Efficiency of respirator filter media against diesel particulate matter

Kerrie Burton
University of Wollongong, kab843@uowmail.edu.au

Jane L. Whitelaw
University of Wollongong, jwhitela@uow.edu.au

Alison L. Jones
University of Wollongong, alisonj@uow.edu.au

Publication Details
Efficiency of respirator filter media against diesel particulate matter

Abstract
Abstract of a presentation that was presented at 17th ISRP Conference, Prague, 21-25 September 2014.

Keywords
particulate, diesel, against, media, matter, filter, efficiency, respirator

Disciplines
Education | Social and Behavioral Sciences

Publication Details

This conference paper is available at Research Online: http://ro.uow.edu.au/sspapers/1256
“Efficiency of Respirator Filter Media against Diesel Particulate Matter”

Authors: Burton, Kerrie; Whitelaw, Jane L1; Jones, Alison L1

Paper presented by: Kerrie Burton, MSc Research Candidate
University of Wollongong
Northfields Avenue, Wollongong NSW 2522, Australia
kab843@uowmail.edu.au
61 2 4285 8589

Exposure to diesel particulate matter (DPM) is a major health issue, given the potential of diesel engine emissions to cause adverse health impacts including lung cancer, cardiovascular and irritant effects. Respiratory protection is commonly used to mitigate worker exposure.

Effectiveness of respiratory protection is evaluated in Australia in accordance with AS/NZS 17162. Filtering efficiency is determined by challenging filter media with aerosolised sodium chloride to determine penetration at designated flow rates. However the standard does not account for the differences in structure and chemical characteristics of DPM and sodium chloride. Additionally the standard does not incorporate worker breathing rates representative of moderate to heavy work, which are currently being considered by ISO in their review of performance requirements for respiratory protective devices.

Research undertaken at the University of Wollongong evaluated penetration of DPM through three commonly used respirator filters, at the flow rate designated in the standard, as well as a higher flow rate representative of medium to heavy work. Initial results indicate that when challenged with DPM, measured as elemental carbon, the filtering efficiency assumed by P2 certification in Australia was achieved for two of the respirator models, and for only one respirator model at the higher flow rate. These findings will inform the development of Australian and International standards on the selection and evaluation of respiratory protective devices for effective mitigation of DPM. Additionally, the importance of “Moving Forward” with evidence based research is demonstrated to ensure respiratory protection provided to workers adequately protects against this workplace carcinogen.

1. Jane L. Whitelaw, Alison Jones University of Wollongong

Submitted for ISRP Conference September 2014 for consideration as a presentation