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THE EFFECT OF LOCAL PLANT DENSITY ON POLLINATOR BEHAVIOR AND THE
BREEDING SYSTEM OF PERSOONIA BARGOENSIS (PROTEACEAE)

David L. Field,1 David J. Ayre, and Robert J. Whelan

Institute for Conservation Biology, School of Biological Sciences, University of Wollongong, New South Wales 2522, Australia

Local plant density can vary dramatically within populations and may modify both the quantity and
effectiveness of pollinator activity and thus the reproductive output of plants. We tested the effects of local
plant density and plant size on pollinator activity on the endangered plant Persoonia bargoensis in two
remnant populations in Australia. Pollinator visitation was weakly but positively correlated with local plant
density in both populations (R2 ¼ 0:25, P < 0:001; R2 ¼ 0:06, P ¼ 0:024) and with plant size in one
population (R2 ¼ 0:24, P < 0:001). Within-plant movement of fluorescent dyes (added to anthers as a pollen
mimic) was inversely related to local flower density (R2 ¼ 0:689, P ¼ 0:041). To assess self-compatibility in
P. bargoensis, we measured the presence of pollen tubes in flowers that were hand pollinated with self or
outcross pollen, which indicated that plants were self-compatible with a weak preference for outcross pollen.
The autogamy (mechanical self-pollination) treatment indicated that pollinators are required for pollination.
The open treatment showed low and highly variable pollination rates for a rare species (only 20% of 120 had
pollen tubes), suggesting that plants receive variable pollinator service. Reliance on pollinators and a preference
for outcross pollen implies that the observed pollinator behavior would reduce the reproductive output of
P. bargoensis at low local densities.

Keywords: pollination, pollinator behavior, fragmentation, plant density, pollen tubes.

Introduction

Habitat fragmentation and destruction can change the spa-
tial distribution of plants, with potentially severe consequences
to ecologically important processes such as plant-pollinator in-
teractions (Bosch and Waser 1999; Goverde et al. 2002). A
major contributor is the effect that decreasing local plant
density (number of individuals per local area or spacing be-
tween individuals) can have on pollinator behavior, reducing
pollinator abundance (Kunin 1997b) and altering movement
patterns between plants (Karron et al. 1995; Cresswell 1997).
These changes to pollinator behavior may result in depressed
reproductive success and offspring fitness through pollen lim-
itation (references in Kunin 1997b) and increased geitonoga-
mous and biparental inbreeding (de Jong et al. 1993; Karron
et al. 1995).
Pollinator behavior is expected to vary with respect to the

distribution of individual flowers and plants because pollina-
tors visit flowers while foraging for resources, and they tend
to forage in an economically efficient manner (Heinrich
1979; Pyke 1984). Within sparse populations, pollinator visi-
tation per plant is likely to be reduced since the plants would
be less attractive as a resource to pollinators because of the
greater energy required and longer time spent to move greater
distances between flowers (Zimmerman 1981). Furthermore,
pollinators that are within sparse populations may make more
visits within plants because of the greater distances needed to

reach the nearest neighbor (Karron et al. 1995; Mustajarvi
et al. 2001).
Previous work has examined how pollinator behavior is

influenced by a single attribute or a combination of attributes
such as overall patch size (Jennersten and Nilsson 1993), plant
size (Thomson 1988), fragmentation (Goverde et al. 2002),
and local population size (Sih and Baltus 1987; Kunin 1997b;
Mustajarvi et al. 2001). While many of these attributes have
effects on pollinators, local variation in plant density has been
found to have the most consistent and strongest influence on
pollinator abundance and movements (review Kunin 1997a).
Previous research is largely from studies of fine-scale exper-

imental arrays because they allow control of confounding
variables (e.g., population size, density, plant size, geometry)
found in natural populations (Karron et al. 1995). Pollinator
abundance and movements have been estimated mostly
through direct observations (Klinkhamer et al. 1989; Kunin
1993, 1997a, 1997b; Karron et al. 1995) or by using fluores-
cent dyes, which have been found to be a good analog of pol-
len transfer (Waser and Price 1982; Cresswell et al. 1995).
With most research focusing on experimental arrays of small
annual and herbaceous species, there has been little empirical
study to indicate whether local density effects translate to
natural populations, especially in larger plant forms. This is
of particular interest to conservation biology because rare
species often occur in small and sparse populations that may
be at increased risk of local extinction if pollinator behavior
follows patterns in natural populations that are similar to ex-
perimental arrays.
The extent to which altered pollinator activity will affect

plant reproductive success and offspring fitness may initially
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depend on the breeding system of the plant (Van Treuren
et al. 1993; Richardson et al. 2000). For a self-compatible
species, reduced pollinator visitation and increased within-
plant movements may not reduce seed set; however, offspring
may suffer from reduced fitness because of inbreeding de-
pression (Charlesworth and Charlesworth 1987). For a self-
incompatible species, the reproductive success will be limited
by both the reduction in pollinator visits (pollen limitation)
and increased within-plant movements (self pollen) (Kunin
1997b). Therefore, understanding the likely impact of local
plant density on pollinators clearly requires that the breeding
system (determined by self-incompatibility level) can be esti-
mated.
We examined natural variation in local plant density and

its effects on pollinator abundance and pollinator movement
in a long-lived perennial shrub species, the endangered Per-
soonia bargoensis. This species was suitable for this study be-
cause populations exhibited considerable variation in local
density. Since the breeding system of this endangered plant
was previously unknown, this study was a good opportunity
to explore it. Specifically, we matched direct observations
of pollinator abundance with estimates of local plant density
and experimentally assessed pollinator movements within
and among plants through tests of the transfer of fluorescent-
labeled pollen. In order to predict the consequences for this
plant of different patterns of pollinator behavior, we used
hand pollinations, pollinator exclusion, and assessment of fol-
lowing pollen tube development to determine the level of self-
incompatibility in P. bargoensis.

Methods

Study Species

Persoonia bargoensis (Proteaceae) is listed as endangered
in the state of New South Wales, Australia (Threatened Spe-
cies Conservation Act 1995). It is an erect to low spreading
tree, up to 3 m tall, confined to five small populations located
in the tablelands southwest of Sydney that range in size from
50 to 300 individuals, and populations occur in woodland
and dry sclerophyll forest on sandstone and laterite soils
(Weston and Johnson 1991). Persoonia bargoensis flowers
are yellow and arranged randomly in the axils of leaves with
typical floral characteristics of some of the more common spe-
cies such as Persoonia pinifolia (see Bernhardt and Weston
1996). The flowers are hermaphroditic, with each flower
having four tepals (7–10 mm long), four stamens, and a pistil
containing two ovules. The anthers dehisce prior to anthesis,
and 5 d later the tepals and anthers fall off, leaving the gy-
noecium exposed; however, it is not known whether the flow-
ers are protandrous. Each fruit reaches maturity 7–8 mo after
flowering, producing a single seed. The P. bargoensis peak
flowering period is from December to March, with each
plant remaining in bloom for 10–18 d when more than 100
flowers may be open on a single plant at a given time (D. L.
Field, personal observation). Like other Persoonia species,
bees seem to be the primary pollinator (Bernhardt and Weston
1996) and were attracted to the flowers, since they were ob-
served foraging flowers for nectar and pollen.

Study Areas and Population Characteristics

Two study populations were selected on the southern table-
lands about 70 km southeast of Sydney. Population 1 (Charlies
Point Road, 34�159300S, 150�359550E) contained 93 adult
plants. Population 2 (Picton Road, 34�159000S, 150�449000E)
contained 149 adult plants and was approximately 25 km from
population 1.
At each population, we mapped the location of each repro-

ductive P. bargoensis plant and assessed the density of flower-
ing individuals. For each flowering plant, two attributes were
measured: (1) local population density, defined as the number
of flowering P. bargoensis individuals within a 30-m radius;
and (2) plant volume, which was calculated from the height
(ground to top of canopy), width, and breadth measurements
of the plant, assuming an elliptical shape (4=3 3 p 3

height 3 width 3 breadth). Mean differences in population
characteristics between populations were examined with an
unpaired t-test (assuming unequal variances).

Pollinator Abundance

To estimate the number of pollinators foraging on individ-
ual plants, 54 flowering plants from population 1 and 56
plants from population 2 were randomly selected for obser-
vations. Plants were observed during two 90-min surveys
in late morning (1100–1230 hours) and midafternoon (1400–
1530 hours). This was repeated twice a week for 3 wk (12
surveys total) during peak flowering, which was in late
December 2000 and January 2001 at population 1 and from
January to February 2001 at population 2. Pollinator ob-
servations were limited to days with similar warm weather
conditions (>22�C) to maximize the likelihood of similar
pollinator activity. Within each 90-min survey, we randomly
selected 18 of the plants and observed each for 5 min, during
which time we recorded pollinator species and their abun-
dance. Bee pollinator species visiting P. bargoensis were
grouped into either Australian native bee types (Leioproctus
Colletidae, Lasioglossum/Homalictus Halictidae, Exoneura
Apidae), identified by their size (7–10 mm) and black abdo-
men, or the introduced honeybee Apis mellifera (Apidae),
identified by their larger size (12–20 mm) and yellow and
black abdomen. By the end of the survey, each of the plants
(54 from population 1; 56 from population 2) had been ob-
served three to six times.
Pollinator abundance is expressed as mean number of pol-

linator visits per plant per 5 min. We could not express our
observations per 100 flowering units because of the large size
of P. bargoensis plants and the number of individuals (each
has 200–500 flowers). A weighted least squares linear regres-
sion (Zar 1984) was used to examine the relationship be-
tween the mean number of pollinators that visited a plant,
plant density, and plant size. This analysis was chosen be-
cause it takes into account variation in sample sizes for each
data point. Mean differences in population characteristics be-
tween populations were examined with an unpaired t-test
(assuming unequal variances). A Mantel test (MANTEL pro-
cedure, GENSTAT version 7) was used to assess the extent of
spatial autocorrelation among individuals that could be vio-
lating the assumption of independence between individual
plants. Mantel tests using sums of squares and product-moment
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correlations were used to compare the similarity between
matrix of geographic distance between all individuals with
Euclidean distances matrices of pollinator abundance, local
population density, and plant size. The significance of the as-
sociations was tested with a permutation test of 1000.

Pollinator Foraging Patterns

We labeled pollen with fluorescent dye in order to estimate
pollinator movement among and within individual plants
across a range of local densities. This experiment was con-
ducted within population 2 under warm weather conditions
(25�Cþ) in late February 2001. Within each of six locations,
we chose a single mature P. bargoensis plant with at least
100 open flowers per source for the dye. Sites were arbi-
trarily chosen so that there were three replicates for low den-
sity and three for high. Low density was defined as two to
four P. bargoensis within a 15-m radius of a source plant,
and high density was defined as more than nine plants within
a 15-m radius. The location size of a 15-m radius was chosen
because it matched the scale at which variation in flower
density was obvious and it was a realistic sample size to sur-
vey. To minimize the possibility of contamination of the dye
between different source plants, we used local flowering envi-
ronments that were at least 40 m apart, because a previous
study on a related species, Persoonia mollis, found the mean
distance that pollinators moved between plants was 33 m
(Krauss 2000).
During early morning (0800–0900 hours), we applied Rad

Glo powder (for details, see Thomson 1981; Fenster 1991;
Eguiarte et al. 1993) to the anthers of 40–50 fresh flowers lo-
cated on a single branch of each source plant. Powder was
lightly dabbed onto the anthers using the end of a toothpick.
Then we recorded the total number of flowers open on the
source plant and each of the P. bargoensis within a 15-m ra-
dius. That night (after 2100 hours), we scanned each P. bar-
goensis within the six sites with a portable ultraviolet lamp
to record the number of flowers with fluorescing dye particles
on stigmas.
The effectiveness of within-plant pollination was expressed

as the number of flowers visited (i.e., dye on stigma) as a pro-
portion of the total set of flowers available on the source
plant (excluding the 50 flowers dyed for the source). The ef-
fectiveness of among-plant pollination was expressed as the
ratio of the total number of visited flowers on all of the
plants within the 15-m radius of the source pollen to the to-
tal flowers available (excluding the source plant). Density
was measured as the total number of flowers within 15 m
from all individual plants. We tested whether there was a rela-
tionship between density and (i) within-plant pollination ef-
fectiveness, (ii) among-plant pollination, and (iii) number of
among-plant pollination events as a percentage of total num-
ber pollinations within 15 m. The significance of each rela-
tionship was analyzed using separate linear regression
analysis. Replicated experiments at population 1 were not
conducted because continuous wet weather prohibited dye
deposition and pollinator activity.

Experimental Pollinations

To assess the level of self-incompatibility, we conducted ex-
perimental hand pollinations during peak flowering. From

each of the two populations, we selected five mature plants
of approximately equal size and with at least 200 unopened
flowers. On each of these plants, we chose four branches
with at least 25 unopened flowers. One branch was ran-
domly assigned to each of the following four treatments; (1)
outcross pollination: bagged, flowers were emasculated (to
avoid self pollen deposition) and hand pollinated with mixed
pollen from four different plants at least 15 m away (out-
cross donor branches were also bagged); (2) self-pollination:
bagged, flowers were hand pollinated with pollen from flow-
ers on the same branch and/or from the same plant; (3) au-
togamy (mechanical self-pollination): bagged, flowers were not
hand pollinated to assess the ability to self-fertilize in the ab-
sence of pollinators; (4) open: unbagged, flowers were not
hand pollinated to assess the ability of insect pollinators to
pollinate flowers.
Each branch was first prepared by removing all open flow-

ers so that only unopened flowers remained, since it was cer-
tain that these had not received any pollinator visits. Then
we bagged branches (where appropriate) with 2 3 2-mm
fiberglass mesh bags to prevent pollinator visits (Goldingay
et al. 1991). Two days later, 15 flowers/treatment were tagged
and pollinated (where appropriate). Hand pollinations first re-
quired the collection of the appropriate pollen, which was re-
moved from flowers by excising the anthers with scissors and
placing them in sterile vials. Self pollen was gathered from ex-
cess flowers within the bagged branches, and outcross pol-
len was collected from flowers on the bagged branches of
three donor plants at least 15 m distant. Pollen was applied
to receptive flowers within 4 h of collecting the pollen to en-
sure its viability. Pollen was lightly dabbed onto the stigma
using a pollen applicator, which was made from a toothpick
cut off at one end to create a rough surface to which pollen
adhered.
Gynoecia were removed from each treatment 11 d after

pollination. This time period has been shown to be ample
time for pollen tube growth and possible ovule penetration
in other Persoonia species (Krauss 1994). Gynoecia were
stained for pollen tubes (Martin 1959), with the following
modifications. Gynoecia were softened in 0.1 M sodium hy-
droxide for 15 h prior to staining in decolorized aniline blue.
Second, the gynoecia were bisected longitudinally and the
opaque style wall spread apart prior to viewing under a fluo-
rescent microscope. Styles were scored for (i) the presence/
absence of pollen tubes, (ii) the distance that pollen tubes had
grown along the style (as one-fourth, one-half, three-fourths),
(iii) whether pollen tubes were fragmented or continuous, and
(iv) penetration of the ovule by pollen tubes. Flowers could
not be followed through to seed set because P. bargoensis
takes at least 10 mo to set seed, which was beyond the time
frame available for this research project.
Since the data were nonnormal, because of the large pro-

portion of flowers that displayed no pollen tube develop-
ment, we used a nonparametric Kruskal-Wallis test with tied
ranks to first test for heterogeneity of pollination success
among pollination treatments. A Tukey multiple comparisons
test was then used to determine which treatments were signif-
icantly different. Fisher’s exact test was also used to examine
the difference in presence and absence of fragmented pollen
tubes between the outcross and self treatments.
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Results

Population Characteristics

The mean local flowering environment around each plant
was significantly less dense at population 1 (mean 6 SE ¼
8:4 6 0:51) compared with population 2 (mean 6 SE ¼
24:19 6 1:18) (t ¼ 12:1, P < 0:05). At population 1, the lo-
cal density ranged from 0 to 20, with half of the plants (50%
of 93) having <10 individuals within 30 m (fig. 1A). In con-
trast, the local density at population 2 had a wider range,
from 0 to 50 plants within 30 m; however, only 18% of
plants had <10 individuals within 30 m (fig. 1B). Plants at
population 1 were larger (mean 6 SE ¼ 23:1 m3 6 2:6) than
those at population 2 (mean 6 SE ¼ 14:9 m3 6 0:96)
(t ¼ 3:4, P < 0:05). A Mantel test showed no spatial autocor-
relation with the distance between individual plants and local
population density (population 1: P ¼ 0:99; population 2:
P ¼ 0:99) or plant size (population 1: P ¼ 0:25; population
2: P ¼ 0:39).

Pollinator Abundance and Plant Density

We observed both the introduced honeybee Apis mellifera
(Apidae) and native bees Leioproctus (Colletidae) visiting the
flowers of Persoonia bargoensis. The honeybees were by far
the most common visitor at each population (97% and 94%
of 446 and 137 pollinator visits at populations 1 and 2, re-
spectively). Mean pollinator visitation was higher in popula-
tion 1 (t ¼ 6:1, P < 0:05), where it ranged from 0 to 8.3 per
plant per 5 min compared with 0 to 3.5 in population 2. The
honeybee was also observed visiting flowers of Eucalyptus
and Banksia species at population 2.
Within both populations, we found that pollinator visita-

tion was weakly but positively correlated with local plant
density (population 1: R2 ¼ 0:25, P < 0:001; population 2:
R2 ¼ 0:06, P ¼ 0:024) (fig. 2A, 2B). The frequency of polli-
nator visits was also weakly but positively correlated with
plant size at population 1 (R2 ¼ 0:23, P < 0:001); however,
there was no relationship at population 2 (P > 0:05) (fig. 2C,
2D). A Mantel test showed no spatial autocorrelation with
the distance between individual plants and mean pollinator
visitation per plant at either population (population 1:
P ¼ 0:31; population 2: P ¼ 0:86).

Pollinator Foraging Patterns

Flower visitors moved fluorescent dye to flowers both
within the source plant and to other plants within the local
environment. For the within-plant dye movements, the pro-
portion of flowers receiving dye ranged from 7% in the high-
est density environment (720 flowers) to 22% in the lowest
local density environment (130 flowers), and this proportion
decreased significantly as the number of flowers within the
local environment increased (R2 ¼ 0:689, P ¼ 0:041) (fig.
3A). There was, however, no significant linear relationship
between the number of flowers within the local environment
and the mean proportion of among-plant dye movements
(R2 ¼ 0:031, P ¼ 0:26) (fig. 3B) or the percentage of among-
plant dye movements relative to the total number of dyed
flowers (R2 ¼ 0:012, P ¼ 0:86) (fig. 3C).

Experimental Pollinations

Levels of successful pollination as measured by the presence/
absence of pollen tubes were low, with tubes observed in
only 15% of flowers (71 of 470). Of all pollen tubes across
all treatments, only 6% (4 of 71) had penetrated the ovule.

Fig. 1 Distribution of flowering Persoonia bargoensis at (A) popu-
lation 1, Charlies Point Road, Bargo, and (B) population 2, Picton

Road, New South Wales. Solid circles represent individuals selected

for pollinator observations; open circles are individuals not sampled

but included in density measures.
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Therefore, successful pollination was inferred from the pres-
ence of a minimum of one pollen tube present in the style,
with the absence of any pollen tubes being an unsuccessful
pollination. The outcross treatment performed consistently
well in both populations, with the presence of pollen tubes
ranging from 8% to 58% (n ¼ 12 flowers per treatment),
and it was the only treatment in which pollen tubes were
present in flowers for every sampled plant (fig. 4). In compar-
ison, pollen tube presence in the self treatment ranged from
0% to 17% (with one outlier removed). One outlier plant
had an unusually high percentage of pollen tubes for the self
treatment (7 of 12) compared with the same treatment on
other trees and was left out of the following statistical analy-
sis (see fig. 4B).
The outcross treatment produced a significantly higher per-

centage of pollen tubes than the self treatment at population

2 (Tukey test, q ¼ 2:8, df ¼ 3, P < 0:05) (P > 0:05 if outlier
included), but there was no significant difference at popula-
tion 1 (q ¼ 2:0, P > 0:05). Furthermore, we found no signifi-
cant difference at either population between the self and
either the mechanical autogamy (population 1: q ¼ 1:55,
P > 0:05; population 2: q ¼ 2:0, P > 0:05) or the open treat-
ments (population 1: q ¼ 1:52, P > 0:05; population 2: q ¼
1:9, P > 0:05) (fig. 4).
In both populations, the flowers from the mechanical au-

togamy treatment had consistently low numbers of pollen
tubes; only 17% of flowers on one plant at population 1 (of
n ¼ 12 flowers per treatment) had pollen tubes in the au-
togamy treatment (fig. 4A). At both populations, the num-
ber of pollen tubes produced by the outcross treatment was
greater than for the autogamy treatment (population 1: q ¼
3:56, df ¼ 3, P < 0:005; population 2: q ¼ 4:13, df ¼ 3,

Fig. 2 Weighted linear regression of the mean number of pollinators (of all species) visiting an individual plant against the number of

flowering plants within the local environment (30-m radius) at populations 1 and 2 (A, B) and against plant size (measured by
volume ¼ 4=3 3 p 3 height 3 width 3 breadth) at populations 1 and 2 (C, D).
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P < 0:001). In contrast to the autogamy treatment, the open
treatment produced high variation among plants, with the
number of pollen tubes ranging from 0% to 75% at popula-
tion 1 and from 0% to 17% at population 2 (of n ¼ 12).
The number of pollen tubes produced by the open treatment
was greater than the number produced by autogamy at popu-
lation 1 (q ¼ 3:56, df ¼ 3, P < 0:02) but not at population 2
(q ¼ 1:4, P > 0:05). The number of pollen tubes produced by
the open treatment (n ¼ 4 of 60 flowers) was significantly
less than for the outcross treatments at population 2 (n ¼ 12
of 60 flowers) (q ¼ 2:69, df ¼ 3, P < 0:05); however, no sig-
nificant difference was found between open treatment (n ¼
20 of 60 flowers) and the outcross (n ¼ 17 of 60 flowers) at
population 1 (q ¼ 0:49, P > 0:05) (fig. 4).
Our observations of the morphology of the pollen tubes

provided further evidence that P. bargoensis is more likely
to set seeds after outcross pollination. None of the pollen
tubes from the self (0 of 16) or autogamy treatments (0 of
2) had continuous pollen tubes. This contrasted with the
open and outcross treatments for which three of 22 and six
of 29, respectively, had flowers with longer unfragmented
pollen tubes that extended one-half to three-fourths the
length of the style. The difference between the proportion
of unfragmented pollen tubes in the self and outcross treat-
ments was not statistically significant (Fisher’s exact test,
P ¼ 0:074).

Discussion

Pollinator Abundance and Plant Density

Pollinator visitation to the flowers of Persoonia bargoensis
was dominated by the introduced honeybee (Apis mellifera),
to a greater extent than is indicated in reports of other Persoonia
species (Bernhardt and Weston 1996; Wallace et al. 2002).
However, the mean frequencies of pollinator visits per plant
of all pollinator species together are similar to those described
in previous studies (Wallace et al. 2002; Rymer et al. 2005).
In our study, both plant size and local density of P. bargoensis
affected the abundance of the main pollinator (Apis mellifera),
but there was considerable variation between populations.
In one population, mean pollinator visitation to an individual
P. bargoensis increased as the local density and plant size
increased, but in the second population where overall polli-
nator numbers were a quarter the number in the other popu-
lation and plant density was much higher, this relationship
was very weak.
Within the first population, pollinators are likely to be re-

sponding to the greater floral rewards found on larger plants
and within denser local environments, which are more effi-
cient to exploit and therefore more attractive to pollinators
(Heinrich 1979; Pyke 1984). The results presented here are
similar to those shown in experimental arrays for local plant
density (Kunin 1993, 1997b; Karron et al. 1995; Mustajarvi
et al. 2001) and plant size (Thomson 1988: Klinkhamer et al.
1989), but the effects are generally stronger.
Highly variable and weak density-dependent effects on

pollinator behavior are not uncommon to natural population
studies (Schmitt 1983; Bosch and Waser 1999; Bosch and
Waser 2001). Replicated experiments in different seasons and

Fig. 3 Linear regression of the proportion of (A) within-plant dye

movements, (B) among-plant dye movements, and (C) among plant-

dye movements from the total dye movements, against the total flower
density within six local environments of 15 m. Proportions are based

on the number of flowers that received a pollinator visit to the total

undyed flowers available on the plant. Confirmation of a pollinator

visit was based on the presence of fluorescent dye on the stigma of
receptive flowers that were not from the dye source branch.
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different populations of the same species have shown that
pollinator visitation generally decreases with local plant den-
sity (Bosch and Waser 2001), where previous studies had not
(Bosch and Waser 1999). Since there was no spatial autocor-
relation among individual plants in our study, the lack of
density effects at the second population is likely to be the re-
sult of the lower number of total pollinators within the popu-

lation, which is likely to influence visitation rates (Talavera
et al. 2001). This could result from the significantly smaller
plants at the second population, which would have attracted
fewer overall pollinators since this population would have
been less efficient to exploit by pollinators. Alternatively, the
scale of local density that pollinators respond to could be in
the range of 20 or fewer plants, adding to the weak relation-
ship because the second population was much denser and
had fewer plants representing the lower end of the density
scale.

Pollinator Foraging Patterns

The behavior of pollinators and their foraging patterns
were sensitive to the local flowering density of P. bargoensis,
with pollinators making more within-plant movements at
low local density. In our study, pollinators are likely to be
less disposed to cross between plants when the local environ-
ment has a lower density of flowers, because it would be
more efficient to forage more flowers within a plant before
moving the greater distances to the next plant. Our findings
are similar to those described for direct observation studies
of pollinators in experimental arrays (Morris et al. 1994;
Karron et al. 1995; Cresswell 1997; Mustajarvi et al. 2001)
and natural populations (Ghazoul et al. 1998). However,
fluorescent dye experiments have shown no density effect on
pollinator movements from variation in pollinator types be-
tween density stands (Talavera et al. 2001).
Surprisingly, in our study, among-plant pollinator move-

ments did not increase with local flower density, while there
was a statistically significant relationship with within-plant
movements. This pattern could be the result of two factors.
First, it could be that the local flowering density influences
pollinator activity within a plant, but once moving away,
pollinators tended to move greater distances to plants out of
the boundary of the surveyed local environment. Second, be-
cause honeybees are known as generalist pollinators, compe-
tition with other flowering species at the second population
could also have reduced interplant movements.

Preferred Mating System

Our experimental pollinations revealed that low propor-
tions of P. bargoensis flowers have pollen tubes, that there is no
mechanical autogamy (indicating that pollinators are required
for seed production), and that the species is self-compatible.
There is evidence of a preference for outcross pollen in P. bar-
goensis, because there were higher numbers of pollen tubes in
the outcross than the self treatment in one population. Fur-
thermore, pollen tubes from the outcross treatment showed
few signs of aberrant development (Goldblatt et al. 2004), being
more continuous with few callose plugs (Kearns and Inouye
1993) compared with the self treatment. This result matches the
findings of Jefferies and Belcher (1974) for self-incompatible ap-
ple trees.
Many authors have used the assessment of pollen tube

growth and development as a surrogate for the assessment of
successful pollination in a range of species, including apples
(Jefferies and Belcher 1974) and other Proteaceae (Carthew
1993; Krauss 1994). Importantly, Krauss (1994) found that
measurement of pollen tube growth was strongly correlated

Fig. 4 Relative success of outcrossed (cross) and selfed (self) hand

pollinations, bagged and not pollinated test for mechanical autogamy

(autogamy), and open/unbagged pollination treatments (open) for five

Persoonia bargoensis individuals at (A) population 1 and (B) pop-
ulation 2. Success for each treatment is based on the percentage of

flowers that had any pollen tube growth along the style (n ¼ 12

flowers per treatment). Treatments with the same letter above indicate

no significant difference (Tukey test: P > 0:05). Asterisk indicates
outlier plant that was excluded from the analysis.
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with later seed set in Persoonia mollis (Krauss 1994). Further
quantification of the extent of outcross pollen preference in
P. bargoensis would be difficult without following the polli-
nation process through to at least seed set, which was not
possible in our study.
Some of our results for pollen tube growth are similar to

findings in other Persoonia species. Krauss (1994), for exam-
ple, found that self pollen was inhibited within the style,
with no pollen tubes of selfed flowers reaching the ovule. Au-
togamy was also the weakest performer of the treatments for
Persoonia rigida (Trueman and Wallace 1999), but in con-
trast to our study, there was some pollen tube penetration
into the ovule for autogamy and selfing treatments. Pollen
tube penetration into the ovaries in P. bargoensis was very
low for both the outcross and naturally pollinated flowers
(less than 10% of pollen tubes) compared with about 50%
in P. rigida (Trueman and Wallace 1999) and P. mollis
(Krauss 1994). The low levels of ovule penetration observed
in our study could be caused by extremely low rates of fertil-
ization in the rare P. bargoensis, slower rates of pollen tube
growth in this species than in others, or other factors, such
as resource limitation, that are intrinsic to the sites.
In our study, the one plant that had a large number of

selfed pollen tubes suggests variation in self-compatibility
within populations of P. bargoensis. This has been described
in studies of other Australian woodland shrubs (e.g., Young
and Brown 1996).
The reduced success of the open-pollination treatment

compared with hand pollination with outcross pollen at pop-
ulation 2 and the large variation among trees in the open
treatment in the first population indicate variability in polli-
nator abundance, movements, and effectiveness. This could
result from pollinator limitation for trees that are at lower
densities (Kunin 1997a), substantial self pollen loads from
a high proportion of within-plant pollinator movements
(Ghazoul et al. 1998), or ineffective pollen transfer to the
stigma by the introduced honeybees (Bernhardt and Weston
1996; Butz Huryn 1997), which have effectively replaced na-
tive bee foraging on P. bargoensis. Similar results with open
treatments resulting in lower pollination than outcross hand

pollinations have been reported in a number of Persoonia
species (Krauss 1994; Rymer et al. 2005).

Impact of Local Density

Our results have illustrated the complexity of working
with natural populations where interactions among plant
size, local density, and variation in pollinator activity be-
tween populations can make generalizations difficult in re-
gard to pollinator behavioral response to plant density. For
one of the P. bargoensis populations, our results support the
hypothesis that plants at low local densities may suffer reduc-
tions in pollination abundance. In addition, there may be an
increase in self pollen loads and geitonogamous pollinations,
since the fluorescent dyes showed that pollinators visited
more flowers per plant when foraging within low local den-
sity. The mass-flowering strategy of P. bargoensis may also
be maladaptive to pollinators such as the honeybee if having
a great abundance of flowers open at one time reduces the
pollinators’ need to move between plants to forage, also in-
creasing self pollen loads (Kenrick et al. 1987). These possi-
bilities, taken together with the variable pollination rates
(open treatment) and low pollination rates in the absence of
pollinators (mechanical autogamy treatment), imply that the
observed pollinator behavior may reduce seed production for
plants at low local density. Furthermore, since P. bargoensis
may have a preference for outcross pollen, the increase in
within-plant pollinator movements may disrupt the pollina-
tion type because of dilution of outcross pollen and interfer-
ence of self pollen loads on stigmas (Snow et al. 1996),
which may negatively affect female fitness components by re-
ducing seed set.
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