2014

Influence of capping on the atomistic arrangement in palladium nanoparticles at room temperature

Gaston Corthey
Universidad Nacional De La Plata

Jimena A. Olmos-Asar
Universidad Nacional de Cordoba

Gilberto Casillas
University of Wollongong, gilberto@uow.edu.au

Marcelo M. Mariscal
Universidad Nacional de Cordoba

Sergio Mejia-Rosales
Universidad Aut´Onoma De Nuevo Le´On

See next page for additional authors

Publication Details
Influence of capping on the atomistic arrangement in palladium nanoparticles at room temperature

Abstract
The role that protecting molecules have on the way that palladium atoms arrange themselves in nanoparticles prepared at room temperature was studied by the analysis of aberration-corrected scanning transmission electron microscopy images and atomistic Langevin dynamics simulations. It was found that the arrangement of Pd atoms is less ordered in thiolate-protected nanoparticles than in amine-protected ones. The experimental and theoretical data showed that the disorder in ~3 nm thiolate-protected particles is promoted by the strong S-Pd bond in the sulfide layer that surrounds the nanoparticles.

Keywords
influence, room, capping, temperature, atomistic, arrangement, palladium, nanoparticles

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
Gaston Corthey, Jimena A. Olmos-Asar, Gilberto Casillas, Marcelo M. Mariscal, Sergio Mejia-Rosales, Julio C. Azcarate, Eduardo Larios, Miguel Jose-Yacaman, Roberto Salvarezza, and M Fonticelli

This journal article is available at Research Online: http://ro.uow.edu.au/aiimpapers/1255
Influence of the Capping on the Atomistic Arrangement in Palladium Nanoparticles at Room Temperature

Gastón Corthey,* † ‡ # Jimena A. Olmos-Asar,¶ † ‡ , Gilberto Casillas,§ Δ Marcelo M. Mariscal,* ¶ Sergio Mejía-Rosas,‖ Julio C. Azcárate, † Eduardo Larios,§ † Miguel José-Yacamán,§ Roberto C. Salvarezza, † and Mariano H. Fonticelli* †

Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata - CONICET, Sucursal 4 Casilla de Correo 16 (1900) La Plata, Argentina, INFIQC, CONICET, Departamento de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (XUA5000), Córdoba, Argentina, Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA, Center for Innovation, Research and Development in Engineering and Technology, and CICFIM-Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL 66450, Mexico, and Departamento de Ingeniería Química, Universidad de Sonora, 83000 Hermosillo, Sonora, México.

E-mail: gcorthey@inifta.unlp.edu.ar; marmariscal@fcq.unc.edu.ar; mfonti@inifta.unlp.edu.ar
Abstract

The role that protecting molecules have on the way that palladium atoms arrange themselves in nanoparticles prepared at room temperature was studied by the analysis of aberration-corrected scanning transmission electron microscopy (STEM) images and atomistic Langevin Dynamics simulations. It was found that the arrangement of Pd atoms is less ordered in thiolate-protected nanoparticles than in amine-protected ones. The experimental and theoretical data showed that the disorder in ~ 3 nm thiolate-protected particles is promoted by the strong S–Pd bond in the sulfide layer that surrounds the nanoparticles.

Keywords

thiolate, amines, crystalline, amorphous, scanning transmission electron microscopy, Langevin dynamics

Introduction

The unique properties of thiolate self-assembled monolayers (SAMs) have provoked a great interest in these assemblies, especially for their role in the stability and interfacial properties on thiolate-protected noble metal nanoparticles (NPs).1,2 Gold nanoparticles are among the most studied metal nanoparticles, to the point of being considered the \textit{de facto} model system in this field of research.3,4 However, some properties of other metals can be very different.

\footnote*{To whom correspondence should be addressed}
\footnote{INIFTA, Argentina.}
\footnote{These authors contributed equally to this work}
\footnote{INFIQC, CONICET, Argentina.}
\footnote{University of Texas at San Antonio, USA.}
\footnote{Universidad Autónoma de Nuevo León, México.}
\footnote{Universidad de Sonora, México}
\footnote{Current address: Max Planck Institute for the Structure and Dynamics of Matter. Luruper Chaussee 149, 22761 Hamburg, Germany}
\footnote{Current address: Physics Department, University of Trieste, Strada Costiera 11, I-34151 Trieste, Italy}
\footnote{Current address: UOW Electron Microscopy Centre, University of Wollongong, New South Wales 2500, Australia}
from those of gold, and the case of palladium is an example that fulfills this statement. For instance, the adsorption of alkanethiols on planar palladium surfaces produces a sulfide layer (with sub-monolayer coverage) laying at the interface between palladium and thiolate moieties.5–7 Density Functional Theory (DFT) calculations show that the sulfide layer comes from the S–C bond scission caused by a charge transfer from the palladium \textit{d} band to antibonding thiolate orbitals.7 In addition, it was recently shown that the chemical composition of the surface of alkanethiolate-protected palladium nanoparticles is very similar to that of alkanethiolate-modified bulk palladium: Pd(0) cores are surrounded by a submonolayer of sulfide species, which are protected by alkanethiols.8–10 Despite these particles have very interesting properties that can be exploited in catalysis11 and sensing,12 their detailed structure has been barely studied. Indeed, even in recent studies, the already known5,8 chemical nature of the Pd-thiolate interface is ignored.11–14

It is well known that thiolate species produce a reconstruction of the gold surface both in planar substrates15 and in nanoparticles.16 Results from molecular simulations suggest that the influence of the capping molecule can also reach deeper atomic layers in gold nanoparticles smaller than 2 nm in size.17,18 In the case of planar palladium, DFT calculations show that when only thiolates are adsorbed on the surface, there is no reordering of the metal atoms in the first layers;7,13 however, when sulfide is incorporated as an adsorbate, a considerable surface reconstruction takes place. This behavior is attributed to the strong bonding of sulfide species to palladium (binding energy: -5.0/-5.6 eV) compared to thiolate moieties (binding energy: -2.7/-3.2 eV).7

Regarding the structure of passivated palladium nanoparticles, there are differing reports where the metal atoms are found to have either a crystalline or an amorphous structure. In one of the first reports on thiolate-protected palladium nanoparticles with an amorphous structure, Hou \textit{et al.}19,20 synthesized polyvinylpyrrolidone (PVP)-protected palladium nanoparticles either using a strong (sodium borohydride) or a weak (ethanol) reducing agent, which were subsequently modified with dodecanethiol. The authors found that the nanopar-
articles synthesized with the strong reducing agent had an amorphous structure, while the nanoparticles prepared with the weak reducing agent had a crystalline structure. They explained this difference by considering the reduction rate of the precursors to generate metallic palladium: with sodium borohydride, the reduction takes place very fast and the nanoparticles are produced without time to relax the structure, while using ethanol the reduction proceeds slowly and palladium atoms have enough time to diffuse and form ordered structures.

The crystallinity modulation of palladium nanoparticles by changing the protecting molecule was studied by high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) simulations by Liu et al.21 It was found that while palladium atoms in nanoparticles prepared with oleylamine formed an ordered structure, the substitution of oleylamine by trioctylphosphine reduced the order considerably; besides, the particles recovered their crystalline structure when the surfactant was switched back. The difference is presumably due to the strength of the ligand-metal interactions, since palladium interacts with oleylamine less strongly than with trioctylphosphine. However, it has to be considered that in this study the MD simulations were carried outer without an atomistic description of the ligands. In a more recent paper, the authors studied the sulfidization process of 6 nm in size oleylamine-protected palladium nanoparticles at high temperature.22 They found that by adding dodecanethiol the nanoparticles gradually transformed into PdS\textsubscript{x} at temperatures above 363 K. Below that temperature, the sulfidization was restricted to the surface and the nanoparticles showed a crystalline structure when observed by TEM.

In another work recently published, it was reported the synthesis of palladium nanoparticles protected with dodecyl sulfide (DDS), to be used as catalyst for the synthesis of hydrogen peroxide.23 The particles had a crystalline structure clearly observed by HRTEM imaging. However, when DDS was exchanged by a thiol (mercaptoacetic acid), the metal atoms in the particles got disordered and the well-defined structure was lost. When the ligand is DDS, since the bond between sulfur and palladium is produced by the lone pair in sulfur, the
energy of this interaction is weak. On the other hand, with the thiol, a strong covalent bond is produced with the metal; moreover, the formation of palladium sulfide is also possible and, in that case, the interaction is even stronger.

Finally, in a paper from Cargnello et al.,24 where 11-mercapto-undecanoic acid-protected palladium nanoparticles were studied by HRTEM, the authors found that the crystallinity of the nanoparticles strongly depends on the temperature during the synthesis. It was observed that the lower the temperature used, the greater the crystallinity of the nanoparticles. The authors explained this behavior with the same arguments of Hou et al.,19,20 i. e., low temperatures slow down the reaction rates which leads to an ordered packing of palladium atoms. However, it is also possible that the chemical nature of the ligand-metal bond changes at different temperatures.

In summary, the differences in the crystalline structure of palladium nanoparticles have been explained in different ways. The first explanation is based on the difference in the reduction rates of Pd(II) species to form the nanoparticles: fast reduction produces disordered structures, and slow reduction produces ordered metallic structures. The second explanation relates the difference in the ordering of the metal atoms with the strength of the ligand-metal interaction: the use of ligands which interact strongly with palladium produces amorphous structures, while the use of ligands which interact weakly produces ordered metallic structures. A third interpretation includes the diffusion of sulfide into the nanoparticle core.

In this paper we present results regarding the ordering of metal atoms both in thiolate-protected palladium nanoparticles (Pd@S-SR NPs) and in alkylamine-protected palladium nanoparticles (Pd@NH\textsubscript{2}R NPs). The structure of the nanoparticles was investigated by aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), and the interpretation of the images was done by contrasting the experimental results with predictions obtained by means of Langevin Dynamics simulations, where both the metal and the ligands were modeled with atomistic detail.
Experimental and Theoretical Methods

Nanoparticle Synthesis

Pd@S-SR NPs were prepared by the two-phase Brust-Schiffrin method25,26 and Pd@NH\textsubscript{2}R NPs were prepared by a modification of that method where amines are used in place of thiols.27 The average diameters of the particles obtained were $\langle D \rangle = 3.3 \pm 0.9$ nm and $\langle D \rangle = 3.2 \pm 0.7$ nm, respectively. Also, thiolate-protected nanoparticles were prepared by ligand place-exchange of Pd@NH\textsubscript{2}R NPs with thiol. Briefly, Pd@NH\textsubscript{2}R NPs were placed in a solution of thiol (RSH:Pd = 1:1) and stirred for 24 h at room temperature to replace amine by thiolate on the nanoparticle surface. Although this procedure leads to partial ligand exchange, sulfide and thiolate were found as adsorbates, besides nitrogen species. Thus, we refer to them as Pd@NH\textsubscript{2}R-S-SR NPs. The thiol used in this work was dodecanethiol and the amine, dodecylamine. Details on the synthesis of the nanoparticles used and an extensive characterization of them can be found in a previous report.8

Aberration-Corrected Scanning Transmission Electron Microscopy (STEM)

STEM was carried out with a JEOL JEM-ARM200F aberration-corrected microscope at the University of Texas at San Antonio, operating at 200 kV, equipped with a Schottky FEG, a hexapole spherical aberration (Cs) probe corrector (CEOS GmbH) and a high-angle annular dark field (HAADF) detector. The probe size used for acquiring the HAADF images was 0.095 nm. Nanoparticle suspension was drop-cast on an amorphous carbon covered copper grid.
Langevin Dynamics Simulations

Langevin Dynamics simulations were performed to study the adsorption of butylamine, sulfide and butanethiolate onto palladium clusters. Metallic interactions were represented by means of the Second Moment Approximation of the Tight-Binding (TB-SMA) potential.28,29

\[U_{\text{TB-SMA}} = \sum_i (U_R^i + U_B^i) \] \hspace{1cm} (1)

In this equation, UB is the band energy, which takes into account the many-body character of metallic bonds,

\[U_B^i = -\left\{ \sum_j \xi_{\alpha\beta}^2 \exp \left[-2q_{\alpha\beta}(r_{ij} / r_{0\alpha\beta} - 1) \right] \right\}^{-1/2} \] \hspace{1cm} (2)

and UR is a pair term representing the repulsion between nuclei,

\[U_R^i = \sum_j A_{\alpha\beta} \exp \left[-p_{\alpha\beta}(r_{ij} / r_{0\alpha\beta} - 1) \right] \] \hspace{1cm} (3)

Parameters for the simulation of palladium were taken from Ref.30

Sulfide-metal interaction was represented with a Morse potential, parametrized for reproducing the adsorption of sulfide onto perfect planar palladium surfaces. The optimization of the site and energy of adsorption was made by performing DFT calculations, using the CASTEP code.31 Parameters obtained are: \(D_e = 1.2746 \text{ eV}, r_e = 2.2898 \text{ Å} \) and \(\alpha = 1.47 \text{ Å}^{-1} \).

To represent the interaction between head groups of butanethiolate (thiolate groups) and palladium, the new semi-empirical potential previously developed by the authors32 was parametrized by means of DFT calculations. The main characteristic of this potential is that bond orders (B.O.) of the interacting species are considered to distinguish different geometries of adsorption, using distinct parameters as a function of the coordination. Parameters
obtained and bond orders are shown in Table 1.

Table 1: Parameters obtained in the fit of the potential for the Pd-thiolate group.

<table>
<thead>
<tr>
<th>Adsorption site</th>
<th>D_e / eV</th>
<th>r_e / Å</th>
<th>α / Å$^{-1}$</th>
<th>S (B. O.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>on top</td>
<td>1.006932</td>
<td>2.2515</td>
<td>1.47</td>
<td>1.000000</td>
</tr>
<tr>
<td>bridge</td>
<td>0.667994</td>
<td>2.4557</td>
<td>1.47</td>
<td>2.013076</td>
</tr>
<tr>
<td>hollow-fcc</td>
<td>0.729014</td>
<td>2.3198</td>
<td>1.47</td>
<td>2.999774</td>
</tr>
</tbody>
</table>

The representation of the alkyl chain was made following the concepts of the Universal Force Field (UFF)33 and within the United Atom approximation (UA). Parameters can be found in Ref.32

Simulation of HAADF-STEM Images

The final configurations of the Langevin dynamics simulations were used as input coordinates for the simulation of HAADF-STEM microscopy. For these simulations we used the multislice method as implemented in the xHREM package, by Ishizuka,7 that uses an algorithm based on Fast Fourier Transforms (FFT). In the simulated HAADF-STEM, the particle acting as a sample was dissected into 20 slices (in the direction of the electron beam), each slice treated independently through an averaged projected potential. In accordance with the experimental STEM images used in this study, the simulated microscope was set at an electron beam voltage of 200 kV, with a resolution close to 0.1 nm.

Results and Discussion

A direct comparison between the aberration-corrected HAADF-STEM images of the first two kinds of particles shows a clear difference in crystallinity (Figure 1). While amine-protected palladium nanoparticles have a crystalline structure (Figure 1a), it was not possible to distinguish lattice fringes in any of the several images of thiolate-protected palladium nanoparticles (Figure 1c). This is clear evidence that the crystalline structure of the particles is largely affected by the capping agent: crystalline structure in amine-protected particles, disordered...
Figure 1: Representative aberration-corrected HAADF-STEM images of the three kinds of Pd nanoparticles studied. **a)** Dodecylamine-protected palladium nanoparticles. **b)** FFT of **a**. **c)** Dodecanethiolate-protected palladium nanoparticles. **d)** FFT of **c**. **e)** Dodecanethiolate-protected palladium nanoparticles prepared by ligand place-exchange of dodecylamine-protected palladium nanoparticles with dodecanethiol. **f)** FFT of **e**.

structure in thiolate-protected particles. More images are included in the supporting information (Figures S1 and S2). The FFT of the high-resolution images of Figure 1a and 1c show even more clearly the differences in crystallinity. The FFT showed in Figure 1b is typical of a particle with a five-fold symmetry, whereas in the FFT in Figure 1d it is not possible to locate spots that correspond to a particular set of atomic planes. From the images it is not possible to determine with total certainty whether the whole particle has an amorphous structure or only the surface is distorted while the core of the particle retains the crystalline structure of metallic palladium. We will discuss this point latter in relation with the Langevin Dynamics simulations and the simulation of the HAADF-STEM images.

In order to determine if the growing conditions of the nanoparticles -i.e. reduction rate,
presence of thiolate in the reaction media, etc.- were the responsible for the amorphous structure, thiolate-protected palladium nanoparticles prepared by ligand place-exchange were also studied. We have reported that the alkylamines were partially exchanged by dodecanethiol molecules, resulting in particles with a mixed capping agent. X-ray photoelectron spectroscopy (XPS) data showed that the relative surface amount of sulfide and thiolate species on the Pd@NH$_2$R-S-SR NPs was comparable to the Pd@S-SR NPs (thiolate : sulfide $\approx 1 : 1$) although the total sulfide + thiolate quantity was lower (sulfide + thiolate : Pd $\approx 0.3 : 1$).

As it can be observed in Figure 1e and 1f these nanoparticles show an amorphous structure, similar to the one of the thiolate protected nanoparticles prepared by the Brust-Schiffrin method (Figure 1c and 1d). Notably, approximately 40 - 50% of the nanoparticles showed a crystalline structure, although the surface was always distorted (see Figure S3). Probably this was caused by the incomplete ligand exchange. All in all, it is remarkable that the Pd@NH$_2$R-S-SR NPs showed a distorted or completely amorphous structure even when the total amount of thiolate + sulfide measured was lower than in the case of Pd@S-SR NPs (sulfide + thiolate : Pd $\approx 0.7 : 1$). This result rules out the possibility that the reaction rate can be the responsible for the differences in the crystallinity of the nanoparticles. Also, it strongly supports the idea that the surface chemistry of the nanoparticle affects the arrangement of the atoms in the whole particle.

In order to investigate how the amount of a particular ligand affects the structural properties of a nanoparticle, we performed Langevin Dynamics simulations on a set of palladium nanoparticles with different shapes, sizes and compositions of the capping layer. Details on the method used can be found in the supporting information. Three different particle morphologies were considered in order to study the difference between monocrystalline and twinned nanoparticles: octahedra (Oh, FCC structure), icosahedra (Ih, non-compact structure) and Marks decahedra (Dh, non-compact structure). The number of metal atoms on each particle is directly related to the geometry. The complete set of particles considered in the study was: Ih$_{561}$, Ih$_{923}$, Oh$_{489}$, Oh$_{891}$ and Dh$_{584}$. The model particles were protected with
Figure 2: Configuration of palladium nanoparticles studied. Blue: palladium atoms, yellow: sulfide, red: thiolate group, grey: alkyl chains, green: amine group. The images are not in the same scale.

a-e) Pd nanoparticles passivated with sulfide:thiolate (S:SR) in different percentages.

f) Pd nanoparticles passivated with alkylamines.

a capping layer made of a mixture of sulfide (S) and alkanethiolate (SR). Butanethiolate was chosen in order to consider the interaction between hydrocarbon chains, which are negligible in alkanethiols with a lower number of carbon atoms. For each particle, the total number of ligands (sulfide plus butanethiolate) was fixed, but several proportions of the capping species were considered in the simulations. Also, palladium nanoparticles protected with amines (NH$_2$R) were studied. In that case, butylamine was the chosen compound.

Each metal nanoparticle was thermalized and then embedded in amines or in a mixture of sulfide and thiols at a particular proportion. Two nanoseconds of Langevin Dynamics were performed, allowing the ligands to passivate the particle. Several final configurations of the runs are shown in Figure 2. As it can be immediately noted, after passivation, the structure is lost to some degree in all cases for sulfide and thiolate-protected particles; the
Figure 3: Color maps representing the pair distribution function of palladium atoms in nanoparticles passivated with different percentages of sulfide (the sum of sulfide and thiolate equals 100%). Icosahedra: a) I$_{561}$, b) I$_{923}$. Octahedra: c) Oh$_{489}$ d) Oh$_{891}$. The color scale on the right represents the value of the g_r.

smaller the particle, the stronger the effect. If adsorbates are only thiolates, the loss of order is smaller than when there is some amount of sulfide in the system, and the greater the proportion of sulfide, the stronger the disorder in the nanoparticles. The effect is also larger in particles that lack a compact structure. For the largest particles with FCC structure (Oh), only high concentrations of sulfide produce an appreciable structural deformation. In the case of amine-protected nanoparticles, the structures do not show appreciable changes (Figure 2f).

In order to measure how the percentage of sulfide affects the order in the metallic cores, the pair distribution function (g_r) of palladium atoms was calculated. Several calculated g_r, represented as color maps, are shown in Figure 3. For compact FCC structures, as Oh, it is necessary a higher proportion of sulfide to observe the loss of order, in comparison with Ih nanoparticles of similar size. As it can be observed in Figure 3d, Oh$_{891}$ is a system that conserves its structure even with a high percentage of sulfide; this can be deduced by the
position of the peaks corresponding to first, second, and subsequent neighbors: the peaks remain stable up to a sulfide amount of 70-75 %. In the case of non compact particles (Ih) or the smaller Oh, the loss of structure can be observed with smaller quantities of sulfide in the medium. The analysis of g_r at different distances from the center of mass of the nanoparticle helps to analyze the radial location of the disorder, i.e., if the whole particle is affected by the ligand or only the outer layers are influenced. g_r revealed different results for different particle sizes but, in general, it can be observed that for sulfide-thiolate capping, almost all the metallic particle is changed by the presence of the protecting layer (see Figures S5-S8). It can be concluded that, in addition to the role of size (smaller systems have larger surface/volume ratio and, thus, are exposed to smaller cohesive forces), the crystal structure of the particle before passivation has an influence in the conservation of order after the addition of the ligands.

It is also important to establish if sulfur diffuse or preexist in the interior of the nanoparticle in thiolated nanoparticles. It can be argued that during the nanoparticle growth in the presence of thiol molecules, the growing Pd(0) cores can produce sulfide that can be trapped inside the nanoparticles and, hence, produce amorphous PdS$_x$ nanoparticles. However there are several evidences in favor of the idea that sulfide is superficial and the strong Pd-S bond has an effect also in the nanoparticle core. First, we have shown that palladium nanoparticles prepared by ligand place-exchange of previously prepared amine-protected particles also showed an amorphous structure (Figure 1e). Second, although it can be observed in the slice of the nanoparticles (Figure S4) that there is some diffusion of sulfide into the interior of the nanoparticles, the sulfur is preferentially located on the surface of the nanoparticles with significant abundance between the two first atomic layers. Third, all this is in accordance with the results from XPS experiments published in a previous report. There, it was shown that the total S:Pd atomic ratio in thiolate-protected nanoparticles measured by XPS was similar when the X-ray source energy was set to 250 eV (analyzed depth \sim 0.5 nm) or 1253.6 eV (analyzed depth \sim 2.5 nm). These results prove that diffusion of sulfide into
Figure 4: Comparison of the HAADF-STEM image simulation of the Marks decahedral palladium nanoparticles protected with different ligands: a) butylamine (NH$_2$R), b) butanethiolate (SR), c) sulfide (S), d) sulfide + butanethiolate (S-SR).

The nanoparticle core producing a PdS$_x$ in the whole particle is not necessary to produce amorphous palladium nanoparticles with a size of \sim 3 nm.

The final configurations of the Langevin Dynamics simulations were used to generate simulated HAADF-STEM images in order to compare theoretical and experimental results. The simulated images for decahedral palladium particles protected with different ligands are shown in Figure 4. For amine-protected particles, the atomic columns are clearly observed with the particle oriented in the five-fold rotation axis (Figure 4a). When thiolate alone is used as a ligand, only a disorder in the layers near the surface is observed in the images (Figure 4b). The order in the structure is lost when sulfide is the capping agent, as expected from the previously stated results. The whole particle shows a disordered structure (Figure 4c). The same is obtained when a mixture of sulfide and thiolate is incorporated as a protecting layer (Figure 4d). These results support the interpretation of the experimental HAADF-STEM images in terms of the models proposed by the simulations, and strengthen the notion that sulfide is the main responsible for the induced disorder in the particles.
Conclusions

Considering all the discussed results, it can be concluded that thiolate-protected palladium nanoparticles ∼ 3 nm in size prepared at room temperature show an amorphous structure. Contrary to ∼ 6 nm nanoparticles where high temperature assisted diffusion of sulfide into the nanoparticles is needed to disorder the palladium atoms in the whole nanoparticle,22 in the case of 3 nm thiolate-protected palladium nanoparticles, amorphous structures are observed at room temperatures produced by the strong Pd–S interaction on the nanoparticle surface. From the Langevin Dynamics simulations it was observed that the loss of an ordered structure after passivation of palladium nanoparticles depends on the quantity of sulfide on the particle surface. The sulfide comes from the breaking of the S–C bond of alkanethiols upon their adsorption on palladium clusters and place between the first palladium layers to form a passivated interface. In the case of non-compact structures, such as icosahedra and decahedra, the effect is stronger than in compact FCC structures due to the lower cohesive energy of the metal system. A larger amount of sulfide is necessary in the latter case to observe a comparable loss of order. These results show that the crystallinity of ∼ 3 nm thiolate-protected palladium nanoparticles is remarkably different from that of gold nanoparticles of similar size and capping agent, a behavior explained in terms of the difference in the surface chemistry of both systems.

Acknowledgement

We acknowledge financial support from Agencia Nacional de Promoción Científica y Tecnológica (PICT 2010-1233, PICT 2010-0423, PICT 2006-621, PICT 2010-2554, Nanotechnology Network PAE22711), CONICET (PIP 11220090100139 and 112200801000983), Universidad Nacional de La Plata (UNLP), Universidad Nacional de Cordoba, Argentina, The Welch Foundation Agency (project AX-1615: Controlling the Shape and Particles Using Wet Chemistry Methods and Its Application to Synthesis of Hollow Bimetallic Nanostruc-
tures), the National Science Foundation (NSF) (PREM grant number: DMR-0934218, NSF Grant 1103730: Alloys at the Nanoscale; The Case of Nanoparticles Second Phase) and CONACYT, Mexico (Grant CIAM 148967). The authors acknowledge the Texas Advanced Computing Center (TACC) and the Sistema Nacional de Computacion de Alto Desempeño (SNCAD). G. Corthey thanks the Swiss National Science Foundation and UNLP for financial support. We thank Eugenia Zelaya (Centro Atómico Bariloche, Argentina) for several important discussions and preliminary TEM experiments.

Supporting Information Available

Plots of the radial distribution function as well as supplementary HAADF-STEM images and a slice of the nanoparticle showing the diffusion of sulfur. This material is available free of charge via the Internet at http://pubs.acs.org/.

References

(12) Moreno, M.; Ibañez, F. J.; Jasinski, J. B.; Zamborini, F. P. Hydrogen Reactivity of Palladium Nanoparticles Coated with Mixed Monolayers of Alkyl Thiols and Alkyl

Graphical TOC Entry