2014

Epitaxial growth mechanism of silicene on Ag(111)

Xun Xu
University of Wollongong, xun@uow.edu.au

Jincheng Zhuang
University of Wollongong, jz673@uowmail.edu.au

Yi Du
University of Wollongong, ydu@uow.edu.au

Stefan Eilers
University of Wollongong, seilers@uow.edu.au

Germanas Peleckis
University of Wollongong, peleckis@uow.edu.au

See next page for additional authors

Publication Details

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Epitaxial growth mechanism of silicene on Ag(111)

Abstract
We report on the epitaxial growth mechanism of silicene layers fabricated on a Ag(111) surface by molecular beam epitaxial deposition. The coverage effect and the structural defects have been characterized using scanning tunneling microscopy (STM). It is found that substrate temperature plays an important role in the formation of silicene in different structures. Several kinds of defects are observed in different phases of silicene, which are most likely induced by the low coverage effect and the structural mismatch between the silicene and the Ag(111) surface. The Silicene sheet prefers to first emerge at the terrace edge of the substrate. Our results indicate that the growth mechanism of silicene follows the Stranski-Krastanov growth mode for all structures.

Keywords
growth, epitaxial, mechanism, 111, silicene, ag

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors

This conference paper is available at Research Online: http://ro.uow.edu.au/aiimpapers/1281
Epitaxial growth mechanism of silicene on Ag(111)

Xun Xu, Jincheng Zhuang, Yi Du*, Stefan Eilers, Germanas Peleckis, Waikong Yeoh, Xiaolin Wang and Shi Xue Dou*

Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong
Wollongong, NSW 2525, Australia

*To whom correspondence should be addressed: ydu@uow.edu.au; shi@uow.edu.au

Kehui Wu
Institute of Physics, Chinese Academy of Science, Haidian District,
Beijing 100080, P. R. China

Abstract— We report on the epitaxial growth mechanism of silicene layers fabricated on Ag(111) surface by molecular beam epitaxial deposition. The coverage effect and the structural defects were characterized by using scanning tunneling microscopy (STM). It is found that substrate temperature plays an important role in the formation of silicene in different structures. Several kinds of defects are observed in different phases of silicene, which are most likely induced by the low coverage effect and the structural mismatch between the silicene and the Ag(111) surface. Silicene sheet prefers to emerge firstly at the terrace edge of substrate. Our results indicate that growth mechanism of silicene follows the Stanski-Krastanov growth mode for all structures.

Keywords— silicene; epitaxial; STM; growth mechanism; defect; coverage

I. INTRODUCTION

Due to the unique nanostructures and electronic states, two-dimensional (2D) materials play a pivotal role in innovative concepts and pioneering applications. Recently, a novel silicon-based 2D single-atom layer, namely, silicene, has attracted intensive interest because it is an ideal candidate material for promising applications in electronics, photonics, and the other related areas [1-3]. The theoretical simulations show that silicene has the similar electronic band structure with graphene and is a new massless Dirac Fermion system [4, 5], which has been experimentally proved by observation of linear behavior of energy-momentum dispersion and a large Fermi velocity of 1.16 nm. Silicene shows a large spin-orbit coupling, which may allow a large energy gap at the Dirac point and result in a detectable quantum spin Hall (QSH) effect, and inherent compatibility with the current semiconductor industry [5-8]. In addition, unlike graphene sheets which are chemical inert at surface, silicene sheets demonstrate high chemical activity which potentially makes their physical, chemical and electronic properties easily being modulated by chemical functionalization [9]. Although it has been proposed that the substrate temperature and the surface coverage play an important role in the formation of silicene in different phases [1], few works studied the growth mechanism and the origin of the defects in epitaxial silicene, which is highly desirable before fabrication of large-scale high-quality silicene layers for applications.

In this work, we investigate the epitaxial growth mechanism and defects in silicene in different phases. Single and multiple layered silicene sheets were obtained. It is found that the silicene sheets prefer to grow from the terrace edge of the silver substrate Ag(111) following Stanski-Krastanov (SK) growth mode.

II. EXPERIMENTS AND METHODS

All samples used in this work were in-situ prepared in a preparation chamber of a low-temperature scanning tunneling microscopy system (LT-STM) (SNOM1400, Unisoku Co.). A clean Ag(111) substrate was prepared by argon ion sputtering and with subsequent annealing at 550°C for several cycles. The silicene monolayers were fabricated by the vaporization of silicon from a heated silicon wafer. The deposition flux was 0.08 monolayers per minute (ML/min). The temperature of the Ag(111) substrate was 450 K, 500 K and 550 K for the formation of $\sqrt{13} \times \sqrt{13}$, 4×4 and 2$\sqrt{3} \times 2\sqrt{3}$ phases, respectively. The STM measurements were carried on in ultra-high vacuum (UHV, $<8 \times 10^{-10}$ torr) at room temperature. Before STM measurements, Pt/Ir tip was calibrated on a silver surface.

III. RESULTS AND DISCUSSION

Fig. 1 shows the STM images of silicene nanosheets in different phases, namely, $\sqrt{13} \times \sqrt{13}$, 4×4 and 2$\sqrt{3} \times 2\sqrt{3}$. When the substrate temperature is less than 450 K, the amorphous silicon film forms in the Ag(111) substrate, as shown in Fig. 1(a). It is found that the $\sqrt{13} \times \sqrt{13}$ phases with close-packed protrusions and the 4×4 phase always coexist on a large area of the silver surface (Fig. 1(b)) when the substrate temperature is between 450 K and 520 K. This coexistence indicates the similar formation energy of these two phases. It is noticeable that the periodicity of the two phases is almost the same (1.16 nm), which is also a vital factor for the coexistence of two phases. When substrate temperature is increased above 520 K, 2$\sqrt{3} \times 2\sqrt{3}$ phase forms with traces of 4×4 phase. The pure 2$\sqrt{3} \times 2\sqrt{3}$ phase silicene can be attained when the substrate temperature is higher than 550 K. The long-ranged ordered and well spread moiré pattern over the whole 2$\sqrt{3} \times 2\sqrt{3}$ silicene surface is shown in Fig. 1(c). The angle between honeycomb structure and the direction of moiré pattern is around 30°, which is in consistence to the previous reports [1].
Several types of defect are observed in different silicene phases. Fig. 2(a) displays the STM images of unordered stripes among the bright atom image. These stripe-like defects are caused by grain boundaries between $\sqrt{13} \times \sqrt{13}$-I and $\sqrt{13} \times \sqrt{13}$-II phases, which possess different atomic structure [10]. The topographic triangle defect, labeled by red arrow, is observed among 4×4 phase in Fig. 2(b). This triangle defect, which only displays in 4×4 phase but not in $\sqrt{13} \times \sqrt{13}$ and 2√3×2√3 phases, is due to perfect honeycomb structure with the deficiency of several atoms in top layer, which is verified by STM images. It is attributes to that 4×4 silicene sheet has more Si atoms in top layer and less average binding energy with substrate per silicon atom compared with $\sqrt{13} \times \sqrt{13}$ phase and 4×4 phase [10]. The high-resolution STM image in Fig. 2(c) displays complete honeycomb rings with periodical lattice at the bright part of moiré pattern, and rather defective and distorted rings in the dark part of moiré pattern. Such phenomenon has been predicted to be caused by the lattice mismatch between the silicene sheet and silver substrate by density functional theory (DFT) simulations [3]. Silicon atoms at the bright part of moiré pattern are little deviated from the position of Ag(111), making structure stable enough to keep honeycomb rings. The large deviation in the dark part of moiré pattern, leads to unstable structure and eventually breaks the rings.

The growth mechanism of multi-layer silicene has been investigated by tuning Si coverage. The topographic images of amorphous and the $\sqrt{13} \times \sqrt{13}$ phase in the submonolayer are shown in Fig. 3(a) and (b), respectively. It demonstrates clearly that both structures are grown from terrace edge of silver substrate. When the coverage of silicene is more than 1 monolayer (ML), second layer emerges on the first layer of silicene in the form of island. These islands prefer to locate in the terrace of first layer. The insert of Fig. 3(c) shows the enlarge view of the second layer. Both the amorphous and $\sqrt{13} \times \sqrt{13}$ phases are observed in the second layer. It should be noted that there is no trace of continuity between the first layer and second layer, indicating that the second layer grows when the first layer film completely forms on the silver substrate.

There are three epitaxial modes of thin film growth, which are Volmer-Weber (VW) mode, Frank-van der Merwe (FM: layer-by-layer), and Stranski-Krastanov (SK: layer-plus-island). Each mode is shown for several different amounts of surface coverage.
IV. SUMMARY

In summary, we investigate the influence of substrate temperature on silicene structure and the growth mechanism in the different coverage levels. Defects in $\sqrt{13}\times\sqrt{13}$ phase are due to the grain boundary between different phases as well as the low coverage. Deficiencies of atoms in top layer form the defects in 4×4 phase, which is probably caused by the more atoms in top layer and weak bind between the top layer atom and silver substrate. The lattice mismatch between silicene and substrate induces the break and distortion in dark part of moiré pattern in $2\sqrt{3}\times2\sqrt{3}$ phase. The study of topography of different layer silicene demonstrates that the silicene grows under the SK mode, which is not only to better understand the complex thermodynamics and kinetics at the core of silicene formation, but also a route to fabricating novel nanostructures for application in the microelectronics industry.

ACKNOWLEDGMENT

This work is supported by the Australian Research Council (ARC) through Discovery Project (DP 140102581), LIEF grants (LE100100081 and LE110100099). It is also partially supported by the University of Wollongong through the Vice Chancellor’s Postdoctoral Research Fellowship Scheme and a University Research Council (URC) Small Grant.

REFERENCES