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Assessing the accuracy of approximate treatments of ion hydration based
on primitive quasichemical theory

Abstract
Quasichemical theory (QCT) provides a framework that can be used to partition the influence of the solvent
surrounding an ion into near and distant contributions. Within QCT, the solvation properties of the ion are
expressed as a sum of configurational integrals comprising only the ion and a small number of solvent
molecules. QCT adopts a particularly simple form if it is assumed that the clusters undergo only small thermal
fluctuations around a well-defined energy minimum and are affected exclusively in a mean-field sense by the
surrounding bulk solvent. The fluctuations can then be integrated out via a simple vibrational analysis, leading
to a closed-form expression for the solvation free energy of the ion. This constitutes the primitive form of
quasichemical theory (pQCT), which is an approximate mathematical formulation aimed at reproducing the
results from the full many-body configurational averages of statistical mechanics. While the results from
pQCT from previous applications are reasonable, the accuracy of the approach has not been fully
characterized and its range of validity remains unclear. Here, a direct test of pQCT for a set of ion models is
carried out by comparing with the results of free energy simulations with explicit solvent. The influence of the
distant surrounding bulk on the cluster comprising the ion and the nearest solvent molecule is treated both
with a continuum dielectric approximation and with free energy perturbation molecular dynamics
simulations with explicit solvent. The analysis shows that pQCT can provide an accurate framework in the
case of a small cation such as Li+. However, the approximation encounters increasing difficulties when applied
to larger cations such as Na+, and particularly for K+. This suggests that results from pQCT should be
interpreted with caution when comparing ions of different sizes.
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Assessing the accuracy of approximate treatments of ion hydration based
on primitive quasichemical theory
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Quasichemical theory !QCT" provides a framework that can be used to partition the influence of the
solvent surrounding an ion into near and distant contributions. Within QCT, the solvation properties
of the ion are expressed as a sum of configurational integrals comprising only the ion and a small
number of solvent molecules. QCT adopts a particularly simple form if it is assumed that the
clusters undergo only small thermal fluctuations around a well-defined energy minimum and are
affected exclusively in a mean-field sense by the surrounding bulk solvent. The fluctuations can then
be integrated out via a simple vibrational analysis, leading to a closed-form expression for the
solvation free energy of the ion. This constitutes the primitive form of quasichemical theory
!pQCT", which is an approximate mathematical formulation aimed at reproducing the results from
the full many-body configurational averages of statistical mechanics. While the results from pQCT
from previous applications are reasonable, the accuracy of the approach has not been fully
characterized and its range of validity remains unclear. Here, a direct test of pQCT for a set of ion
models is carried out by comparing with the results of free energy simulations with explicit solvent.
The influence of the distant surrounding bulk on the cluster comprising the ion and the nearest
solvent molecule is treated both with a continuum dielectric approximation and with free energy
perturbation molecular dynamics simulations with explicit solvent. The analysis shows that pQCT
can provide an accurate framework in the case of a small cation such as Li+. However, the
approximation encounters increasing difficulties when applied to larger cations such as Na+, and
particularly for K+. This suggests that results from pQCT should be interpreted with caution when
comparing ions of different sizes. © 2010 American Institute of Physics. #doi:10.1063/1.3436632$

I. INTRODUCTION

Quasichemical theory !QCT" is an elegant statistical me-
chanical framework in which the influence of the solvent
surrounding an ion can be partitioned into near and distant
contributions. The general concept goes back to the method
of “local configurations” formulated by Bethe, Guggenheim,
Fowler, and Kirkwood.1–5 More recently, QCT was further
developed and extended by Pratt and co-workers in studies
of the hydrophobic effect and ion solvation.6–8

In the case of ion solvation, QCT typically consists of
defining a spherical inner shell region of radius R based on a
distance criterion between the ion and the solvent molecule.
Introducing step functions into the Boltzmann configura-
tional integral to enforce this criterion, QCT then proceeds to
carry out a strict book-keeping of the configurations with
exactly n solvent molecules lying inside the inner shell re-
gion. Thermodynamic solvation properties can then be ex-
pressed in an expanded form as a finite sum over configura-
tional integrals of clusters comprising the ion and the n inner
solvent molecules under the average influence of the sur-
rounding bulk.6,7 When the radius of the inner region is cho-
sen sufficiently small to correspond to the first coordination
shell of the ion, the contribution from the clusters with a

small number of solvent molecules dominates and the sum
converges rapidly. This theoretical construct provides a rich
framework to analyze and interpret the results from experi-
mental measurements in the gas phase,9 as well as from com-
puter simulations.10,11

QCT adopts a particularly simple form if it is assumed
that the clusters only undergo small thermal fluctuations
around a well-defined energy minimum and are affected by
the surrounding bulk solvent only in a mean-field sense
based on a dielectric continuum approximation. The fluctua-
tions can then be integrated out via a simple normal mode
vibrational analysis, leading to closed-form expressions for
the solvation free energy and the inner shell solvent occu-
pancy probability. When combined with quantum chemistry
electronic structure programs, this so- called “primitive”
QCT !pQCT" provides a computationally tractable route to
calculate the solvation free energy of ions in bulk liquids,
while treating the interactions within the inner shell at an
ab initio level. This strategy has been used to examine the
hydration of Li+, Na+, and K+.12–14 pQCT has also been em-
ployed to discuss ion selectivity in proteins’ binding
sites,15,16 but as it is a framework strictly designed to treat
ion solvation in a bulk liquid, the significance of those stud-
ies is less clear.

While the overall numerical results from pQCT on ion
hydration are encouraging, the accuracy of the approach anda"Electronic mail: roux@uchicago.edu.
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its range of validity have not been fully characterized. It
appears that the most probable coordination state predicted
by pQCT for small ions such as Li+ agrees well with the
results from ab initio molecular dynamics !AIMD"
simulations.12 However, for larger ions such as K+, pQCT
seems to predict a lower optimal coordination number than
the most probable coordination number observed in AIMD
simulations.14,17 Clearly, small ions bind water strongly,
leading to tight and well-defined coordinated states that are
relatively insensitive to the presence of the surrounding bulk
solvent. Such small clusters are amenable to meaningful vi-
brational analysis. On the other hand, K+ does not bind with
water so strongly and its coordination shell is broad and very
diffuse,17 which appears to undermine the effectiveness of
the cluster sum.

The situation concerning the accuracy of the absolute
hydration free energies predicted by pQCT is less clear.12–14

For Li+, Rempe and Pratt reported a hydration free energy of
!128 kcal/mol using a dielectric continuum for the outer
region.12 This was revisited by Merchant and Asthagiri,11

who obtained !120.5 kcal/mol when treating the outer shell
with a continuum dielectric and !115.1 kcal/mol with an
outer shell of explicit TIP3P water molecules. For Na+,
Rempe and Pratt13 reported a hydration free energy of !103
kcal/mol with a dielectric continuum, but then used a maxi-
mum entropy argument to replace this result by !68 kcal/
mol. This was revisited by Merchant and Asthagiri,11 who
obtained a value of !96.1 kcal/mol using the dielectric con-
tinuum and !90.0 kcal/mol with explicit TIP3P. Varma and
Rempe15 later reported a value of !95.6 kcal/mol with a
dielectric continuum !numerical value extracted from their
Fig. 3". For K+, Rempe et al.14 reported a pQCT hydration
free energy with a dielectric continuum of !71.5 kcal/mol.
This was again revisited by Varma and Rempe,15 who re-
ported a value of !73.5 kcal/mol using a dielectric con-
tinuum !numerical value extracted from their Fig. 3". In an-
other pQCT study, free energies of !93.3 kcal/mol for Na+

and !71.8 kcal/mol for K+ were reported by Varma and
Rempe.16

While these studies show that the hydration free energies
obtained by pQCT for those cations are clearly of the correct
magnitude, they do not inform us of the accuracy of the
pQCT framework as an approximation to the full statistical
mechanical many-body configurational integral. In effect,
this issue cannot be resolved by comparing the computa-
tional results with experimental estimates of the single ion
absolute hydration free energy. Experimental measurements
require extra thermodynamic assumptions, which lead to a
considerable spread in the experimental values.18 For ex-
ample, the values of Marcus19 are among the smallest,
whereas those of Tissandier et al.20 are among the largest; for
Li+ they differ by about 15 kcal/mol, and for Na+ they differ
by about 16 kcal/mol.

What is needed is a pure test of the accuracy of pQCT in
silico for a given microscopic model. That is, a plain and
direct comparison of computational results from pQCT with
exact computational results from free energy perturbation
molecular dynamics !FEP/MD" simulations with explicit sol-

vent molecules. Surprisingly, such a comparison has never
been reported.

The goal of this article is to test and illustrate the accu-
racy of pQCT to model the hydration of Li+, Na+, and K+.
Simple classical nonpolarizable models of water and ions are
utilized. While potential functions incorporating the influ-
ence of electronic polarization are more advanced, the
present models are sufficiently accurate for the purpose of
illustrating the application of the pQCT. Section II summa-
rizes the theoretical formulation of QCT and of pQCT. Then,
details about the computations are given and the main results
are discussed. The article closes with a brief conclusion.

II. ION SOLVATION AND CONSTRAINED
COORDINATION SHELL

An ion of type i immersed in a liquid of N solvent mol-
ecules in a large volume V is considered. The solvent mol-
ecules are assumed to be chemically identical and, without
loss of generality, it is assumed that the ion is fixed at the
origin !in the following, the fixed ion is implicitly included
in the notation but is omitted for clarity". The potential en-
ergy of the system is Ui!X", where X%&x1 , . . . ,xN' repre-
sents the coordinates of the N solvent molecules. When the
potential energy of the system is written as U0!X", it is im-
plied that the interaction of the ion with the solvent mol-
ecules has been switched off !decoupled". The solvation free
energy of the ion i is

e−"#Gi =
(dXe−"Ui!X"

(dXe−"U0!X" . !1"

Equation !1" involves unconstrained configurational inte-
grals. It is also of interest to express solvation properties in
terms of the local configurations of the solvent molecules
occupying the neighborhood of the ion. Let us define inner
shell region as a spherical subvolume v within a distance R
away from the ion and an outer region corresponding to the
rest of the space. Let us then introduce a function, n!X ;R", to
count for the number of solvent molecules within the inner
region,

n!!X;R" = )
k

H!*rk* − R" , !2"

where H is a Heaviside step function equal to 1 only when its
argument is less than 0. For example, in the case of water,
the kth molecule lies within the inner region when its oxygen
at rk is at a distance *rk* smaller than the radius R. For any
configuration, the function n!!X ;R" is equal to the number of
solvent molecules in the inner region. Using the function
n!!X ;R" to define the discrete Kroenecker delta function
$n,n!, one can write the probability to have exactly n solvent
molecules in the inner region of ion i is defined as

Pi!n;R" =
(dX$n,n!e

−"Ui!X"

(dXe−"Ui!X" = +$n,n!!X;R",!Ui". !3"

Because )n$n,n!=1, the probability Pi!n ;R" is correctly nor-
malized by construction !in the following, the dependence of
Pi on R is not always explicitly written". Using the potential
energy U0, similar expressions can be derived for P0!n ;R"
= +$n,n!,!U0", the probability of finding exactly n solvent mol-

234101-2 B. Roux and H. Yu J. Chem. Phys. 132, 234101 "2010!

Downloaded 15 Oct 2011 to 129.78.139.28. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



ecules inside a spherical subvolume centered on a decoupled
!noninteracting" ion fixed at the origin.

Different expressions for the solvation free energy #Gi
of Eq. !1" can be derived by exploiting the normalization
condition and using the number of solvent molecules in the
inner shell as a constraint. For example, it is possible to
express in terms of constrained averages over the number of
solvent molecules occupying the inner shell,

e−"#Gi =
+$n,n!,!U0"

+$n,n!,!Ui"

(dX$n,n!e
−"Ui!X"

(dX$n,n!e
−"U0!X"

=
P0!n"
Pi!n"

(dX$n,n!e
−"Ui!X"

(dX$n,n!e
−"U0!X" =

P0!n"
Pi!n"

e−"#Gi!n", !4"

where #Gi!n" is the solvation free energy of ion of type i
with an inner shell constrained to contain exactly n solvent
molecules. This expression is valid for any n as long as the
ratio P0!n" / Pi!n" is well defined and can be most useful if
there is a good overlap between these probabilities. Alterna-
tively, it is possible to use a decoupled !noninteracting" ion
as a reference state,

e−"#Gi =
(dXe−"Ui!X"

(dXe−"U0!X"

=
(dX!)n$n,n!"e−"Ui!X"

(dXe−"U0!X"

= )
n
-(dX$n,n!e

−"Ui!X"

(dXe−"U0!X" %
(dX$n,n!e

−"U0!X"

(dX$n,n!e
−"U0!X".

= )
n
-+$n,n!,!U0"

(dX$n,n!e
−"Ui!X"

(dX$n,n!e
−"U0!X".

= )
n

P0!n;R"e−"#Gi!n". !5"

This expression is not limited by overlap of probabilities
such as Eq. !4", but it requires the evaluation of #Gi!n" for
multiple values of n. Equations !4" and !5" were also ob-
tained by Merchant and Asthagiri11 via a different route and
an expression closely related to Eq. !4" was derived and used
by Yu et al.21 Lastly, one can also use an empty inner shell
region occupied by n=0 solvent molecules with a decoupled
!switched off" ion as a reference state,

e−"#Gi =
(dXe−"Ui!X"

(dXe−"U0!X"

=
(dX!)n$n,n!"e−"Ui!X"

(dXe−"U0!X"

= )
n

(dX$n,n!e
−"Ui!X"

(dXe−"U0!X" %
(dX$0,n!e

−"U0!X"

(dX$0,n!e
−"U0!X"

= +$0,n!,!U0")
n
- (dX$n,n!e

−"Ui!X"

(dX$0,n!e
−"U0!X".

= P0!0;R")
n

N!
!N − n"!n!

%- (indx1 ¯ dxne−"Wi!x1,. . .,xn;R"

(outdx1 ¯ dxne−"W0!x1,. . .,xn;R". , !6"

where Wi and W0 are potential of mean forces !PMFs" de-
fined below. The quantity −kBT ln#P0!0;R"$%#Ghs!R" is the
reversible work for creating an empty inner sphere of radius
R in the bulk solvent !effectively, the solvation free energy of
a hard sphere in water". It is worth pointing out that only a
finite number of terms are expected to be nonzero and con-
tribute to the sum in Eq. !6". Beyond some maximum num-
ber Nmax, it is physically impossible to insert additional sol-
vent molecules into the finite volume of the inner shell. For
this reason, it is preferable to describe Eq. !6" as a cluster
sum rather than a cluster expansion !which suggests the ex-
istence of contributions to all order". The factor 1 /n! comes
about in Eq. !12" to avoid the overcounting configurations of
n identical solvent molecules allowed to fluctuate throughout
the entire inner shell.

The function Wi is the PMF for n tagged solvent mol-
ecules restricted to the inner shell surrounding the ion i under
the influence of the !N−n" others restricted to the outer re-
gion,

e−"Wi!x1,. . .,xn;R" %
(outdxn+1 ¯ (outdxNe−"Ui

(outdxn+1 ¯ (outdxNe−"U0
! , !7"

where U0
! means that the n solvent molecules as well as the

ion are decoupled from one another and from the surround-
ing. Likewise, W0 is the PMF for the n solvent molecules in
the absence of the ion,

e−"W0!x1,. . .,xn;R" %
(outdxn+1 ¯ (outdxNe−"U0

(outdxn+1 ¯ (outdxNe−"U0
! . !8"

By construction, Wi!x1 , . . . ,xn ;R" represents the total revers-
ible work for assembling the ion of type i and the n solvent
molecules within the inner shell region in the configuration
&x1 , . . . ,xn' and then solvating the entire complex in the bulk
solvent while allowing no other solvent molecules to come
within the inner region of radius R. It can be written as Wi
=ui+#Wi, where ui represents the vacuum potential energy
and #Wi represents the solvation free energy of the ion-
solvent complex. In the denominator of Eq. !6", the n solvent
molecules are constrained to be in the outer region. Once
they are far away in the bulk, the n solvent molecules be-
come decoupled and W0!x1 , . . . ,xn ;R"→)iws!xi", which is a
superposition of PMF for each individual solvent molecule.
The single solvent molecule PMF can be related to, #&s, the
excess chemical potential of a solvent molecule in the bulk
liquid,

/
out

dx1 ¯ dxne−"W0!x1,. . .,xn;R"

→ Vn-/
out

dx1$!r1 − r1
!"e−"w!x1".n

= Vn!e−"#&sZs"n, !9"

where Zs is the configurational integral of a single solvent
molecule in vacuum with its center of mass constrained at r1

!,
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defined in terms of the internal potential energy of a single
solvent molecule us!x1",

Zs =/ dx1$!r1 − r1
!"e−"us!x1" !10"

!Zs is equal to 8'2 for a rigid solvent molecule". Using these
definitions, the solvation free energy in Eq. !6" is written as

e−"#Gi = P0!0;R")
n

!(̄s"nen"#&sKi!n" , !11"

where (̄s= !N /V" is the bulk solvent density #using N ! /
!N−n" ! 0Nn$ and the factor Ki!n" is the configurational in-
tegral of n solvent molecules restricted to the inner shell
around the ion

Ki!n" =
1
n!

1
!Zs"n/

in
dx1 ¯ dxne−"Wi!x1,. . .,xn;R". !12"

By construction, Ki!n" for n=0 corresponds to the electro-
static solvation free energy #Wi of an ion embedded inside
the inner subvolume and coordinated by zero solvent mol-
ecules. Using similar arguments, the normalized probability
can be expressed as

Pi!n" =
!(̄s"nen"#&sKi!n"

)m!(̄s"mem"#&sKi!m"
. !13"

Equations !11" and !13" are introduced in the context of QCT
of ion solvation.6,7 QCT gets its name because the factors
Ki!n" in Eq. !11" assume the form of equilibrium constants
for pseudochemical binding reactions for one ion and n sol-
vent molecules. For example, hydration of Na+ is conceptu-
ally described as Na++nH2O↔Na!H2O"n

+ in QCT, where the
water molecules are treated like a reactant at concentration
(̄w.

It is worth pointing out that the formal derivation leading
to Eqs. !11" and !13" differs somewhat from the standard
QCT literature.6,7 Here, our starting point with Eq. !6" con-
sists of inserting $n,n! in the configurational integral to sort
out the number of solvent molecules in the inner-shell re-
gion, which is treated as a small open system in equilibrium
with a bath of solvent molecules. A similar development was
previously used to design a grand canonical Monte Carlo
!GCMC" algorithm for the treatment of hydration in free
energy calculations in finite subsystems submitted to an ef-
fective solvent boundary potential.22–24 Interestingly, the
present derivation of QCT bears also some similarities to the
concept of the small system grand canonical ensemble con-
sidered by Reiss and co-workers,25 revealing some unsus-
pected relationships between those two frameworks.

An alternative expression for the solvation free energy
may also be obtained by noting that the normalized probabil-
ity in Eq. !13" can be re-expressed as

Pi!n" = P0!0;R"!(̄s"nen"#&sKi!n"e+"#Gi, !14"

where the closed formed of the sum was taken from Eq. !11".
Rearranging the terms yields the expression,

#Gi = − kBT ln#Ki!n"!(̄s"n$ + kBT ln#Pi!n"$

− kBT ln#P0!0;R"$ − n#&s, !15"

which is valid for any n as long as the corresponding coor-
dinated state occurs with nonzero probability. If all the quan-
tities are treated strictly at the same level, then the transfor-
mation from Eq. !11" to Eq. !15" is merely formal and carries
no new information. In practice, Eq. !15" may provide a
useful approximation by allowing one to combine the Pi!ñ"
extracted from computer simulations with the coefficient
Ki!ñ" calculated from a cluster as in standard pQCT. The best
results might be expected by choosing n equal to the average
coordination number +n,, or the most probably coordination
number ñ. With the latter choice, the expression above is
closely related to Eq. !9" from a recent review by
Asthagiri et al.8

III. APPROXIMATION OF SMALL OSCILLATIONS

If the Boltzmann configurational integrals in Eq. !11" are
approximated by using the assumption of small oscillations
around the energy minimum, then one obtains a simple
closed form expression for the solvation free energy of an
ion that can be evaluated numerically. The treatment can be
further simplified by ignoring the influence of the bulk sol-
vent in the outer region on the geometry and the vibrational
frequencies of the complex comprising the ion and the n
solvent molecules, which can then be treated as an isolated
cluster in vacuum using ab initio quantum chemistry ap-
proaches. The influence of the outer-shell contribution to the
solvation free energy is then calculated separately by keeping
the cluster frozen in the configuration corresponding to its
energy minimum in vacuum. These approximations yield the
so-called pQCT. In the following, we illustrate this strategy
for computing the hydration free energy of monatomic ions
using a classical force field.

Typically, pQCT is formulated in such a way to directly
use the output of standard quantum chemistry programs. For
this purpose, it is convenient to restore the momentum inte-
grals in all configurational integrals, i.e., for each degree of
freedom x,

/ dxe−"U →
1
h
/ dp/ dxe−"E, !16"

where E is the total kinetic and potential energy. This substi-
tution does not affect any classical statistical mechanics re-
sults since all the configurational integrals appear as ratio
and the momentum component cancels out !equilibrium
properties such as the solvation free energy do not depend on
the momenta and all the results are independent of the
masses attributed to the particles". This makes it is possible
to express the binding factor Ki!n" in terms of traditional-
looking vacuum partition functions Q for the translational !t",
rotational !r", and vibrational !v" degrees of freedom for the
complex !c", and the isolated ion !i", and water !w" molecule.

First, the cluster is characterized in vacuum, yielding the
optimized geometry &xmin', the energy minimum uc

min

%uc!&xmin'". From this optimized geometry, the translational,
rotational, and vibrational partition functions Qt

c, Qr
c, and Qv

c
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can be calculated. Similarly, an isolated water molecule is
also characterized in vacuum, yielding the optimal geometry
x1

min, the energy minimum, uw
min%uw!&x1

min'", as well as the
translational, rotational and vibrational partition functions
Qt

w, Qr
w, and Qv

w. The solvation of the cluster, frozen in the
optimized geometry &xmin', is #Wc

min%#Wc!&xmin'". As will
be shown, #Wc

min represents a critical contribution to the re-
sulting hydration free energies. With these approximations,
the binding factors in pQCT are approximated by

Ki!n" = e−"##uc
min+#Wc

min$ !Qt
c/V"Qr

cQv
c

!Qt
i/V"#!Qt

w/V"Qr
wQv

w$n

= e−"##uc
min+#Wc

min$Kn
trv, !17"

where #uc
min= #uc

min−n!uw
min"$ is the binding energy of the

cluster in vacuum, and Qt
c, Qr

c, Qv
c, Qt

i, Qt
w, Qr

w, and Qv
w are

the vacuum partition functions for translation, rotation, and
vibration of the complex and of the isolated ion and water
molecule, respectively. The ground state energy of the ion
provides only an offset constant that is omitted here for the
sake of simplicity. The factor of 1 /n! appearing in Eq. !12",
introduced when the identical solvent molecules are allowed
to fluctuate throughout the entire inner shell, is removed with
the assumption of small oscillations because each solvent
molecule fluctuates around a unique configuration. For the
complex comprising 1 ion and n water molecules, there are
3+3n degrees of freedom and 3!3+3n" vibrational normal
modes. !Vibrational modes 1–6 of a nonlinear molecule have
zero frequency when the calculations are carried out with
Cartesian coordinates." There are three nonzero vibrational
normal modes for the isolated water molecule. The transla-
tional partition functions are

Qt
c/V = !2'MckBT/h2"3/2 !18"

for the complex,

Qt
i/V = !2'MikBT/h2"3/2 !19"

for the isolated ion, and

Qt
w/V = !2'MwkBT/h2"3/2 !20"

for the isolated water molecule. The volume factor V is re-
moved from all translational partition functions. The rota-
tional partition functions are

Qr
c = !'Ia

cIb
cIc

c"1/2!8'2kBT/h2"3/2 !21"

for the complex and

Qr
w = !'Ia

wIb
wIc

w"1/2!8'2kBT/h2"3/2 !22"

for the isolated water molecule. The vibrational partition
functions are

Qv
c = )i=7

9n+3!kBT/hFi
c" !23"

for the complex and

Qv
w = )i=7

9 !kBT/hFi
w" !24"

for an isolated water molecule. In the above expressions, h is
Planck’s constant, Mc, Mi, and Mw are the masses, Ic, Ii, and
Iw are the moments of inertia and Fi is the vibrational fre-
quency !it can be verified that all factors involving Planck’s

constant cancel out, consistent with classical statistical me-
chanics". The hydration free energy of the ion is

#Gi = #Ghs!R" − kBT ln1)
n

e−"!#uc
min+#Wc

min−n#&w"!(̄w"nKn
trv2

= #Ghs!R" − kBT1)
n

eBn2 , !25"

and the normalized probability for finding n water molecule
within the inner shell of radius R is

Pi!n" =
eBn

)meBm
. !26"

IV. COMPUTATIONAL DETAILS

pQCT is used to calculate the hydration free energy of
Li+, Na+, and K+ based on simple potential functions. The
water molecules are modeled with the simple nonpolarizable
TIP3P potential.26 The bulk density of water is (̄w
=0.0334 Å−3. The excess chemical potential !absolute hy-
dration free energy" of a TIP3P water molecule in bulk water,
#&w, was calculated using a step-by-step FEP/MD simula-
tions protocol. Based on a number of previous estimates,
#&w is set to !6.0 kcal/mol !the uncertainty is on the order
of 0.2 kcal/mol".24,27 This comprises roughly 5.0 kcal/mol
from the repulsive !Weeks–Chandler–Andersen28" Lennard-
Jones !WCA-LJ" interaction, !2.8 kcal/mol from the disper-
sive van der Waals attraction, and !8.2 kcal/mol from charg-
ing electrostatics.

The ions are modeled as simple LJ particles with a fixed
charge; equal to Emin!!Rmin /r"12−2!Rmin /r"6". The LJ param-
eters for the ions, Emin and Rmin /2, are !0.002 33 kcal/mol
and 1.2975 Å for Li+, !0.0469 kcal/mol and 1.410 75 Å for
Na+,29,30 and !0.0870 kcal/mol and 1.76375 Å for K+.31

Ion-water LJ parameters are defined with standard combina-
tion rules: Emin

iw =3Emin
wwEmin

ii and Rmin
iw = !Rmin

ww /2+Rmin
ii /2". The

results from the K+ model in TIP3P water are consistent with
those obtained with a recent polarizable potential function as
well as with MD simulations based on density function
theory.17

All the simulations were carried as with the spherical
solvent boundary potential !SSBP" !Ref. 31" to avoid any
ambiguities in the absolute charging free energies, which are
calculated as real free energies.18,32 To gather statistics on the
coordination structure of each ion, a 2 ns simulation with the
ion fixed at the center of a sphere of 400 TIP3P water mol-
ecules was generated. A 2 ns simulation of a sphere of 400
TIP3P water molecules with no ion was also generated for
analysis. The molecular dynamics !MD" trajectories were
generated with a Langevin thermostat to ensure thermaliza-
tion at a temperature of 300 K with a friction of 5/ps applied
to all the water oxygens. A time step of 2 fs was used and the
geometry of the TIP3P molecules was kept rigid using the
SHAKE algorithm.33 The MD trajectories were saved every
10 steps and 100 000 configurations were used to calculate
the ion-solvent radial distribution function !RDF" g!r", the
running coordination number N!r" !with a spacing of 0.025
Å", and the probability distributions Pi!n ;R" for different
inner shell radius R. All the simulations were generated and
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analyzed with the program CHARMM.34

The absolute hydration free energy of the K+ model was
calculated using a step-by-step FEP/MD simulations
protocol27 with 400 TIP3P water molecules in SSBP; the
total simulation time for each calculation is 14.8 ns exclud-
ing equilibration. The calculated #GK is equal to !80.6 kcal/
mol, comprising of 5.1 kcal/mol from the repulsive
WCA-LJ, !2.0 kcal/mol from the dispersive van der Waals
attraction, and !83.7 kcal/mol from electrostatics. The hy-
dration free energy of K+ relative to Na+ !#GK−#GNa" was
calculated from FEP/MD and is equal to 18.0 kcal/mol. The
hydration free energy of Na+ relative to Li+ !#GNa−#GLi"
was calculated from FEP/MD and is equal to 22.7 kcal/mol.
From these results, it is deduced that the absolute hydration
free energies of the Na+ and Li+ models are !98.6 and
!121.3 kcal/mol, respectively.

The hydration free energy of the frozen cluster was cal-
culated using a continuum dielectric approximation for the
bulk solvent in the outer region. The finite-difference
Poisson–Boltzmann solver PBEQ35,36 of the program
CHARMM was used.34 In those calculations, the dielectric
constant of the outer bulk region was set to 80 and the di-
electric constant of the region from which solvent is ex-
cluded was set to 1 !the salt concentration was set to 0 and
no ionic screening was included". The dielectric=1 region is
constructed as the union of the spherical inner shell region of
radius R and of the region of space where water molecules
would overlap with the repulsive core of any of the n water
molecules surrounding the ion in the inner shell. In this con-
struction, the radius of the water molecules in the inner shell

was set to 1.88 Å. This value was empirically adjusted to
reproduce the charging free energy of !8.1 kcal/mol for a
single TIP3P water molecule in bulk.27 Such Born-type
atomic radii, empirically adjusted to reproduce FEP/MD
simulations with explicit solvent, were introduced by Nina et
al.35 The molecular surface with a probe radius of 1.4 Å was
used to define the cluster-bulk dielectric interface !including
the re-entrant surface"; using the van der Waals surface al-
tered the results by less than 0.2 kcal/mol. A cubic grid of
1403 points with a grid spacing of 0.15 Å was used in PBEQ.

The contribution from the outer region to the hydration
free energy of the frozen cluster was also calculated using
FEP/MD simulations with explicit solvent.27 The FEP/MD
simulations were carried out with SSBP in which the frozen
clusters were embedded. For each system, the total number
of water molecules is 400, as in the unconstrained MD simu-
lations. For Li+, 4 water molecules are in the inner region
and 396 are in the outer region. For Na+, 6 water molecules
are in the inner region and 394 are in the outer region. All the
atoms in the inner-shell region are kept fixed in the configu-
ration optimized in vacuum. A spherical steep half-harmonic
restraining potential with a force constant of
1000 kcal /mol Å2 is imposed to prevent the water mol-
ecules from the outer region to enter into the inner-shell re-
gion. The radius of the inner-shell is 2.5 Å for Li+ and 3.0 Å
for Na+. Following a step-by-step reversible work protocol
established previously,27 the hydration free energy of the fro-
zen cluster was decomposed into three components,
#Wc

min!elec", #Wc
min!dis", and #Wc

min!rep", corresponding to
the electrostatic, WCA-LJ dispersive attraction, WCA-LJ

TABLE I. Summary of all data for Li+. !Energies are in kcal/mol, and Kn
trv is in Å3n. #Wc

min based on a dielectric
continuum approximation for the outer region."

n #Uc
min #Wc

min ln#Kn
trv$ Bn

ln#Pi!n"$

pQCT MD

0 ¯ !66.050 ¯ 110.7924 !111.746 ¯
1 !34.120 !64.000 !2.613 148.6702 !73.868 ¯
2 !65.910 !62.760 !6.103 182.8973 !39.641 ¯
3 !92.902 !62.399 !12.936 207.2904 !15.248 !7.729
4 !114.469 !62.601 !20.775 222.5142 !0.024 !0.174
5 !123.563 !63.000 !26.946 218.8064 !3.732 !1.843
6 !132.330 !62.300 !34.254 211.5678 !10.971 !7.059

TABLE II. Summary of all data for Na+. !Energies are in kcal/mol and Kn
trv is in Å3n. #Wc

min based on a
dielectric continuum approximation for the outer region."

n #Uc
min #Wc

min ln#Kn
trv$ Bn

ln#Pi!n"$

pQCT MD

0 ¯ !54.990 ¯ 92.240 !90.704 ¯
1 !24.815 !55.770 !1.712 120.2453 !62.698 ¯
2 !48.198 !56.730 !3.491 145.6663 !37.277 ¯
3 !68.838 !58.100 !8.041 164.5840 !18.360 ¯
4 !86.638 !59.700 !13.510 178.2045 !4.739 !4.874
5 !99.605 !61.200 !20.829 181.6956 !1.248 !1.486
6 !110.537 !62.601 !27.160 182.5930 !0.351 !0.294
7 !120.921 !60.500 !41.463 168.7238 !14.220 !3.877
8 !131.389 !57.200 !57.839 150.9089 !32.035 !7.929
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core repulsion, respectively. The total production FEP/MD
simulation is 14.8 ns for each ion !excluding 7.4 ns equili-
bration".

All the vibrational analysis calculations were performed
using the VIBRAN module of CHARMM;34 the latter outputs
all the normal model frequencies for the system. In the
vibrational analysis, the TIP3P water molecules were
treated as flexible, with a stiff harmonic constant of
10000 kcal /mol Å2 for the O–H1, O–H2, and H1–H2
stretching. Test calculations indicated that the results did not
depend on the force constant. All the information for the
application of pQCT is summarized in Tables I–III. The free
energy results are reported in Table V. Figure 1 shows the
free energy for creating an empty cavity of radius R in pure
bulk solvent, #Ghs!R" calculated from MD.

V. DISCUSSION

To carry calculations with pQCT, it is first necessary to
choose the value of the inner shell radius R and then con-
struct a set of energy-minimized clusters comprising the ion
and n water molecules such that the farthest water oxygen
lies within a distance R. A possible choice for the inner shell
radius could be the position of the first minimum in the ion-
water RDF. The ion-solvent RDFs are shown in Fig. 2. The
first minima are at 2.66, 3.14, and 3.54 Å for Li+, Na+, and
K+, respectively. The average coordination numbers defined
at the first minimum in the RDFs calculated from the MD

trajectories are 4.18, 5.85, and 7.11 for Li+, Na+, and K+,
respectively. In a typical application of QCT, it may be ad-
vantageous to choose R as small as possible to limit the
number of explicit water molecules that must be included in
the cluster sum. In the context of pQCT, this is critical be-
cause the approximation of small oscillations used to inte-
grate the thermal fluctuations becomes increasingly invalid
when the anharmonic effects dominate for n*5–6.37

The coordination probability Pi!n ;R" as a function of the
inner-shell radius for the different ions, shown in Figs. 3–5,
displays the accessible coordinated states of a hydrated ion.
For Li+, the most probable coordination state is n=4. Using
the first minimum in the RDFs implies that coordinated
states ranging from 4 to 6 should be incorporated into the
cluster sum. For Na+, this choice implies that coordinated
states ranging from 4 to 8 should be incorporated into the

TABLE III. Summary of all data for K+. !Energies are in kcal/mol, and Kn
trv is in Å3n. #Wc

min based on a
dielectric continuum approximation for the outer region."

n #Uc
min #Wc

min ln#Kn
trv$ Bn

ln#Pi!n"$

pQCT MD

0 ¯ !51.460 ¯ 86.3191 !64.115 ¯
1 !18.925 !52.250 !0.938 105.1597 !45.274 ¯
2 !36.898 !53.500 !1.295 123.4768 !26.957 ¯
3 !53.036 !55.000 !4.326 136.5771 !13.857 !8.047
4 !67.302 !56.900 !8.165 146.4003 !4.033 !4.352
5 !78.776 !59.000 !13.461 150.4158 !0.018 !1.898
6 !91.005 !55.899 !32.215 133.5137 !16.920 !0.790
7 !104.188 !55.300 !43.665 129.7120 !20.722 !1.128
8 !115.315 !57.600 !48.051 134.3906 !16.043 !2.863
9 ¯ !6.156
10 ¯ !8.874
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FIG. 1. Reversible work #Ghs!R" for creating an empty cavity of radius R in
bulk water.

0

2

4

6

8

g
(r
),
N
(r
) Li

+

0

2

4

6

8

g
(r
),
N
(r
) Na

+

0

2

4

6

8

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

g
(r
),
N
(r
)

r (
°
A)

K
+

FIG. 2. Radial ion-solvent distribution function !RDF" g!r" and running
coordination number N!r". In the g!r", the minimum is at 2.66, 3.14, and
3.54 Å, and the maximum 1.94, 2.31, and 2.71 Å, for Li+, Na+, and K+,
respectively. The average coordination numbers based on the first minimum
in g!r" are 4.18, 5.85, and 7.11 for Li+, Na+, and K+, respectively.
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cluster sum, i.e., +2 around the most probable coordinated
state. However, for K+, this implies that coordinated states
ranging from 4 up to 10 should be incorporated into the
cluster sum; i.e., +3 around the most probable coordinated
state.

The final set of optimized clusters used in the pQCT
calculations is shown in Fig. 6. To provide complementary
information, a series of instantaneous n-coordinated states
were extracted from the MD simulations and optimized in
vacuum. The distribution in energy minimum and farthest
distance for the optimized clusters is shown in Fig. 7. For all
ions, it is clearly possible to optimize a cluster with a small
number of water molecules !n,5" that remain in direct con-
tact with the ion. With the current models, direct contact
between the ion and the water molecule implies distances of
1.89, 2.26, and 2.62 Å for Li+, Na+, and K+, respectively.
However, when the number of water molecules in the cluster
exceeds a certain number !5–6", additional water molecules
often end up in the second hydration shell during optimiza-
tion. In the case of K+ for example, the ion-water distance
jumps by about 1 Å for n*7 !Fig. 7". As a consequence,
only a limited set of clusters can be optimized for a given
choice of the inner shell radius. For Li+, the “gap” where the
water molecules start to be transferred to the second shell
during the geometry optimization is somewhere between 2.2
and 4.0 Å. This strong demarcation supports the concept of a
tight and well-defined first coordination shell for Li+. For
Na+, the gap extends from 2.7 to 3.5 Å. For K+, the gap
extends from 3.2 to 3.5 Å, consistent with a first coordination

FIG. 3. Probability of occupancy with different inner shell radii around a
Li+ ion. The occupancy probability P!n" for an inner shell radius of 2.5 Å
chosen for pQCT !shown as a thicker line with black squares" is P!3"
=0.000 44, P!4"=0.840 34, P!5"=0.158 36, and P!6"=0.000 86. For the
sake of completeness, the strict frequencies extracted from 100 000 configu-
rations are reported, with no considerations for statistical uncertainty. The
occupancy probability calculated from pQCT is shown as a gray line with
triangles !see also Table I".

FIG. 4. Probability of occupancy with different inner shell radii around a
Na+ ion. The occupancy probabilities P!n" for an inner shell radius of 3.0 Å
chosen for pQCT !shown as a thicker line with black squares" are P!3"
=0.007 64, P!4"=0.226 28, P!5"=0.745 00, P!6"=0.020 72, and P!7"
=0.000 36. For the sake of completeness, the strict frequencies extracted
from 100,000 configurations are reported, with no considerations for statis-
tical uncertainty. The occupancy probability calculated from pQCT is shown
as a gray line with triangles !see also Table II".

FIG. 5. Probability of occupancy with different inner shell radii around a K+

ion. The occupancy probabilities P!n" for an inner shell radius of 3.2 Å
chosen for pQCT !shown as a thicker line with black squares" are P!3"
=0.000 32, P!4"=0.012 88, P!5"=0.149 84, P!6"=0.454 04, P!7"
=0.323 56, P!8"=0.057 10, P!9"=0.002 12, P!10"=0.000 14. For the sake
of completeness, the strict frequencies extracted from 100 000 configura-
tions are reported, with no considerations for statistical uncertainty. The
occupancy probability calculated from pQCT is shown as a gray line with
triangles !see also Table III".
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shell that is more difficult to define unambiguously. Exami-
nation of Pi!n ;R" as a function of the inner shell radius,
together with the optimization of the small clusters, suggests
that the reasonable choices for R are 2.5, 3.0, and 3.2 Å for
Li+, Na+, and K+, respectively. As observed in Fig. 2, those
inner shell radii cut out a slice of the first peak in the RDFs.
Ultimately, the inner shell radius must be chosen in such a
way that the set of optimized clusters is consistent with the
coordinated states observed in the MD simulations.

Estimates for the free energy contribution from the
outer-shell region are given in Table IV. The main results
about the hydration free energies are given in Table V. The
hydration free energies for Li+, Na+, and K+ calculated via
Eq. !25" are !130.0, !104.3, and !84.1 kcal/mol. Those
values, obtained by treating the outer region with a dielectric
continuum are quite close to the values of !121.3, !98.6,
and !80.6 obtained by explicit FEP/MD simulations. The
deviation is slightly larger for Li+, but it remains a moderate
fraction of the total hydration free energy. One may note that
there is a slight ambiguity in the choice of the inner-shell

radius. For example, in the case of Na+, the inner shell radius
is set to 3.0 Å. However, examination of the optimized clus-
ter properties shown in Fig. 7 indicates that even if the inner
shell radius had been chosen as 3.5 Å, one would have to
rely upon the same finite set of optimized clusters. Test cal-
culations indicate that the alternative choice would shift the
predicted hydration free energy by 2–3 kcal/mol for Na+. As
noted previously,12 such change has moderate effect because
the explicit water molecules in the cluster overlap with the
surface of the inner sphere and determine the position of the
dielectric interface.

The results are particularly sensitive to the treatment of
the outer bulk solvent in the calculation of the solvation free
energy #Wc

min of the frozen optimized clusters. Only electro-
static effects from the outer region were included and no
attempt to model the nonpolar component to #Wc

min was
made. Overall, the outer-region electrostatic contribution is
on the order of !50 to !65 kcal/mol for the different ions
!see Tables I–III". This represents more than one-half of the
total hydration free energy for the ions. #Wc

min was calcu-
lated using a continuum electrostatics approximation and it is
important to note that the magnitude of this contribution is
very sensitive to the position of the dielectric boundary be-
tween the cluster and the surrounding bulk solvent. Here, the
dielectric boundary was constructed from the molecular sur-
face of the cluster by attributing a Born-type radius of 1.88 Å
to the water oxygen !i.e., the dielectric interface is 1.88 Å
away from the water oxygen". This radius was empirically
adjusted by matching the electrostatic contribution to the ex-
cess chemical potential of a TIP3P water molecule based on
FEP/MD simulations with explicit solvent.27 However, set-
ting the oxygen-oxygen distance to 2.8 Å !i.e., the dielectric

FIG. 6. Vacuum optimized clusters used in the application of pQCT.

FIG. 7. Properties of the vacuum optimized clusters comprising of one ion
and n water molecules used in the application of pQCT.
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interface is located 2.8 Å away from the water oxygen", a
more commonly accepted value for the size of a water mol-
ecule, would shift the solvation free energies by a consider-
able amount. For example, in the case of the cluster of Li+

with four water molecules, the solvation of the frozen cluster
would shift by more than 20 kcal/mol, from !62.6 to !40.7
kcal/mol, as a result of this physically motivated change.
Such large variations are considerably reduced if the excess
chemical potential of the single water molecule are also cal-
culated using a continuum dielectric model with the same
radius. In this case, varying the radius from 1.8 to 2.8 Å to
construct the dielectric boundary results in variations in the
hydration free energy of the ion on the order of 3 kcal/mol.

As observed previously, a consistent treatment of the
atomic radius of the solvent molecule results in a more stable
outcome from pQCT.12–14 However, the observed consis-
tency does not address more fundamental questions about the
limitations of the dielectric continuum approximation in the
treatment of the outer-shell region. In this regard, calcula-
tions based on FEP/MD simulations with explicit solvent
molecules provide a critical point of reference. The present
analysis was limited to the particular cluster, making the
dominant contributions to the hydration free energy of Li+

and Na+. K+ was not considered in this analysis due to the
apparent difficulties in representing the diffuse coordination
shell of this cation by pQCT. The FEP/MD calculations were
carried out for the frozen cluster of one Li+ coordinated by
four water molecules and one Na+ coordinated by six water
molecules. The results are given in Table IV. For Li+, the
outer-shell contribution calculated from FEP/MD with ex-
plicit solvent molecules is !54.6 kcal/mol. This differs con-
siderably from the value of !62.6 kcal/mol based on the
dielectric continuum. As a result, the absolute hydration free
energy of Li+ shifts by 8 kcal/mol, yielding a value of
!122.0 kcal/mol for Li+. This result, based on pQCT with a
treatment of the outer shell with explicit solvent, compares
remarkably well with the results of !121.3 kcal/mol from
direct FEP/MD. In the case of Na+, the results are less good.
The outer-shell contribution calculated from FEP/MD with
explicit solvent molecules differs from the value based on
the dielectric continuum by about 10 kcal/mol, and the abso-
lute hydration free energy of Na+ shifts from !104.3 to
!93.8 kcal/mol. This estimate, based on pQCT with a treat-
ment of the outer shell with explicit solvent, misses the exact
results of !98.6 by about 5 kcal/mol. A plausible explana-
tion for the difference between Li+ and Na+ is that the re-
maining approximations are more accurate for the former
than the latter. Those are the treatment of fluctuations based

on small harmonic oscillations around a single energy-
minimized cluster, and the treatment of solvation of this clus-
ter as a rigid entity kept frozen in its energy-minimized con-
figuration. The concept of a very stiff first coordination shell
comprising exactly n water molecules undergoing very small
fluctuations is obviously a better approximation in the case
of Li+ than of Na+.

The comparison with the results of FEP/MD also indi-
cates that the dielectric continuum significantly overesti-
mates the contribution to the charging free energy. In the
case of Li+, the dielectric continuum is too negative by about
5 kcal/mol, and for Na+, it is too negative by almost 8 kcal/
mol. Similar observations were made in the study by Astha-
giri et al.;9 the outer-sphere contribution from the dielectric
continuum was also too negative by about 5–6 kcal/mol for
Li+ and Na+.

The reason for the inaccuracy of the dielectric con-
tinuum is fairly clear. It is well understood that atomic radii
used to construct the dielectric boundaries are empirical pa-
rameters that are context- and charge-dependent; atomic radii
must be engineered carefully to yield quantitatively accurate
results.35,38 Utilizing the same atomic radius for a water mol-
ecule in the bulk, and in the first coordination shell of an ion
in a dielectric representation is an approximation. The radius
engineered to get a reasonable excess chemical potential for
a neutral water molecule is actually too small when it is used
to set the dielectric boundary for the water molecules around
the charged cation. As a result, the solvation free energy
from the outer shell on the frozen cluster is too negative by
5–8 kcal/mol when compared with the results of FEP/MD
with explicit solvent molecules.

It is important to realize that the true inaccuracies from
the dielectric continuum are considerably larger than the
small variations in the pQCT hydration free energy observed
when varying the radius of the water molecules used to con-
struct the dielectric boundary results noted above. It has of-
ten been argued that consistency and robustness of the cal-
culated free energy under variations of the solvent radius was
generally indicative of the overall accuracy of pQCT.12–14

The present analysis indicates that this argument is invalid
and that consistency of pQCT results upon variations in em-
pirical parameters does inform us about the accuracy of the
results. It is also worth pointing out that the step-by-step free
energy decomposition allows the determination of the non-
polar contributions to the solvation free energy provided
from the outer region, #Wc

min!rep"+#Wc
min!dis". In most ap-

plications of pQCT,9,11–14 such nonpolar contribution from
the outer shell has been ignored and the contribution from
the outer-shell region has been exclusively based on electro-
statics. The present results show that including the nonpolar
contribution is necessary to reach quantitative accuracy in
the case of Li+. More generally, this suggests that an accurate
evaluation of all contributions to #Wc

min using FEP/MD
simulations with explicit solvent molecules offers a powerful
avenue to make the most out of the pQCT approximation.

Examination of the coordination structure predicted by
pQCT provides important information about the nature of the
approximations involved. From the MD simulations, the av-
erage coordination numbers +n, for the inner-shell radius R

TABLE IV. Free energy contribution from the outer-shell region !kcal/mol".

Contributions Li+!water"4 Na+!water"6

FEP/MD #Wc
min!rep" 11.8 14.6

#Wc
min!dis" !8.6 !11.7

#Wc
min!rep"+#Wc

min!dis" 3.2 2.9
#Wc

min!elec" !57.8 !55.0
#Wc

min !54.6 !52.1
DCa #Wc

min !62.6 !62.6

aDielectric continuum approximation for the outer region.
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are 4.16, 5.78, and 6.27 for Li+, Na+, and K+, respectively.
The corresponding average coordination numbers calculated
from pQCT via Eq. !26" are 4.02, 5.70, and 4.98, respec-
tively. For Li+ and Na+, the average coordination number is
slightly underestimated by pQCT, but of reasonable accu-
racy. However, in the case of K+, the discrepancy between
pQCT and MD is more important. The correct average coor-
dination number with an inner shell of 3.2 Å for the current
K+ model is 6.27 according to MD, whereas pQCT predicts a
value of 4.98, which is lower by 1.3 water molecules. The
coordination probabilities given in Tables I–III reveal that
the coordination structure arising from pQCT overempha-
sizes a single or a few coordinate states for all ions. For Li+

and Na+, the most probable coordinate state, n=4 and n=6,
respectively, are correctly reproduced by pQCT, although the
distributions of coordinated states are slightly too narrow;
this is made clearer by comparing the log of Pi!n" for the
ions. The situation is worse for K+, which has a very diffuse
coordination structure with a Pi!n" extending up to n=10
!Fig. 5". Based on MD, the most probably state is n=6, but is
incorrectly predicted to be n=5 by pQCT. Furthermore, the
distribution Pi!n" from pQCT for K+ shown in Fig. 5 differs
significantly from the MD result. It is somewhat surprising
that the hydration free energy of K+ is in relatively good
agreement with the result of FEP/MD even though the most
probable coordination state and the average coordination
number are incorrectly predicted by pQCT. This suggests
that the hydration free energy of ions is relatively insensitive
to errors affecting the different terms in the cluster sum. In
view of these limitations, it appears that the conclusions of
previous pQCT studies that have sought to explain ion selec-
tivity in protein binding sites primarily in terms of coordina-
tion numbers may need to be reassessed.15,16 Interestingly,
the inaccuracy in Pi!n" does not considerably affect the mag-
nitude of the hydration free energies. As first noted by Mer-
chant and Asthagiri,11 this is explained by the thermody-
namic dominance of the low coordination number
contributions to #Gi. For Li+, the hydration free energy is
essentially converged by truncating the cluster sum at n=4.
Similarly, truncating the sum at n=4 underestimates the hy-
dration free energy of Na+ or K+ by about only 3%. This

shows that in the context of pQCT, the total hydration free
energy is strongly dominated by the low coordination num-
ber.

While the prediction of absolute hydration free energies
is important, the relative free energy between ions is often of
greater significance in understanding the factors governing
ion selectivity in biological systems.29 In this regard, it may
be interesting to combine coordination probabilities from
MD simulations with a pQCT-like free energy calculation
based on a translational/rotational/vibrational !trv" gas phase
partition function for the small cluster. Equation !4" can be
easily reformulated to express the relative free energy be-
tween ions i and j;21 ##Gj −#Gi$= ##Gj!n"−#Gi!n"$
−kBT ln#Pi!n" / Pj!n"$. Carrying this analysis with Eq. !15"
would lead to equivalent results. Because the coordinate state
n=4 is probably the one that is the best described by the
small oscillation approximation, this suggests combining the
observed coordinated state from straight MD to evaluate the
coordination probabilities, with a small oscillation approxi-
mation !via Kn

trv" for a small cluster. As shown in Table V, the
relative free energies with this combined MD/trv are slightly
more accurate than those with pQCT. Nevertheless, it seems
unlikely that pQCT can serve as a reliable framework for
meaningful studies of biological systems, where ion selectiv-
ity is typically controlled by a few kcal/mol.

VI. CONCLUSION

The framework provided by QCT supports the general
notion that ion solvation in complex liquids can largely be
understood in terms of local interactions. Ion solvation is
expressed as a series of cluster configurational integrals com-
prising of one ion and a small number of solvent molecules
under the influence of the remaining bulk solvent. While it is
intuitively reasonable to expect that the influence of more
distant solvent molecules be understood with simple mean-
field approximations, QCT provides a powerful conceptual
framework to make those ideas more quantitative.6,7,9–11 For
example, the importance of local factors has also been high-
lighted to explain ion binding selectivity in proteins and ion
channels,29,30,39,40 and a QCT-like framework might help
shed some light on the underlying microscopic mechanisms

TABLE V. Summary of data for all ions. #The #Gi !FEP/MD" results were obtained by calculating the absolute
solvation free energy for K+ !!80.6 kcal/mol", and relative free energies for Na+ and Li+ using FEP/MD
simulations. The hydration free energy of K+ relative to Na+ was calculated from FEP/MD and is equal to 18.0
kcal/mol. The hydration free energy of Na+ relative to Li+ was calculated from FEP/MD and is equal to 22.7
kcal/mol.$

Contributions Li+ Na+ K+

−kBT ln#)neBn$ !132.6 !109.0 !89.6
#Ghs!R" 2.7 4.7 5.6
#Gi !pQCT" !129.9 !104.3 !84.1
#Gi !pQCT, FEP/MD" !122.0 !93.8 ¯
#Gi !FEP/MD" !121.3 !98.6 !80.6
##Gij !pQCT" 25.6 20.3
##Gij !FEP/MD" 22.7 18.0
##Gij !MD/trv" 23.6 19.3
##Gij !pQCT, FEP/MD" 28.1 ¯
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for these systems. However, an extension of QCT designed
to account for ion binding to protein sites would be required
to pursue those ideas further.

While the framework provided by QCT is a mathemati-
cal rewriting of configurational integrals that is strictly exact,
it is also of interest to derive approximate forms of the theory
that are amenable to practical calculations. The so-called
pQCT is one such approximate form, whereby it is assumed
that the solvent molecules occupying the first coordination
shell only undergo small thermal fluctuations around a well-
defined energy minimum. pQCT provides a computationally
tractable route with closed-form expressions to calculate the
solvation free energy of ions in bulk liquids. Here, classical
FEP/MD simulations were used to examine and illustrate the
accuracy of pQCT when applied to ion hydration free energy.

Once the radius of the inner-shell region has been cho-
sen, the three essential elements of pQCT are !1" geometry
optimization of isolated clusters of one ion and n water mol-
ecules using energy minimization in vacuum, !2" vibrational
analysis models of those optimized clusters in vacuum, and
!3" solvation from the outer shell based on the cluster frozen
in their optimized configuration. While !1" and !2" can be
carried out using ab initio quantum mechanical approaches,
!3" can be carried out either using a dielectric continuum for
the outer region, or with free energy simulations with explicit
solvent molecules. It seems likely that the latter option offers
the best avenue to make the most of pQCT, as indicated by
the spectacular agreement between the results from pQCT
and the FEP/MD calculations in the case of Li+. There are
more uncertainties and inaccuracies when the outer-region
contribution is determined from a simple continuum dielec-
tric model.

In summary, the present analysis suggests that pQCT can
serve as a reasonable and useful semiquantitative framework,
although the results should be interpreted with caution. An
important point to note is that pQCT does not present a uni-
form and controlled approximation when considering ions of
different size. For example, while Li+ is represented with
quantitative accuracy, Na+ is described less accurately, and
K+ encounters even more difficulties. The distribution of co-
ordinated states also appears to encounter serious problems
in the case of a large ion such as K+. Such inaccuracies
probably have their origin with the diffuse coordination
structure of the larger cation, which is not represented as
well by a small set of energy-minimized clusters.

These observations, obtained from computations based
on classical potential functions, broadly outline the strengths
and weaknesses of pQCT. Of course, the real practical use of
pQCT is to provide a framework for treating the interactions
within the inner shell at the ab initio level. A careful appli-
cation of such quantum mechanical pQCT strategy !pQCT/
QM" may yield useful thermodynamic solvation data for a
wide range of molecular systems not readily available from
experiments. Systems of interest may include various types
of monatomic and molecular neutral or ionic solutes im-
mersed in different kinds of complex liquids. Assessing the
overall accuracy of an application of pQCT/QM to any arbi-
trary system is difficult. Unanticipated system-dependent
problems are possible and the quantitative accuracy of the

results from pQCT should not be taken for granted. In view
of this uncertainty, the best and safest course of action is to
test the validity of the framework for the system of interest
by verifying if the results from pQCT are consistent with
those from explicit solvent FEP/MD simulations in the con-
text of classical potential functions.

ACKNOWLEDGMENTS

The work was funded by Grant No. GM-62342 from the
National Institutes of Health !NIH". Helpful discussion with
Sergei Y. Noskov is gratefully acknowledged.

1 H. Bethe, Proc. R. Soc. London, Ser. A 150, 552 !1935".
2 E. Guggenheim, Proc. R. Soc. London, Ser. A 148, 304 !1935".
3 J. Kirkwood, J. Chem. Phys. 8, 623 !1940".
4 H. Bethe and J. Kirkwood, J. Chem. Phys. 7, 578 !1939".
5 R. Fowler and E. Guggenheim, Proc. R. Soc. London, Ser. A 174, 189
!1940".

6 L. R. Pratt Randall and R. Laviolette, Mol. Phys. 94, 909 !1998".
7 L. Pratt, T. Beck, and M. Paulatis, The Potential Distribution Theorem
and Models of Molecular Solutions !Cambridge University Press, Cam-
bridge, 2006".

8 D. Asthagiri, P. D. Dixit, S. Merchant, M. E. Paulaitis, L. R. Pratt, S. B.
Rempe, and S. Varma, Chem. Phys. Lett. 485, 1 !2010".

9 D. Asthagiri, L. Pratt, and H. Ashbaugh, J. Chem. Phys. 119, 2702
!2003".

10 D. M. Rogers and T. L. Beck, J. Chem. Phys. 129, 134505 !2008".
11 S. Merchant and D. Asthagiri, J. Chem. Phys. 130, 195102 !2009".
12 S. Rempe, L. R. Pratt, G. Hummer, J. D. Kress, R. L. Martin, and A.

Redondo, J. Am. Chem. Soc. 122, 966 !2000".
13 S. Rempe and L. Pratt, Fluid Phase Equilib. 183–184, 121 !2001".
14 S. Rempe, D. Asthagiri, and L. Pratt, Phys. Chem. Chem. Phys. 6, 1966

!2004".
15 S. Varma and S. Rempe, Biophys. J. 93, 1093 !2007".
16 S. Varma and S. B. Rempe, J. Am. Chem. Soc. 130, 15405 !2008".
17 T. W. Whitfield, S. Varma, E. Harder, G. Lamoureux, S. B. Rempe, and

B. Roux, J. Chem. Theory Comput. 3, 2068 !2007".
18 G. Lamoureux and B. Roux, J. Phys. Chem. B 110, 3308 !2006".
19 Y. Marcus, Ion Solvation !Wiley, Chichester, 1985".
20 M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen,

A. D. Earhart, T. R. Tuttle, Jr., and J. V. Coe, J. Phys. Chem. A 102, 9308
!1998".

21 H. Yu, S. Y. Noskov, and B. Roux, J. Phys. Chem. B 113, 8725 !2009".
22 W. Im, S. Bernèche, and B. Roux, J. Chem. Phys. 114, 2924 !2001".
23 H. Woo, A. Dinner, and B. Roux, J. Chem. Phys. 121, 6392 !2004".
24 Y. Q. Deng and B. Roux, J. Chem. Phys. 128, 115103 !2008".
25 G. Soto-Campos, D. S. Corti, and H. Reiss, J. Chem. Phys. 108, 2563

!1998".
26 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L.

Klein, J. Chem. Phys. 79, 926 !1983".
27 Y. Deng and B. Roux, J. Phys. Chem. 108, 16567 !2004".
28 J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237

!1971".
29 S. Noskov, S. Berneche, and B. Roux, Nature !London" 431, 830 !2004".
30 S. Noskov and B. Roux, J. Gen. Physiol. 129, 135 !2007".
31 D. Beglov and B. Roux, J. Chem. Phys. 100, 9050 !1994".
32 E. Harder and B. Roux, J. Chem. Phys. 129, 234706 !2008".
33 J. Ryckaert, G. Ciccotti, and H. Berendsen, J. Comput. Chem. 23, 327

!1977".
34 B. R. Brooks, C. L. Brooks III, A. D. Mackerell, Jr., L. Nilsson, R. J.

Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caf-
lisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M.
Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E.
Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M.
Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus,
J. Comput. Chem. 30, 1545 !2009".

234101-12 B. Roux and H. Yu J. Chem. Phys. 132, 234101 "2010!

Downloaded 15 Oct 2011 to 129.78.139.28. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1098/rspa.1935.0122
http://dx.doi.org/10.1098/rspa.1935.0020
http://dx.doi.org/10.1063/1.1750724
http://dx.doi.org/10.1063/1.1750495
http://dx.doi.org/10.1098/rspa.1940.0014
http://dx.doi.org/10.1080/002689798167485
http://dx.doi.org/10.1016/j.cplett.2009.12.013
http://dx.doi.org/10.1063/1.1587122
http://dx.doi.org/10.1063/1.2985613
http://dx.doi.org/10.1063/1.3132709
http://dx.doi.org/10.1021/ja9924750
http://dx.doi.org/10.1016/S0378-3812(01)00426-5
http://dx.doi.org/10.1039/b313756b
http://dx.doi.org/10.1529/biophysj.107.107482
http://dx.doi.org/10.1021/ja803575y
http://dx.doi.org/10.1021/ct700172b
http://dx.doi.org/10.1021/jp056043p
http://dx.doi.org/10.1021/jp983807a
http://dx.doi.org/10.1021/jp901233v
http://dx.doi.org/10.1063/1.1336570
http://dx.doi.org/10.1063/1.1784436
http://dx.doi.org/10.1063/1.2842080
http://dx.doi.org/10.1063/1.475640
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1021/jp048502c
http://dx.doi.org/10.1063/1.1674820
http://dx.doi.org/10.1038/nature02943
http://dx.doi.org/10.1085/jgp.200609633
http://dx.doi.org/10.1063/1.466711
http://dx.doi.org/10.1063/1.3027513
http://dx.doi.org/10.1002/jcc.21287


35 M. Nina, D. Beglov, and B. Roux, J. Phys. Chem. B 101, 5239 !1997".
36 W. Im, D. Beglov, and B. Roux, Comput. Phys. Commun. 111, 59

!1998".
37 H. Yu and B. Roux, Biophys. J. 97, L15 !2009".

38 B. Roux, H. Yu, and M. Karplus, J. Phys. Chem. 94, 4683 !1990".
39 S. Noskov, S. Berneche, and B. Roux, Biophys. Chem. 124, 279 !2006".
40 D. Asthagiri, L. Pratt, and M. Paulaitis, J. Chem. Phys. 125, 024701

!2006".

234101-13 Quasichemical theory J. Chem. Phys. 132, 234101 "2010!

Downloaded 15 Oct 2011 to 129.78.139.28. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1021/jp970736r
http://dx.doi.org/10.1016/S0010-4655(98)00016-2
http://dx.doi.org/10.1016/j.bpj.2009.08.005
http://dx.doi.org/10.1021/j100374a057
http://dx.doi.org/10.1016/j.bpc.2006.05.033
http://dx.doi.org/10.1063/1.2205853

	University of Wollongong
	Research Online
	2010

	Assessing the accuracy of approximate treatments of ion hydration based on primitive quasichemical theory
	Benoit Roux
	Haibo Yu
	Publication Details

	Assessing the accuracy of approximate treatments of ion hydration based on primitive quasichemical theory
	Abstract
	Keywords
	Disciplines
	Publication Details


	tmp.1318993210.pdf.LRD__

