes. While individual
internal representations cannot be directly examined, inferences about understanding
can be made from students’ demonstrations of external representations and the quality
of the connections they make between them. For example, the concept of multiplication
of whole numbers can be represented in several ways, including (a) repeated addition,
(b) rows and columns in a rectangular array, and (c) operations in a lattice algorithm.
All three constitute defensible representations of the concept of multiplication.
However, the lattice algorithm can be explained purely from a procedural perspective
with little or no reference to the place value idea it embodies. Thus, a representation
does not necessarily indicate a holistic understanding of the nuances of a particular
mathematics concept. In addition, the complexities inherent in a concept need to be
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demonstrated by robust reasoning that foregrounds the procedural and conceptual
aspects of that concept.

The decision to use the RR model was based on the desire to better understand,
capture, and support pre-service teachers’ abilities to construct a more balanced
conceptual and procedural knowledge in the area of fractions. In both phases of the
study, we developed a coding system to evaluate the quality of pre-service teachers’
conceptual and procedural knowledge. The coding system necessitated an analysis of
representations, connections among those representations, and quality of those connec-
tions (if any). Barmby et al.’s RR model guided us in this important process. The
representational framework also provided a powerful theoretical lens into the depth of
understanding of fractions and how to promote that understanding in teaching. Thus,
our representational reasoning teaching and learning (RRTL) approach to instruction,
developed and implemented in phase 2 of the present study, drew on Barmby et al.’s
model.

Purpose and research questions

The purposes of the study are to (a) examine the quality of pre-service teachers’
representations of fraction concepts in terms of their demonstration of procedural and
conceptual knowledge and (b) assess the impact of a representational reasoning
teaching and learning (RRTL) instructional strategy on the quality of pre-service
teachers’ procedural and conceptual understanding of fraction concepts and operations.
This was addressed by generating data relevant to the following research questions:

What is the relative use of procedural and conceptual knowledge when pre-service
teachers represent fraction operations?
Does a representational reasoning teaching and learning approach have an impact on
the development of pre-service primary teachers’ procedural knowledge of fractions?
Does a representational reasoning teaching and learning approach have an impact
on the development of pre-service primary teachers’ conceptual knowledge of
fractions?

Methodology

Research design and plan

There were two major phases in this study, with each phase utilizing different designs.
In phase 1 of the study, a descriptive research design was adopted while phase 2
involved the use of a post-test only non-experimental research design. Phase 2 did not
follow a randomized control group, as the study was conducted within an existing
teacher education course and there was no access to an equivalent control group. In
such designs, it is suggested that the treatment is sustained (Creswell 2003) and detailed
so that the researcher is able to make claims about the impact of the intervention which
in this case involved the introduction of RRTL to the participants. The above research
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strategy allowed the identification of participants’ quality of knowledge in the area
fractions (phase 1) which was used to develop and assess a more effective teaching
program (phase 2).

Phase 1 involved four key stages: a cohort of pre-service teachers (cohort 1)
participated in a 13-week subject involving a 2-h lecture and 1-h tutorial per week
(stage 1). At the end of this subject, the pre-service teachers completed a 14-item
examination (stage 2). Analysis of their performance provided information about pre-
service teachers’ misconceptions in a number of areas of the primary curriculum
including fractions. In stage 3, pre-service teachers’ misconceptions in fractions were
analyzed which in turn provided directions for the analysis of their procedural and
conceptual knowledge (stage 4). Data about pre-service teachers’ procedural and
conceptual knowledge guided the development of a teaching program (RRTL), the
impact of which was assessed with a second cohort of pre-service teachers (cohort 2) in
phase 2 of the study.

Participants

There were two phases to the current study undertaken with two cohorts of participants
completing a first year core mathematics content and pedagogy subject in a Bachelor of
Primary Education degree. The Bachelor of Primary Education is a 4-year qualification
for future classroom teachers in Australia. During the 4-year period, pre-service
teachers complete a series of subjects that focus on content and pedagogy in a number
of key learning areas including mathematics.

Cohorts 1 and 2 consisted of a very similar mix of participants in terms of gender,
maturity, and previous primary and secondary school mathematics studies. To complete
the degree, students needed to have successfully completed specified minimum levels
of high school mathematics or undertake additional specified mathematics subjects
within their degree. These additional subjects were offered in the second year of their
degree.

Phase 1 of the study involved 109 participating pre-service teachers (cohort 1), 95
were female (87.2 %) and 14 were male (12.8 %). Twenty-three participants (21.1 %) in
this cohort were classified as mature-age students (21 years or older) when they
commenced their degrees. Twenty-five (22.9 %) participants had not completed the
minimum required level of mathematics at high school.

Phase 2 involved 114 participating pre-service teachers undertaking the same subject
the following year (cohort 2). In this cohort, 101 participants were female (88.6 %) and
13 were male (11.4 %). Thirty-four participants (29.9 %) in this cohort were classified
as mature-age students when they commenced their degrees. Thirty-six (31.6 %)
participants had not completed the minimum required level of mathematics at high
school.

Participants in both cohorts had completed mandatory mathematics in the first
10 years of schooling. The topic of fractions is covered comprehensively in all stages
of the primary and secondary school syllabi (Board of Studies NSW 2002, 2003). All
the concepts and algorithms covered in the core mathematics content and pedagogy
subject, in which this study was undertaken, had been mandated in the high school
mathematics curriculum. Thus, in relation to the participants’ knowledge of fractions
prior to their university studies, it can reasonably be assumed that participants had been
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taught common fraction concepts, operations, and associated algorithms in their pri-
mary and high school mathematics curriculum.

Fraction tasks

A set of four fraction tasks were utilized in this research. These tasks were drawn from
the examination that was completed at the conclusion of the mathematics content and
pedagogy subject undertaken by cohort 1 (phase 1) and cohort 2 (phases 2) of this
study. This study focuses on two tasks in each of these examination papers (phase 1—
tasks 1 and 2; phase 2—tasks 3 and 4) which examine the procedural and conceptual
knowledge of fraction concepts and fraction operations.

Phase 1 tasks

Phase 1 of this project involved an analysis of cohort 1’s responses in two fraction
operation tasks in the final examination of the first year core content and pedagogy
subject. These particular tasks were chosen to assess participants’ conceptual and
procedural knowledge of fractions and fraction algorithms. Participants had been able
to engage with similar questions throughout the session in order to consolidate their
procedural and conceptual understandings.

Task 1 Subtraction problem involving a mixed number and fractions with different
denominators

1
2

5
−
5

6

Pre-service teachers were asked to complete the calculation and provide an
explanation for their operation.

There are several separate procedures involved in solving this problem:
changing the mixed number to an improper fraction, identifying the lowest
common denominator of the minuend and subtrahend, changing the minuend
and subtrahend to equivalent fractions, performing the subtraction, and
checking if the answer can be simplified.

Conceptual knowledge of this problem involves an understanding that the
minuend and subtrahend are related to the same size “whole,” 1 2

5 is the same

as 7
5 because one whole is the same as 5

6 , equivalent fractions are the same

size, subtraction of the subtrahend involves removing 25 lots of 1
30 .

Task 2 Multiplication problem involving fractions

1

4
� 2

3

Procedurally, the most efficient solution involves multiplying the
numerators together, multiplying the denominators together, and sim-
plifying the answer.
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A conceptual understanding of this task involves the notion that
1
4 � 2

3 involves finding 1
4 of

2
3 :or

2
3 of

1
4 . It involves partitioning 2

3 into

four equal parts to find 1
4 � 2

3 or cutting 1
4 into three equal parts to

find 2
3 of

1
4 .

In undertaking the tasks, pre-service teachers were expected to demonstrate
all the procedural and conceptual elements involved in the multiplication of
fractions and utilize appropriate visual representations to demonstrate their
thinking. To complete the calculations, participants needed to use an
appropriate algorithm for carrying out a particular operation with fractions.
The successful use of an algorithm would indicate that participants have a
procedural understanding, what Skemp (1976) defined as instrumental knowl-
edge (knowing a rule and being able to use it). Conceptual or relational
understanding is knowing what to do and why (Skemp 1976). In this case, it
involves a comprehension of the nature of fractions (equal parts of a whole
object or group) including the meaning of the common fraction symbols (as
opposed to the misconception common among children that the numerator and
denominator are simply two whole numbers) (NSW Department of Education
and Training 2003). Additionally, a conceptual understanding of these tasks
involves grasping the partitive nature of multiplying by a fraction and the role
of making equivalent fractions in enabling the subtraction of fractional parts.

Phase 2 tasks

Task 3 Addition problem involving a mixed number and fractions with different
denominators

1
5

6
þ 2

3

As in phase 1, pre-service teachers were asked to complete the calculation
and provide an explanation for their operations.

Two common algorithms could be used to complete this task, either
involving most or all of these procedures: changing the mixed number to an
improper fraction, identifying a common denominator of the addends, chang-
ing the addends to equivalent fractions, performing the addition, and checking
if the answer can be simplified.

A conceptual knowledge of this task involves these elements as follows:
when the addends are represented visually, the wholes to which they relate need
to be the same size; equivalent fractions, e.g., 1 5

6 is the same size as 11
6 ; 23 is the

same size as 4
6 ;

15
6 is the same size as 2 3

6 which is the same size as 2 1
2 ; addition

involves joining two or more quantities together.
Task 4 Division problem involving a mixed number and fraction

1
1

2
� 1

4
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Two algorithms could be used to complete this task. Firstly, pre-service
teachers could change the mixed number into an improper fraction, invert
the divisor, multiply the numerators and denominators, and check if the
answer can be simplified. Alternatively, pre-service teachers could change
the mixed number into an improper fraction, identify a common denom-
inator of the dividend and divisor, change the dividend and divisor to
equivalent fractions, divide the numerators and denominators, and check
if the answer can be simplified.

A conceptual understanding of this task involves the notion that 1 1
2 � 1

4

involves finding how many quarters are in 1 1
2 . Partitioning 1 1

2 into
quarters and counting the number of quarters will achieve an answer
of six.

Coding scheme

Participants’ responses to each of the above four tasks were analyzed in terms of the
evidence of conceptual and procedural knowledge and coded as per the scheme below
(Table 1).

The coding system was designed to capture and analyze participants’ demon-
stration of conceptual and/or procedural knowledge of fractions. Pre-service
teachers were expected to provide evidence of these two strands of knowledge
by generating different representations of fraction concepts, fraction operations,
and the robustness of their reasoning about relations between these
representations. These representations included algorithms and illustrations of
fraction operations and associated explanations of their thinking. As indicated
earlier, Barmby et al. (2009) model of representational reasoning guided the above
system of coding. According to this model, the quality of understanding and
related knowledge can be captured by identifying representations and connected-
ness among these representations that are constructed by learners. Thus, there are
two key elements to characterizing conceptual and/or procedural knowledge of
fractions. Firstly, we had to describe the representation and secondly, we had to
make judgment about the quality of relations that are built between and among
these representations. The range of codes used by us reflects both the dimensions
used by the participating pre-service teachers.

The initial coding scheme did not include code 3 because participants in
cohort 1 did not evidence conceptual knowledge without demonstrating proce-
dural knowledge in their solutions. In phase 2, it was necessary to include an
additional code to provide for this new category of responses from cohort 2 to
the division task. The examination questions did ask students to provide
reasoning or explanation for their use of the algorithms. While a few students
voluntarily demonstrated the ability to complete a procedure in more than one
way (see Fig. 1 below), the ability to use procedures flexibly was not assessed
by the examination tasks.
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Inter-rater reliability analysis

In order to determine the reliability of the coding scheme, the extent to which two coders
agreed was assessed when they independently categorized participants’ responses to the
multiplication problem. The two researchers coded ten participants’ responses

Table 1 Coding scheme for analyzing procedural (PK) and conceptual knowledge (CK) and examples for
each category

Code 0: No evidence of Procedural Knowledge (PK) or Conceptual Knowledge 

(CK). No or incorrect algorithm, illustration and/or explanation.  

Code 1:  PK only. Correct algorithm, with an incorrect or no 
explanation. 

Code 2:  PK and some CK. 

explanation does not demonstrate an
demonstrate a basic conceptual understanding of an important fraction concept 
rather than just representing

illustration

Correct algorithm and while the illustration
understanding of the operation it does 

 the question and answer. 

 and/or 

 and/or 
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independently. The inter-coder reliability analysis, using the Kappa statistic, was per-
formed to determine consistency. The inter-coder reliability was found to be Kappa=0.85
(p<0.001), 95 % CI (0.66, 1.04), indicating substantive agreement (Landis and Koch
1977) in the way the participants’ responses were coded by each researcher. Potential

Table 1 (continued)

Code 3:  CK only. No algorithm or incorrect algorithm. Conceptual 
and/or explanation which achieved a correct solution
Phase 2 for the division task. 

. This code was only 

illustration 
used in 

Code 4: PK and CK. 

demonstrating procedural and conceptual knowledge. The 
explanation demonstrate
Conceptual understanding of every part of the process

Code 5:  PK and strong CK. 

procedural knowledge and strong conceptual knowledge of the fraction concepts 
and operation.  

Correct algorithm, illustration and/or explanation 
illustration

a conceptual understanding of the operation.
s is not demonstrated

Algorithm, illustration and/or explanation demonstrate 

 and/or 

.  
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areas of disagreement were analyzed which helped us to improve the distance between the
codes, thereby reducing areas of ambiguity.

Phase 1: analysis of procedural and conceptual knowledge—subtraction
and multiplication problems

Delivery of the content and pedagogy subject to cohort 1

The delivery of this subject included a weekly 2-h lecture and 1-h tutorial over
13 weeks, in the second session of the degree. Students were provided with a
pool of 32 possible examination questions at the beginning of the semester, in
their subject outlines, covering number, measurement, patterns, and algebra
content. These questions were designed to examine both content and pedagog-
ical knowledge.

One lecture and one tutorial focused exclusively on fraction concepts and opera-
tions. Students were given a pool of five examination questions covering these concepts
with the understanding that the values would be changed in the examination questions.
The fraction lectures and associated tutorials involved explicit teaching of fraction
concepts and operations.

Hands-on activities were provided to engage students concretely with important
fraction concepts. For example, to support the development of the concept of equiva-
lence, all students engaged in a paper folding activity demonstrating the equivalence of
1
3 ;

2
6 ;

4
12 ; and

8
24 and highlighting the relationship between the activity and the symbolic

representations of equivalent fractions.
While a variety of algorithms were supported in a fraction presentation provided on

the elearning site, the lecture and tutorial focused on the following common algorithms
for fraction operations:

For the addition and subtraction of fractions with different denominators,
equivalent fractions were made before adding the fractions and simplifying the
answers. e.g.,

Addition :
1

2
þ 3

4
¼ 2

4
þ 3

4
¼ 5

4
¼ 1

1

4

Fig. 1 Demonstration of the ability to complete a procedure in more than one way
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Subtraction : 1
1

4
−
2

3
¼ 5

4
−
2

3
¼ 15

12
−

8

12
¼ 7

12

For the multiplication, multiplying numerators and multiplying denominators before
simplifying the answers, e.g.,

Multiplication :
1

2
� 2

3
¼ 2

6
¼ 1

3

For division, inverting the divisor and multiplying then simplifying, e.g.,

Division :
1

2
� 1

4
¼ 1

2
� 4

1
¼ 4

2
¼ 2

Lecturer-designed animated PowerPoint slides showing representations of
fraction concepts and operations were shown in the lecture to support an
understanding of the concepts and procedures and subsequently provided on
the elearning site for study access. Opportunities were offered in tutorials and
additional support sessions to revise these concepts and procedures. The teach-
ing focus of this subject was to support students to be able to utilize the
fraction operation algorithms with conceptual understanding of the operations
and associated concepts such as equivalence.

The focus of the study, in terms of fraction instruction, was to ensure these pre-
service teachers understood basic fraction concepts and could utilize fraction operation
algorithms with confidence and understanding of both the procedures and underlying
concepts.

The lecture and tutorial explicated the concepts of the following:

The part-whole meaning of fractions including area/regional, measurement, and
discrete models.
The quotient meaning of fractions.
The ratio meaning of fractions.
Fractions as operators causing quantities to enlarge or reduce.
Equivalence of fractions.
The language that supports conceptual understanding of operations and concepts.
The considerations involved in connecting fractions as numbers to fractions as
parts of things.

The analysis of pre-service teachers’ knowledge in phase 1 of the present study is
based on a subtraction (task 1) and multiplication problem (task 2), both of which were
decontextualized. It was decided that decontextualized problems would provide a high
degree of focus on procedural and conceptual development with opportunities to
generate a number of representations. Further, our selection of these tasks was guided
by the need to provide participants with opportunities to demonstrate multiple layers of
procedural and conceptual knowledge and to engage with the mathematics underlying
the mathematical concepts involved in operations with fractions in their construction of
appropriate representations.
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Phase 2—the introduction of a representational reasoning teaching and learning
(RRTL) approach

Delivery of the content and pedagogy subject to cohort 2

The performance of cohort 1 in the above-mentioned two examination questions led the
authors to analyze responses in order to gain an understanding of the difficulties
experienced by these pre-service teachers and address their learning needs. The fol-
lowing concepts were identified as problematic and were considered a priority to
address:

The difference between fractions as numbers and fractions as parts of things and the
need to represent fractions as equal parts of same sized wholes when representing them
in decontextualized examples (Figs. 1 and 3 above).

The notion of equivalence as it relates to mixed numbers, improper fractions, and
equivalent fractions for the purpose of adding, subtracting, and simplifying fractions
(Fig. 6 above).

An understanding of fractions as operators as they enlarge or reduce quantities (see
Figs. 1 and 3 above).

Utilizing Barmby et al.’s (2009) notion that robust mathematical understanding is
demonstrated when learners can construct and utilize multiple representations of
mathematical ideas and can justify the relationships among representations, our focus
shifted from providing representations and activities to support the development of
fraction concepts and associated operation algorithms to enabling the pre-service
teachers to actively engage in developing and explaining representations of fraction
concepts and operations themselves.

In line with the initial delivery of this subject to cohort 1, the subsequent delivery to
cohort 2 included a weekly 2-h lecture and 1-h tutorial over 13 weeks in the second
session of the academic year. The pool of possible examination questions in the subject
outline increased from 32 to 36, but the mathematical content covered was identical.
The five possible fraction examination questions remained, with an additional question
provided which focused on children’s common errors in representing fractions (see
Fig. 2 below). This particular example question was aimed at challenging some pre-
service teachers’ misconceptions about fractions as numbers and fractions as parts of
things that had been problematic for some students in cohort 1. It aimed to engage them
as potential teachers in clarifying their thinking as they focused on how they might
support children to overcome their difficulties. Remembering that this was only one
example of possible student misconceptions, they were directed to research other
possible misconceptions in their textbook (Booker et al. 2010) in preparing for their
examination.

While animated PowerPoint representations were used in lectures to both cohorts,
there was a pedagogical shift from using these representations to scaffold pre-service

Fig. 2 Exam reflection question focusing on children’s misconceptions
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teachers’ understanding of fractions and fraction operations to engaging participants in
drawing and explaining their own representations. Participants were encouraged to
think about “why” algorithms worked rather than just “how” to use them to obtain a
correct solution, in terms of fractional concepts and operations.

Lecturers and tutors also undertook explicit teaching involving modeling possible
conceptual representations and written explanations of fraction concepts and opera-
tions. Important ideas including fractional concepts and misconceptions evident in pre-
service teachers’ representations were discussed concerning the following:

Fractions as numbers and fractions as parts of things (the connections and
differences).
Fractions as equal parts of a whole (object or group).
The relationship of parts to the whole (object or group).
The need to use the same size wholes when representing fraction operations.
Equivalence—demonstrated by creating the same size pieces of the same size
wholes.
Fractions as operators causing quantities to enlarge or reduce.
The language that might be used to support conceptual understanding of opera-
tions and concepts.

Regional models of fraction concepts and operations were the focus of most of the
learning activities, although number line representations and discrete models were also
discussed and attempted by some pre-service teachers. The focus in the RRTL was the
development of a holistic understanding of fractions that was conceptually rich and
robust, where pre-service teachers could explain and generate multiple representations
of fractional concepts and operations.

Data analysis

Quantitative data analyses in both phases of the study were conducted with the aid of
SPSS version 18. The scale of the data was nominal and ordinal.

The relative roles of procedural and conceptual knowledge used by pre-service
teachers as they attempted to represent four fraction operation problems were exam-
ined. The general issue of pre-service teachers’ proclivity to draw on these knowledge
components was examined in terms of the three research questions. The data relevant to
each question are presented below.

Research question 1—what is the relative use of procedural and conceptual knowledge
when pre-service teachers represent fraction problems?

Phase 1

The analysis of phase 1 data includes only five of the six categories of problem
representations (Table 1) (code 3 was developed in phase 2 of the study to
accommodate a new category of responses that emerged). Figures. 3 and 4
show the results for cohort 1 in an analysis of their use of procedural
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knowledge (PK) and conceptual knowledge (CK) when providing solutions to
the subtraction and multiplication tasks.

The subtraction problem

A considerable number of responses (22.94 %) demonstrated neither procedural nor
conceptual knowledge (code 0) in the subtraction problem. While a total of 77.06 % of
participants in cohort 1 demonstrated procedural knowledge, almost half of the cohort
(48.62 %) activated only procedural knowledge in completing the subtraction problem
(code 1). In cohort 1, 22.94% demonstrated procedural knowledge and the group could also
demonstrate conceptual knowledge of an important fraction concept (code 2). Only 5.5% of
participants elucidated both conceptual knowledge and procedural knowledge of the oper-
ation (codes 4 and 5), and there were no instances of this cohort demonstrating any
conceptual knowledge (code 3) in coming to a solution. Thus, overall, while a large

Fig. 3 Pre-service teachers’ responses to subtraction problem: percentages for knowledge categories

Fig. 4 Pre-service teachers’ responses to multiplication problem: percentages for knowledge categories
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proportion of participants could utilize procedural knowledge only, a small proportion of the
cohort could demonstrate a conceptual knowledge of the subtraction concepts and operation.

The multiplication problem

About one-fifth of responses (22.02 %—code 0) evidenced neither procedural nor
conceptual knowledge (code 0). A total of 79.69 % of cohort 1 participants demonstrated
procedural knowledge. In the cohort, 60.55 % (code 1) activated procedural knowledge
only in the multiplication problem (code 1). A further 4.59 % demonstrated procedural
knowledge and could also demonstrate conceptual knowledge of an important fraction
concept (code 2). Of the participants, 12.84 % demonstrated both conceptual and proce-
dural knowledge of the operation (codes 4 and 5) (Fig. 4). Again, the predominance of
procedural in comparison to conceptual knowledge in the multiplication problem is noted.

A two-way contingency table analysis was conducted to evaluate whether represen-
tation categories in the subtraction problem were associated with those for the multipli-
cation problem (Table 2). The two variables were the subtraction problem with five
levels of representation and themultiplication problemwith five levels of representation.

Spearman rank-order correlations were conducted in order to determine if there were
any relationships between the pre-service teachers’ responses to subtraction and multipli-
cation problems. A two-tailed test of significance indicated that there was a significant
positive relationship between the codes for subtraction and multiplication problem,
rs(109)=0.50, p<0.000. That is, participants, as a group, tended to activate similar levels
of procedural or conceptual knowledge along the five codes for both the problems.

Phase 2

Figures 5 and 6 show the results for cohort 2 in an analysis of their use of procedural
and conceptual knowledge when providing solutions to the addition and division tasks.

The addition problem

In cohort 2, 47.37 % of participants activated both procedural and considerable
conceptual knowledge in completing the addition problem (code 4 and 5) with an

Table 2 Codes for multiplication problem vs. codes for subtraction problem cross tabulation

Codes for subtraction problem Total

0 1 2 4 5

Codes for multiplication problem 0 11 12 1 0 0 24

1 13 37 14 0 2 66

2 0 3 2 0 0 5

4 1 1 3 2 0 7

5 0 0 5 2 0 7

Total 25 53 25 4 2 109
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additional 28.07 % showing procedural and some conceptual understanding of an
important fraction concept (code 2) (Fig. 5). A further 8.77 % elucidated only proce-
dural knowledge (code 1), with 15.79 % of participants evidencing neither procedural
nor conceptual knowledge (code 0).

The division problem

In the division problem, nearly 65 % of participants in cohort 2 activated both
procedural and conceptual knowledge (codes 4 and 5), in comparison to the 13.16 %
of participants demonstrating procedural knowledge only (code 1) (Fig. 6). An addi-
tional group of responses emerged from this problem (code 3) with nearly 8.77 % of the
cohort utilizing conceptual knowledge to arrive at a correct solution without using an
algorithm. About 12.28 % evidenced neither procedural nor conceptual knowledge
(code 0).

Fig. 5 Pre-service teachers’ responses to addition problem: percentages for knowledge categories

Fig. 6 Pre-service teachers’ responses to division problem: percentages for knowledge categories
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Again, a two-way contingency table analysis was conducted to evaluate whether
representation categories in the addition problem were associated with those for the
division problem (Table 3).

As before, Spearman rank-order correlation analysis indicated that the quality of
representations in both the addition and division problems was found to be significantly
related, rs(109)=0.50, p<0.000.

Research question 2—does a representational reasoning teaching and learning
approach have an impact on the development of pre-service primary teachers’
procedural knowledge of fractions?

A comparison of phase 1 and phase 2 results

Due to the changes in the operations examined with cohorts 1 and 2, from multiplica-
tion to division and subtraction to addition, there are limitations in making direct
comparisons. However, the addition and subtraction algorithms are closely related,
with the common approach involving converting the fractions to equivalent fractions
with the same denominator before adding or subtracting. The common division
algorithm involves inverting the divisor and using the multiplication algorithm (it could
be reasonably argued that the division algorithm is more complicated and hence more
difficult to utilize). While cohorts 1 and 2 are different, their commencing knowledge
about fraction operations was assumed to be similar on the basis of their school
mathematics experiences.

Having taken this into consideration, it is worth noting that the proportion of
participants who were able to find correct solutions to the fraction operation tasks
using algorithms did improve within the solution attempts of the two cohorts (Table 4).
Comparing the responses of the participants in cohorts 1 and 2 in the subtraction and
addition problems, 77.06 % (−) of cohort 1 participants, compared to 84.21 % (+) of the
participants in cohort 2, were able to achieve a correct solution using an appropriate
algorithm. A smaller difference was noted in comparing the two cohorts’ responses to
the multiplication and division tasks with 77.98 % (×) of participants in cohort 1 and
78.95 % (÷) in cohort 2 demonstrating the competent use of appropriate algorithms.

Table 3 Codes for division problem vs. codes for addition problem cross tabulation

Codes for addition problem Total

0 1 2 4 5

Codes for division problem 0 6 4 0 2 2 14

1 3 4 6 1 1 15

2 0 1 0 0 0 1

3 4 0 0 4 2 10

4 1 0 2 3 2 8

5 4 1 24 18 19 66

Total 18 10 32 28 26 114
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Research question 3—does a representational reasoning teaching and learning
approach have an impact on the development of pre-service primary teachers’
conceptual knowledge of fractions?

A comparison of phase 1 and phase 2 results

In comparing the conceptual knowledge evidenced in phases 1 and 2 of the study, the
improvement was considerable following the introduction of the RRTL approach
(Table 4). In attempting the subtraction and addition problems, the majority of re-
sponses of cohort 2 were indicative of higher levels of conceptual knowledge activation
than those of Cohort 1, with 75.44 % of cohort 2 (+) evidencing conceptual knowledge
compared to 28.4 % of cohort 1 (−). Additionally, a significant number of participants
in cohort 2 (47.37 %) compared to only 5.5 % in cohort 1 showed a strong conceptual
understanding of the essential fraction ideas and concepts involved in adding or
subtracting fractions.

Similarly, the majority of cohort 2 (74.56 % compared to 17.63 % of cohort 1)
exhibited some conceptual understanding of fraction ideas, with nearly all of these

Table 4 Comparison of the utilization of procedural and conceptual knowledge by cohorts 1 and 2

Knowledge type: Percentage of cohort 1 (%) Percentage of cohort 2 (%)

Procedural (PK)

Conceptual (CK)

Code Description Subtraction Addition

0 None 22.94 15.79

1 PK only 48.62 8.77

2 PK + minor CK 22.94 28.07

4 PK + good CK 3.67 24.56

5 PK + strong CK 1.83 22.81

3 C only 0 0

Total of PK 77.06 84.21

Total of all CK 28.4 75.44

Total of notable CK 5.5 47.37

Code Multiplication Division

0 None 22.02 12.28

1 PK only 60.55 13.16

2 PK + minor CK 4.59 0.88

4 PK + good CK 6.42 7.02

5 PK + strong CK 6.42 57.89

3 CK only 0 8.77

Total of PK 77.98 78.95

Total of all CK 17.63 74.56

Total of notable CK 13.04 73.68
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participants (73.68 %) being able to successfully represent and explain the important
fractional concepts involved (compared to only 13.04 % of cohort 1).

The proportion of pre-service teachers who were unable to achieve a correct answer
using either procedural and/or conceptual knowledge decreased considerably over the
2 years. Whereas 22.94 % (−) and 22.02 % (×) of cohort 1 did not achieve correct
solutions in the subtraction and multiplication tasks (code 0), within cohort 2, 15.79 %
(+) and 12.28 % (÷) of participants did not achieve correct solutions within the addition
and division tasks (code 0).

Interestingly, nearly 8.77 % of cohort 2 were able to achieve a correct answer to the
division task (÷) utilizing a representation without using an algorithm. Given that pre-service
teachers were required to provide a calculation and explanation, any omission in providing
evidence of procedural knowledge can be interpreted as not having this knowledge.

In comparing the results of both cohorts, it seems that a RRTL approach has
impacted positively on cohort 2’s acquisition and subsequent use of conceptual under-
standing of fraction operations over the period of this research.

Discussion and implications

The aims of this study were (a) to describe the state of knowledge of fractions in terms
of procedural-conceptual continuum and (b) to track the development of these two
strands of knowledge of two cohorts of pre-service teachers, in the context of fraction
operation problems, before and after the implementation of a representational reasoning
teaching and learning (RRTL) approach. The study was grounded on the assumption
that future teachers need to develop a strong body specialized content knowledge of
mathematics (Ball, et al. 2005), and this knowledge can be analyzed from a procedural
and conceptual perspective. While conceptual knowledge may subsume procedural
knowledge and indeed contribute to better procedural knowledge, it is important to
capture and support the growth of both strands of knowledge for future teachers of
mathematics and numeracy.

In our attempt to generate data about the quality of participants’ understanding of
fraction operations as revealed by their problem-solving attempts and the impact of an
instructional approach on their subsequent understanding, we were guided by the
theoretical model of understanding that was developed by Barmby et al. (2009). The
model was found to be appropriate for both the construction and use of our coding
system and in guiding the instruction for the pre-service teachers.

Research question 1 framed the first phase of the study, the aim being to describe
levels of procedural and conceptual knowledge of fractions that were activated in the
context of solving subtraction and multiplication problems. Analysis of the quality of
representations produced by the participants in cohort 1 indicates that few participants
had developed a robust body of conceptual knowledge of subtraction and multiplication
of fractions. Further, data suggested that the participants’ knowledge was primarily
procedural in nature. This was even more pronounced in their responses to the
multiplication than subtraction problem. A possible explanation for this may be that
multiplying with fractions is somewhat more demanding conceptually than with
subtraction. While subtracting fractions has similarities to subtraction involving whole
numbers, multiplying by fractions is partitive in nature and results in a product that is
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smaller than the multiplicand (Mack 2001). The high number of errors that were
committed in both the subtraction and multiplication tasks suggests that these pre-
service teachers relied heavily on their procedural knowledge which, when not sup-
ported by conceptual understanding, could provide fewer opportunities to review for
possible mistakes.

The cross-tabulation analyses of both cohorts’ patterns of activating proce-
dural or conceptual knowledge in their responses to both their examination
questions were not independent. That is, regardless of the problem type, the
content knowledge of cohort 1 was mainly procedural in nature and the content
knowledge of cohort 2 was both procedural and conceptual. It is therefore
contended by the authors that while both strands of knowledge are necessary
for teaching, the predominance of procedural over conceptual knowledge, evi-
denced in the responses of cohort 1, does not constitute a healthy state.
Teachers who develop content knowledge that is predominantly procedural
cannot be expected to help children develop rich conceptual connections
(Lesh and Zawojewski 2007) and may, in fact, contribute to students’ miscon-
ceptions (Ma 1999). In analyzing the quality of cohort 1’s content knowledge
in fractions and fraction operations, we sought to inform our own future teacher
education programs to better support pre-service teachers undertaking our
courses. The intent being to develop a more balanced the knowledge they will
need to be effective teachers of fraction concepts.

Research questions 2 and 3 were concerned with the impact of a teaching and
learning approach (RRTL) based on the development of appropriate representations,
including effective algorithms, conceptual illustrations of fraction operations, and
written explanations on the development of pre-service teachers’ procedural and
conceptual knowledge of fractions. The results suggest that while there was a negligible
to small positive effect on the development of procedural knowledge, the RRTL
approach to teaching and learning had considerable positive impact on pre-service
teachers’ conceptual knowledge.

The RRTL approach was based on the assumption that pre-service teachers who had
developed a robust conceptual knowledge base could be expected to exhibit a com-
mensurate improvement in procedural knowledge. This appears to be the case with
most of the participants. However, there were a number of pre-service teachers who
demonstrated conceptual knowledge but could not use an appropriate procedure to find
a solution. Such instances raise a question about the character of conceptual knowledge
in subsuming and supporting procedural knowledge or, indeed, how one influences the
other. This issue warrants further investigation.

Pre-service teachers’ representations of fraction division problems, particularly from
a conceptual point of view, can inform us about their ability to discriminate between
measurement versus partitive interpretations, which have been shown to be a problem-
atic area for both experienced and pre-service teachers (Flores 2002; Siebert 2002). In
their solution attempts of the division problem, participants used regional models that
involved the determination of the number of the second fraction (14 ) that goes into the

first (112 ) (measurement interpretation).
The results in the present study also showed that cohort 2 developed a considerably

richer conceptual understanding of fraction concepts and operations than cohort 1.
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While we are encouraged by the results, our data are based on a number of
decontextualized fraction problems. An investigation of the construction, durability,
flexibility, and transfer of conceptual knowledge within contextualized fraction prob-
lems would be a worthwhile extension in determining the effectiveness of the RRTL
approach. Our future research program aims to examine this question. Equally, an
assessment of the value of the RRTL approach, as it applies to other mathematics
content areas, can also be expected to inform the impact of the composition and general
features of this model of instruction.

Cohort 1’s limited conceptual knowledge and dependence on procedural
knowledge, evidenced in the results of the examination in phase 1 of this
study, provided the impetus for the second phase. Initially, procedural and
conceptual knowledge were examined in the context of subtraction and multi-
plication examination tasks. Subsequently, cohort 2’s conceptual and procedural
knowledge were examined in addition and division tasks. While this could be
seen as a limitation of the study due to the changes in the fraction operations
involved, it is our contention that in both groups, there are structural similar-
ities based on the inverse relationships between addition and subtraction as well
as multiplication and division, both algorithmically and conceptually. Further,
while the operations utilized in both phases were different, the focus of the
study was on capturing the state of procedural and conceptual knowledge of
fraction concepts and operations in order to better support pre-service teachers
in their development.

In making claims about the quality of pre-service teachers’ procedural and concep-
tual knowledge, a coding system was developed that was sensitive, in the main, to the
positive aspects of pre-service teachers’ responses to the given set of tasks. The focus of
the research was to identify the evidence of conceptual and procedural knowledge
rather than to analyze the nature of conceptual and/or procedural misunderstandings.
Future studies could extend the coding to explicitly analyze the types of errors
committed by participants.

The claims made about the quality of knowledge demonstrated by participants in
this study are based on participants being given explicit instructions to complete the
calculations, draw a representation of the concepts and operations, and explain their
representations. Within the context of a quantitative study involving a substantial
number of participants, we are comfortable in making the above claim. However, it
would be worthwhile interviewing participants individually with a view to gaining
further insights into the quality of their conceptual and procedural knowledge of
fractional concepts and operations. Such detailed data could also provide more infor-
mation about the factors contributing to the development of their knowledge.

The study was designed to identify changes in pre-service teachers’ knowledge of
fractions and fraction operations in terms of procedural and conceptual dimensions. To
ensure that the nature of the tasks used in the study did not act as a confounding factor,
they had several features in common: they were decontextualized, solutions could be
found by using algorithms, and concepts could be demonstrated utilizing visual
representations and supported by written explanations. It might be argued that there
is sufficient variability within these boundaries that could contribute to the changes in
knowledge demonstrated by the participants. Such a hypothesis is reasonable and could
be investigated through future research by adopting a quasi-experimental design.
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Finally, it is contended that this study contributes significantly in amplifying the
nature of specialized content knowledge that has been argued to be important for
teachers of mathematics. In drawing attention to this cluster of knowledge, Ball et al.
(2008) commented that the “mathematical demands of teaching are substantial” and
that there is a need to conceptualize and develop sensitive measures of this knowledge.
We have undertaken this task within the context of teachers’ knowledge for teaching
fractions by drawing on the framework of procedural-conceptual understandings.
Specialized content knowledge (Ball et al. 2005) underpins both pre-service and in-
service teachers’ abilities to identify and understand errors committed by their students
and provide an appropriate instruction to improve their students’ understanding.
Casting specialized content knowledge in terms of procedural-conceptual dimensions
thus provides both teachers and researchers with tools to anticipate, analyze, and
explain student errors.

Conclusion

The present study was motivated by a desire to better understand the quality of content
knowledge that pre-service teachers develop in a mathematics content and pedagogy
course and examine the impact of an instructional model (RRTL) designed to improve
their conceptual understanding of fraction concepts and operations. Our results suggest
that pre-service teachers come into teacher education programs with knowledge of
fractions and fraction operations that is mainly about procedures with limited appreciation
of the conceptual basis of these concepts and operations. The results of this study provide
support for the argument that procedurally driven fraction knowledge has limited value
and, indeed, could impede the development of the specialized content knowledge and
pedagogical content knowledge necessary for quality mathematics teaching.

In considering the RRTL approach to pre-service teacher education in the area of
fractions, the results reported here are encouraging. Pre-service teachers can be sup-
ported, within an existing teacher education program, to construct conceptually and
procedurally robust content knowledge through the development of appropriate repre-
sentations of fraction concepts and operations. Further, our experience showed that the
use of representationally rich instruction could enhance the building of the fraction
procedural-conceptual knowledge nexus. The authors contend that the impact of RRTL
instruction can be further strengthened with focus on pre-service teachers cooperatively
generating their own representations and investigating the links between the underlying
mathematics and effective algorithms.
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