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GAS WETTABILITY OF COAL AND IMPLICATIONS FOR GAS 

DESORPTION AND DRAINAGE  

Abouna Saghafi
1
, Kaydy Pinetown

2
 and Hoda Javanmard

1 

ABSTRACT: A key parameter affecting the flow of gas in coal is the wetting potential of gas, in 
comparision to water, to spread over the wall of coal micropores and microfissures. Wettability is 
quantified in terms of the contact angle of the fluid interface with the solid surface. A fluid with a small 
angle of contact would spread over the pore walls and eventually displace the non-wetting fluid. 
Depending on the nature of the coal, gas type and environmental conditions in coal reservoirs, either 
water or the gas phase could wet coal more strongly. Furthermore, in mixed gas conditions, one gas 
may be more strongly attached to coal than the other gases. In water-saturated coal, gas desorption in 
small pores -where most adsorbed gas is stored - can be totally inhibited by water if it is a strong wetting 
phase. Reducing the hydraulic head (drawdown to achieve the gas desorption pressure) should allow 
desorption of gas in larger fractures, whereas in small pores, gas desorption could be inhibited by 
capillary pressure due to the effect of interfacial tension and gas-wetting properties of coal. In this study, 
we built a new system to quantify the wettability of coal by gas. The contact angle of the water-gas 
interface with the coal surface inside the gas phase was measured using a captive gas bubble 
technique. The contact angles of CH4 and CO2 bubbles in water with a coal from the Sydney Basin were 
measured at different gas-water pressures of up to 15 MPa for CH4 and 6.1 MPa for CO2. The results 
show that as gas bubbles dissolve in water, the contact angle of the bubble with the coal surface 
reduces. The contact angle values were smaller for CO2 gas than CH4, and in general, the contact angle 
value decreases as gas–water pressure increases.  

INTRODUCTION 

In coal-bearing sedimentary sequences, the fluid phases consist of gas and water. For effective coal 
seam gas drainage in deep coal mines or gas recovery, removal of formation water eases the desorption 
of gas from the coal matrix and its flow into the larger cleat and crack system. The resistance to gas 
desorption by the medium could be partly due to coal being preferentially wet by water rather than by 
gas. The release of gas from coal can be inhibited by a water-wet coal, which does not allow the 
diffusion of gas to the surface of the cracks and desorption from coal matrix. This is experienced in gas 
adsorption experiments using moist coals or gas recovery operations, which require discharging 
sufficient volumes of water from the borehole before gas flow is established. In a water-wet coal,, water 
is generally in contact with the surface of pores, and gas movement and desorption from the coal matrix 
is resisted by molecules of water on the pore wall. In a gas-wet coal, gas molecules – not water 
molecules – are in contact with the pore wall, and gas molecules readily spread over the surface of the 
pore walls. Hence, the movement of gas in and out of the coal matrix and along the connecting 
microfissures into macrofissures and large cracks is largely facilitated. Since wettability plays such an 
important role in the migration and drainage of gas from coal, its quantification and relative ranking with 
respect to gas and coal types are vital to optimise gas recovery and drainage from coal seams. 
 
Quantification of coal wettability by water and other liquids has been an area of significant interest in the 
coal cleaning and flotation industry. Numerous studies have aimed to evaluate coal floatability (see for 
example Keller, 1987; Arnold and Aplan, 1989; Drelich, et al., 2000; Drelich, 2001; Gosiewska, et al., 
2002). These authors studied the effect of mineral matter on the water wettability of coal.  
 
To date, limited research has been undertaken to study the relative wettability of coal by gas and water 
(Siemons, et al., 2006; Sakurovs and Lavrencic, 2011; Shojai Kaveh, et al., 2011). All of these studies 
have been in the context of CO2 sequestration in coal seams and dealt with CO2 wettability of coal. As 
far as is knownno work has been published in the context of CH4 drainage and flow in coal seams, and 
our study is the first on CH4 wettability of coal. The data can be used to evaluate the effect of wettability 
properties on gas drainage efficiency in water-saturated coals.  
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After presenting some background to surface interaction phenomena, this paper discusses the results of 
recent experimental research on gas wetting of a coal collected from a Sydney Basin coal mine.  

WETTABILITY 

Wettability is measured in terms of the contact angle of the interface between the two immiscible phases 
(gas and water) against the surface of the solid phase (pore walls in coal capillaries). In this work, 
contact angle is measured in the phase for which the wettability is to be estimated (gas phase). Using 
this convention, a contact angle of less than 90° indicates that the targeted phase (gas) is the wetting 
phase, and a contact angle larger than 90° indicates that the other phase (water) is the wetting phase. 
Figure 1 shows a pore in coal that contains water and gas. In this example, water is the wetting phase, 
because the contact angle of gas phase with solid surface (θ) is larger than 90°. This means that water 
is attached more strongly to the pore walls and has low mobility, and that the interfacial forces draw 
water into small pores and inhibit the non-wetting phase (gas) from penetrating or escaping from these 
pores  
 

 
 

Figure 1 - Gas and water in a pore: the gas wettability of the solid (coal) is measured in terms of 
the contact angle of the gas–water interface with the solid surface inside the gas phase (Ө) 

 
The magnitude of the contact angle is a function of the interfacial tension, which is the energy required to 
separate a unit area of the interface between two phases; it is expressed in terms of energy per unit area 
or force per unit length (J/m

2
 or N/m). An equilibrium of the cohesive and adhesive forces at the line of 

contact between the three phases (solid, liquid and gas) is reached when the interface between the 
liquid and gas forms a certain angle θ (contact angle) with the solid. Assuming equilibrium of forces on 
the line of the intersection of the three phases (gas–water interface and solid in Figure 1) it can be 
shown that the magnitude of the contact angle between the gas–water interface and the solid should 
follow the Young (1850) and Laplace (1806) equation: 
 

coslg sl sg                      (1) 

 
where the subscripts s, l and g denote solid, liquid and gas. For example, γsg is the interfacial tension 
between the solid and gas phases.  
 
Since the interfacial tensions are properties of materials, the contact angle is also considered as a 
material property of the fluid and solid system independent of any particular configuration. Note that if γsg 
> γsl, then θ>90° and water is the wetting phase (Figure 1). The magnitude of the interfacial tension is a 
function of the difference between the cohesive and adhesive forces acting on the interface of the two 
phases. Strong adhesive forces produce contact angles of less than 90°, which is a characteristic of the 
wetting phase. Similarly, strong cohesive forces produce contact angles larger than 90° (non-wetting 
phase). 
 
The curvature of interface between the two fluid phases (gas and water) produces a discontinuity in fluid 
pressure across the interface. For the non-wetting phase (gas in Figure 1) to desorb and move through 
the capillary, the free gas pressure needs to be more than this pressure difference. The pressure 
difference across the interface of gas and water can be estimated using the geometrical form of the 
Young–Laplace Equation. If the effect of gravity is neglected, the difference in fluid pressure across the 
interface is (see for example Bear, 1988; Butt, et al., 2006): 

1 2

1 1
( )nw wp p p C
R R

                     (2) 

where pnw and pw are fluid pressures in the non-wetting and wetting phases, γ is the interfacial tension 
between the two fluid phases, and R1 and R2 are the two principal radii of curvature on the fluids’ 
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interface. The principal radii are determined in two orthogonal directions at the point of interest on the 
surface. The quantity C= 1/R1 + 1/R2 is called the mean curvature. It is a geometrical property that 
determines the shape of the interface and does not depend on the orientation.  
 
Measurement of wettability  

 
Evaluation of the wettability of a solid by a fluid has been the subject of research and applications in 
various disciplines, and various methods have been developed and used (see for example Neumann 
and Good, 1979). The two main methods for directly measuring a contact angle from the profile of a fluid 
drop or bubble on a flat solid surface are the sessile drop and captive gas bubble techniques. 
 
In the sessile drop method, the solid sample is ground to form two horizontal surfaces and then mounted 
on a horizontal stage. A drop of liquid for which the contact angle against the solid surface is required is 
placed on the solid surface using a device (such as a pipette with small tip) to form the drop. The solid 
sample and fluid drop may be placed in a water-filled cell. The profile of the fluid drop on the solid 
surface and the contact angle are evaluated using a telescope and a protractor. A camera may also be 
used to take frequent pictures of the drop profile. The image data are logged and stored digitally. Image 
analysis software is then used to calculate the drop geometry and contact angle. 
 
In the captive gas bubble technique, the solid sample is placed at the top of a water cell with the sample 
facing down. A gas bubble is introduced from the bottom of the water cell. The gas bubble rises and 
comes into contact with the solid surface. As in the sessile drop technique, measurement of contact 
angle is undertaken from the profile of the bubble adhered to the surface. Similarly, a camera is used to 
record images of the profile and calculate the contact angle from the bubble profile using an image 
processing method.  

GAS FLOW IN COAL AND WETTABILITY 

Coal seam reservoirs are generally water saturated, which largely restricts the flow of gas. The retaining 
effect of water is significantly larger in small pores, where most adsorbed gas is stored. A main indicator 
of the resistance to gas movement is the relative wettability of coal by water and gas. Hence, quantifying 
the wettability of coal in terms of the contact angle of the gas–water interface with the coal surface will 
improve understanding of gas flow and drainage in coal seams.  
 
The δp in Eq (2) can be seen as a pressure barrier for the movement of the non-wetting fluid through the 
medium. In larger cracks and fractures, the mean curvature (C in Eq 2) is small and hence δp remains 
small. However, in smaller micropores, the curvature of the fluid interface can be significant, and very 
large δp can develop across the interface, preventing the movement of gas through the coal. If the pores 
are modelled as tubular capillaries, it can be shown that the curvature of the fluid interface in the tubular 
pore is:  
 

d
C

cos4
                   (3) 

 
where d is the diameter of the tubular pore. Substituting C from Eq (3) in Eq (1) yields: 

d
p




cos4
                   (4) 

 
Therefore, if gas is the non-wetting phase in coal, then to allow gas desorption from pore walls, it is not 
enough to reduce water hydrostatic pressure to below the gas desorption pressure by pumping water 
out of gas drainage boreholes. Instead, the total water pressure, including the capillary pressure (δp), 
should be reduced. In other words, to allow desorption and flow of gas bubbles from micropores into 
larger cracks and cleats, the desorption pressure must be larger than the sum of the hydrostatic and 
capillary pressure:  

ppp wg                    (5) 

 
where pg is gas desorption pressure and pw is the hydrostatic pressure (hydraulic head). Note that when 
d is large enough (e.g. in fractures and larger-aperture cleats) δp becomes quite small relative to the 
hydrostatic pressure, and gas desorbs from coal as soon as the hydrostatic pressure falls below the gas 
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desorption pressure. Therefore, for larger fractures, reducing hydraulic head alone can allow gas 
desorption. This is usually achieved by pumping out a certain volume of water from gas drainage 
boreholes. 
 
Numeric example of the effect of wettability on gas desorption and drainage  

 
To illustrate the effect of wettability (in terms of contact angle), a parametric example is presented.  
 
Assume a water-saturated coal seam at depth of 500 m, and assume that gas content is 10 m

3
/t and gas 

adsorption capacity of coal in terms of Langmuir parameters is VL = 27 m
3
/t and PL = 3.1 MPa. Based on 

these data, the hydrostatic pressure at this depth would be about 4.9 Mpa, whereas the gas desorption 
pressure is about 1.8 MPa. Therefore, to allow the onset of gas desorption, water (hydrostatic) pressure 
should be reduced from 4.9 MPa to 1.8 MPa (3.1 MPa of water drawdown). This reduction in water 
pressure would allow gas desorption to take place in larger fractures and cleats (e.g. millimetre-aperture 
cracks). For small pores (micrometre-sized and smaller), where most adsorbed gas is stored, the effect 
of capillary pressure should be taken into account, because it can prevent gas desorption and migration 
toward drainage pathways. For example, for pores of 1 µm diameter, assuming a contact angle of 170°, 
the capillary pressure is 275 kPa. However, for pores of 0.1 µm, the capillary pressure will be much 
larger at 2.8 MPa. For very small pores (nanometer-sized) the capillary pressure might become a full 
barrier to desorption and movement of gas in pore voids. For a pore of 1 nm diameter, capillary pressure 
is 27.6 MPa (contact angle of 170°).  
 
Figure 2 plots the capillary pressure developed in tubular pores of 1.0, 0.1 and 0.01 µm diameter as a 
function of contact angle of the gas–water interface with pore walls. 
 

 
 

Figure 2 - Capillary pressure (δp) developed in tubular pores of coal, the magnitude of this 
pressure depends on pore diameter and the contact angle of the gas–water interface with pore 

walls (water is the wetting phase) 

MEASUREMENT METHOD USED IN THIS STUDY 

The CSIRO system for measurement of gas wettability of coal is a variant of the captive gas bubble 
technique. In this system, a coal disc is prepared from a lump or core coal sample. The disc is then fixed 
to the end of a sample holder in the form of a rod, which is introduced into a high-pressure water-filled 
cell with the coal surface facing down. Pressurised gas is slowly released from a nozzle below the coal 
sample to form a gas bubble, which rises and comes into contact with the coal surface. The formation of 
bubbles at very high pressures and fixation of bubbles on the coal surface is a delicate operation, and 
requires the presence of an experienced operator and sufficient time (hours) to obtain suitable results. 
The gas pressure is set using an ISCO-260D syringe pump, while water is pressurised using a 
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Shimadzu LC-9A water pump. Distilled water (pH 5 to 6) is used to fill and pressurise the cell. The water 
pressure is set slightly below the gas pressure so that gas bubbles can form. 
 
A camera is used to capture images at a pre-determined rate. These settings are adjusted in the 
software prior to the start of measurement. The image data are then processed using an image analysis 
code to deliver the right and left contact angle values as a function of time. Figure 3 shows a photograph 
of a gas bubble in contact with the coal surface where the contact angle is larger than 90°. 

 
Figure 3 - Image of a gas bubble in contact with a solid coal surface. The coal and gas bubble are 

immersed in pressurised water; in this instance, gas is the non-wetting phase (θ>90˚) 

 
Experimental parameters 

 
The image processing software reports the contact angle of the bubble (ϴ) with the solid surface on the 
right and the left side of the image frame. The software matches the boundary of bubble against the 
solution of the Young–Laplace equation to yield the best fit. The values of the right and left contact 
angles are then calculated based on the best fit. Other values reported by the software include the 
length of contact (L), which is the diameter of the circle the bubble makes where it intersects the surface 
of the coal sample (the line of contact between the three phases), and height (H) of the bubble. The 
software also calculates the bubble’s volume and total surface area from the fitted curve. 

RESULTS OF MEASUREMENT OF GAS–WATER CONTACT ANGLE WITH COAL  

Coal lump samples were obtained from a coal mine in the Sydney Basin. The studied coal was of 
medium volatile rank with a vitrinite reflectance of ~1.3% and a dry-ash-free volatile matter content of 
~24%. Suitable samples were prepared by drilling to prepare discs with a diameter of 16 mm and a 
thickness of 10 mm. 
 
Two sets of measurements of contact angles were undertaken using pure CH4 and pure CO2 gases. All 

measurements were conducted at a constant temperature of 22 C. 
 
Contact angle of CH4 with coal 
 
For CH4 gas, measurements were undertaken at gas–water pressures of 1.8, 5.0, 7.7, 9.6, 12.9 and 
15.2 MPa. 
 
The contact angle and the length and height of the bubble were monitored for 1–2 h following the 
formation of the bubble and its fixation on the coal surface. Figure 4 shows the evolution of the contact 
angle of CH4 bubbles with the coal surface at various gas–water pressures. The contact evolution 
follows a similar pattern for all pressures; at the start of the experiment, the contact angle is larger, and 
then reduces to reach a relatively constant value.  
 
Further analysis shows that the evolution of the contact angle is influenced by the size of the gas 
bubbles. As the experiment progresses, the gas bubble slowly dissolves in water. The reduction in 
bubble size is, however, constrained by resistance from the three-phase contact line to shrink and gas–
coal contact area to reduce. Hence, the reduction of gas bubble volume is manifested by a larger 
reduction in the height compared with the area of contact of gas bubble with coal, leading to smaller 
contact angle. As the bubble size reduces, the contact angle also reduces, to reach a minimal value 
after which it stays relatively constant. The pattern of evolution of the contact angle suggests that the 
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contact angle curve can be characterised by a maximum value (θmax) at the start of the experiment and a 
minimum value (θmin) at the plateau section of the curve. 
 
Overall, θmax varied between 130° to 140° and θmin between 78° and 96°. The contact angle values were 
in general smaller under higher pressures. 
 

 
 

Figure 4 - Evolution of contact angle of CH4 gas bubbles with coal at various gas–water 
pressures 

 
Contact angle of CO2 with coal 

 
For CO2 gas, contact angle measurements were undertaken at gas–water pressures of 1.8, 5.2 and 
6.1 MPa. To maintain the sub-critical conditions for CO2 gas, larger pressures were not applied. 
 
CO2 gas bubbles were rapidly dissolved in water, and hence measurements could be conducted only for 
a few minutes as the bubbles’ volume quickly reached the system’s limit of detection for image analysis 
(less than 0.2 µL). Figure 5 plots the evolution of the contact angle. A similar pattern to that seen with 
CH4 occurs for CO2. The contact angle with coal reduces as the CO2 bubbles dissolve in water and the 
size of a bubble reduces. 
 

 
 

Figure5 - Evolution of contact angle of CO2 bubble with coal surface at various gas–water 
pressures 
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For the three CO2 experiments, θmax varied between 112° to 122° and θmin between 40° and 68°. The 
contact angle values were smaller for the higher pressures.  

CONCLUSIONS 

We have developed a new system for the quantification of gas wettability of coal in terms of the contact 
angle of gas with the coal surface in the presence of water. The contact angles of CH4 and CO2 gas 
bubbles with a coal from the Sydney Basin were measured at various gas–water pressures and a 

constant temperature of 22C.  
 
The data from this study show that contact angle evolution follows a specific pattern; the angle reduces 
from a maximum value at the start of the experiment to reach a relatively minimum value at the plateau 
section of the curve. Hence, the contact angle pattern can be characterised by a maximum value (θmax) 
at the start of the experiment and a minimum (θmax) at the plateau section of the curve.  
 
The reduction in bubble size affects the height of the bubble more strongly than it affects the area of 
contact between the bubble and the coal surface. This results in an apparent reduction in contact angle 
as the size of the bubble reduces. However, after a certain period of time, the height of gas bubbles and 
the contact surface reduce simultaneously, resulting in a relatively constant value of the contact angle 
(in the plateau section of the curve). 
 
For both gases, the contact angle reduces as the applied gas–water pressure is increased. Moreover, 
the contact angle is generally higher for CH4 than for CO2, indicating that coal is more CO2-wet than 
CH4-wet. 
 
Contact angle data can assist in evaluating the effect of gas wettability of a particular coal on gas 
desorption and drainage in various pore sizes of that coal. For calculation of capillary pressures, it is 
recommended to use θmax values to ensure that these pressures are not underestimated. However, note 
that the data generated in this study is specific to the coal sample measured and should not be used for 
other coals. We did not investigate the effect of coal rank, coal composition, ash yield or nature of 
minerals on gas wettability. To characterise a given coal, specific experiments for that coal should be 
undertaken. 
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