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Designing Instruction for the Contemporary Learning Landscape 

The current learning landscape is constantly changing in terms of what is 

learned, the context in which learning takes place, and who is learning. From an 

instructional design perspective, this phenomenon creates a great challenge for 

researchers and designers of instruction to develop instruction that fits the new 

learning landscape. In this chapter we will first define the major concepts of 

instructional design and provide a historical overview of the field of instructional 

design. Then we will describe those changes in the learning landscape with regard to 

what ought to be learned, the learning context and the learners and their consequences 

for instructional design. We contend that learning tasks that are based on complex 

real-life experiences are considered as the driving force for learning in the 

contemporary learning landscape. Next, the main principles for the design of 

instruction for learning from these complex cognitive tasks are described. It is argued 

that instructional design needs to be responsive to the relatively great challenges such 

tasks pose to the cognitive capacity of the learner. Therefore, using the theoretical 

framework of cognitive load, it is argued that the characteristics of the structures that 

constitute human cognitive architecture need to be taken into account in the design of 

effective and efficient instruction. Design principles for learning tasks, sequences of 

learning tasks in fixed programs, and ways to create adaptive or personalized 

programs are discussed. 

Instructional design: Definition and history  

Instructional design is pre-eminently a multidisciplinary field. Many theories, 

from various disciplines (e.g., cognitive science, computer science, psychology, 

education, or neuroscience), yield valuable input for the further development of 
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instructional design theory. In a recent article examining research publications and 

trends in instructional design, Ozcinar (2009) defined instructional design as:  

“The systematic development of instructional specifications, using learning 

and instructional theory derived from behavioral, cognitive and constructivist 

theories, in order to ensure the quality of instruction. It is the entire process of 

the analysis of learning needs and goals and the development of a delivery 

system to meet those needs, including development of instructional materials 

and activities, and testing and evaluating all instruction and learner activities” 

(p.559). 

Instructional designers aim to construct or select instructional methods in the attempt 

to make learning effective, efficient, and appealing under specified circumstances. 

They typically do so on the basis of an analysis of, among other aspects, what ought 

to be learned and by whom, and in which context or under which conditions learning 

should take place. Researchers in the field of instructional design investigate the 

conditions under which particular methods yield desired effects and organize those 

methods in instructional design models or theories.  

Ozcinar’s (2009) definition of instructional design makes clear that several 

theoretical approaches have contributed to the design of instruction. As indicated in 

the following short historical sketch, based on McNeil (2008), the influence of those 

approaches on the field of instructional design has changed over time. Starting in the 

early 1900’s and given a boost in the 1940’s as a result of the military’s enormous 

need for rapid training of new recruits for World War II, behaviorism was the 

predominant approach to instructional design. The behaviorist approach is based on 

the assumption that the internal states of the learner cannot be directly observed, 

instead learning is considered as a stimulus, response, and reinforcement process in 
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which the response of a learner must be shaped by reinforcing it appropriately. The 

application of Skinner’s (1981) research into operant conditioning (i.e., the use of 

consequences to modify the occurrence and form of behavior) and animal learning to 

human learning resulted in an elaboration of the theory of reinforcement, the so called 

Programmed Instruction Movement, which was characterized by the design of 

piecemeal instruction with immediate feedback (e.g., reward and punishment), drill 

and practice procedures, and self-paced programmed instruction.  

The cognitive approach, which started to flourish in the 1960s, has its roots in 

cognitive psychology and information processing theory (proposed that like the 

computer, the human mind has a limited capacity for the amount and nature of the 

information it can process). A main characteristic distinguishing it from the 

behaviorist approach is its emphasis on the internal processes of learning with a focus 

on how the learner comes to know rather than respond in an instructional situation. A 

landmark in this period was the introduction of Instructional Systems Development by 

Glaser (1962), who first employed the term instructional system and articulated its 

components and properties. Another landmark was the introduction of task analysis to 

instructional design by Gagne (1965). Task analysis was used to determine what skills 

and knowledge are needed to do a job and then determining how those skills could 

best be learned. In the 1970s and 1980s the cognitive approach still dominated mainly 

through the work on instructional strategies of Bruner (1977), Merrill (1983), and 

Gagne (1985).  

In the 1990s the constructivist approach to learning became popular. 

According to Jonassen (1991; see also O'Donnell, Volume 1),this approach is 

concerned with how we construct knowledge. The construction of knowledge is 

considered a function of the prior experiences, mental structures, and beliefs that one 
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uses to interpret objects and events. Consequently, reality is more in the mind of the 

knower, that the knower constructs a reality, or at least interprets it, based upon his or 

her apperceptions. The two major strands of the constructivist perspective are the 

cognitive constructivism with Ausubel (1968), Bruner (1990), and Piaget (1972) as 

the most important theorists, and social constructivism with Vygotsky (1978) as the 

major theorist. Whereas social constructivism describes the mind as a distributed 

entity that extends beyond the bounds of the body into the social environment, 

cognitive constructivists describe the mind in terms of the individual, restricting its 

domain to the individual's head. 

Most instructional design models that resulted from the theoretical approaches 

that dominated in the 20th century can be characterized as atomistic, part-task models. 

In order to deal with complexity, those models analyze a learning domain into smaller 

pieces and then teach the domain piece-by-piece. According to Van Merriënboer and 

Stoyanov (2008), the use of part-task models to design instruction has led to three 

basic problems in education. Firstly, fragmentation, indicating that students are often 

not able to combine the many pieces they have learned into coherent wholes. 

Secondly, compartmentalization, indicating that students have difficulties in 

integrating acquired knowledge, skills, and attitudes. Thirdly, low transfer of 

learning, indicating that learners are often not able to apply what they have learned to 

new problems and new situations.   

As a reaction to the prevailing part-task models of learning and instructional 

design, in the 21st century there has been a growing interest in whole-task models 

focusing on authentic learning tasks that are based on complex real-life experiences as 

the driving force for learning (Merrill, 2002; Van Merriënboer & Kirschner, 2007). 

Whole-task models are considered to offer a solution to the three basic problems in 
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education, because they analyze a learning domain as a coherent, interconnected 

whole and then teach it from very simple, yet meaningful wholes that are 

representative for the whole domain to increasingly more complex wholes. In 

addition, whole-task approaches to learning and instructional design seek to 

accommodate the demands imposed by the changing learning landscape, which will 

be described in a later section of this chapter. 

Not surprisingly, the different theoretical approaches to instructional design 

have resulted in various substantially different instructional design models. However, 

an analysis of some of the major instructional design theories and models conducted 

by Merrill (2002; see also Merrill, Barclay, & Van Schaak, 2008) has shown that the 

associated instructional design models share some common fundamental underlying 

prescriptive principles, which are necessary for the design of effective and efficient 

instruction, and which are empirically verified (Merrill, 2007). Merrill identified the 

following five ‘first principles of instruction’:   

Task-centered approach 

• Learning is promoted when learners are engaged in a task-centered approach which 

includes demonstration and application of component skills. 

• A task-centered approach is enhanced when learners undertake a progression of 

whole tasks. 

Activation principle 

• Learning is promoted when learners activate relevant cognitive structures by being 

directed to recall, describe or demonstrate relevant prior knowledge or experience. 

• Activation is enhanced when learners recall or acquire a structure for organizing the 

new knowledge. 

Demonstration principle 
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• Learning is promoted when learners observe a demonstration of the skills to be 

learned that is consistent with the type of content being taught. 

• Demonstrations are enhanced when learners receive guidance that relates instances 

to generalities. 

• Demonstrations are enhanced when learners observe media that is relevant to the 

content. 

Application principle 

• Learning is promoted when learners engage in application of their newly acquired 

knowledge or skill that is consistent with the type of content being taught. 

• Application is effective only when learners receive intrinsic or corrective feedback. 

• Application is enhanced when learners are coached and when this coaching is 

gradually withdrawn for each subsequent task. 

Integration principle 

• Learning is promoted when learners integrate their new knowledge into their 

everyday life by being directed to reflect-on, discuss, or defend their new knowledge 

or skill. 

• Integration is enhanced when learners create, invent, or extrapolate personal ways to 

use their new knowledge or skill to situations in their world. 

• Integration is enhanced when learners publicly demonstrate their new knowledge or 

skill. 

The Changing Learning Landscape 

In the following paragraphs we will describe the changing learning landscape 

in terms of what ought to be learned, the context in which learning takes place, and 

who is learning. 

Changes in what ought to be learned 
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Because of the accelerating rate of change in society and technology, demands 

for instruction have changed. More than ever, people need to be equipped not only 

with knowledge of facts or procedures, but also with more general problem-solving 

and reasoning skills that allow them to deal with new, unfamiliar situations in their 

professional and everyday life. Thus, the aim of instruction is no longer primarily 

about learners having reached specific learning objectives at the end of the 

instructional phase, but about learners’ ability to flexibly apply what has been learned 

in new problem situations after the instructional phase (i.e., transfer; Mayer & 

Wittrock, 1996) and their ability to maintain their future learning (i.e., self-regulated 

or self-directed learning; Loyens, Magda, & Rikers, 2008).  

Changes in the learning context 

In addition to changes in what ought to be learned, there are also major 

changes in the contexts in which learning occurs nowadays. Changing contexts result, 

among other factors, from new technologies. In modern societies, people have 

opportunities to connect to other people and to vast information resources 24/7, 

through mobile phones, MP3 players, Personal Digital Assistants, laptop computers 

and other devices for ubiquitous computing, ambient intelligence, and augmented 

intelligence. These technologies have built-in affordances that allow for the 

realization of many instructional methods that sustain a wide range of different types 

of learning. As a consequence, time- and place-independent learning in technology-

rich, informal and professional settings is becoming general practice. Moreover, like 

modern society as a whole, education is developing from a production economy to a 

service economy, where educational services are available on-demand and 

customized for the individual learner (‘mass individualization’) (Schellekens, Paas, & 

Van Merriënboer, 2003). These changes in context have important implications for 
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our thinking about the delicate relationship between instruction and technology, or, 

methods and media. 

Changes in learners  

Not only are people able to learn more and more in out-of-school contexts 

because of changes in the learning context, they are also increasingly expected to do 

so. Because of rapid changes in information and technology, knowledge and skills are 

quickly becoming obsolete. Thus, there is an obvious need to regularly update 

knowledge and skills for individuals in all stages of their lives (‘lifelong learning’: 

Van Merriënboer, Kirschner, Paas, Sloep, & Caniëls, 2009). Because lifelong learning 

is not only situated in schools, but often in professional or daily life, learners 

increasingly participate in more than one learning network, and the composition of 

those networks continuously changes. A learning network is defined as a social 

network specifically designed to support lifelong learning (Van Merrienboer, 

Kirschner, Paas, Sloep, & Caniels, 2009). The typical composition of such job-related 

or personal social networks is heterogeneous, including learners with different 

cultural and professional backgrounds, prior knowledge, and learning goals. In 

addition, rather than one teacher there may be several people in the network taking on 

roles related to teaching, such as a tutor-role, an expert-role, a coaching-role, and so 

forth. Probably the most conspicuous development is that learning networks are often 

virtual. For instance, they may take the form of Web-based learning communities. 

Wenger (1998) discusses learning communities as one kind of “community of 

practice”, which is a social construct that places learning in the “…context of our 

lived experience of participation in the world” (p. 3). Web-based learning 

communities and communities of practice are sometimes seen as a new paradigm for 

learning in the 21st century. Interestingly enough, this development into the direction 
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of communities goes hand in hand with a further development of individualized and 

personalized instruction. Although this may sound paradoxical, it is not illogical: the 

heterogeneity of learners for example in terms of age, prior knowledge and 

experience, or learning goals and learning styles have great implications for the 

effectiveness of instruction (Furnham, Volume 2). Therefore, one-size-fits-all 

instruction is not an optimal solution for such heterogeneous populations of learners, 

and personalized instruction that is adapted to the abilities and needs of the individual 

learner is required.  

Consequences for Instructional Design 

These changes in the learning landscape have major consequences for 

instructional design. Before addressing those consequences, however, it is important 

to note that the effectiveness of instruction is determined by the extent to which the 

characteristics of working memory and long-term memory are taken into account in 

the design of instruction (Paas, Renkl, & Sweller, 2003, 2004; Sweller, Volume 1; 

Sweller, Van Merriënboer, & Paas, 1998; Van Merriënboer & Sweller, 2005). 

Whereas working memory is responsible for short-term maintenance of information 

(around 18 seconds) and integration and coordination of the maintained information, 

long-term memory is responsible for long-term maintenance of information (from a 

few days to decades).  

Cognitive schemata are the product of learning; they are structures in which 

knowledge is stored and organized in LTM. Learning takes places by associating new 

information elements with each other (schema construction) or with prior knowledge 

(schema elaboration) in WM. WM capacity, however, is limited to seven plus or 

minus two elements or chunks of information when holding information (Miller, 

1956) and even fewer (ca. 4) when processing it (Cowan, 2001). This poses a 
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bottleneck for learning when tasks contain a high number of interacting information 

elements. Because those elements have to be processed in working memory 

simultaneously for learning to take place, such tasks impose a high load on working 

memory. In cognitive load theory this is referred to as intrinsic cognitive load 

(Sweller et al., 1998). Cognitive load theory focuses on complex cognitive tasks, in 

which instructional control of cognitive load is critically important to meaningful 

learning. To realize this control, the theory uses current knowledge about the human 

cognitive architecture to generate instructional techniques. 

Knowledge and expertise develop through the building of increasing numbers 

of ever more complex schemata in long term memory by combining elements 

consisting of lower level schemata into higher level schemata. A schema retrieved 

from long-term memory can be handled in working memory as a single information 

element. Therefore, the number of interacting elements and the intrinsic load imposed 

by a learning task decreases for learners who have prior knowledge of that task. 

Moreover, though high amounts of practice, some (sub)schemata can become 

automated and no longer require controlled, effortful processing, which further 

reduces the load on WM (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). 

Next to this intrinsic load imposed by the task, there is also load imposed by 

cognitive processes that are evoked by the way in which a learning task or a series of 

tasks is designed or delivered to learners. This load can result from processes that are 

ineffective for learning (i.e., imposing an extraneous cognitive load) or directly 

contribute to learning (i.e.,imposing a germane load; Sweller et al., 1998). For 

example, any instructional procedure that requires learners to engage in either a 

search for a problem solution or a search for referents in an explanation (i.e., when 

Part A of an explanation refers to Part B without clearly indicating where Part B is to 
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be found) is likely to impose a heavy extraneous cognitive load because working 

memory resources must be used for activities that are irrelevant to schema acquisition 

and automation (Paas, Renkl, & Sweller, 2003). Germane load can be imposed by 

beneficial cognitive processes, such as elaborations, abstractions, comparisons, and 

inferences that are encouraged by the way in which the learning tasks are designed 

(e.g., Paas & Van Merrienboer, 1994). For instruction to be effective, intrinsic load 

should be optimized, extraneous load should be minimized, and germane-load should 

be optimized, so that available WM capacity is not exceeded and is used most 

effectively (Sweller et al., 1998). 

Fostering transfer  

Changes in what ought to be learned, more specifically, the need for the 

acquisition of flexible problem solving skills and self-regulated learning skills, have 

led to a shift away from traditional instructional design paradigms (Van Merrienboer, 

1997; Van Merrienboer, Kester, & Paas, 2006). This shift can be defined along five 

dimensions: (a) from well structured towards ill-structured problems; (b) from 

domain-specific towards domain-general competencies; (c) from cognitive towards 

metacognitive processes (processes involved in learners' awareness of their own 

knowledge and their ability to understand, control, and manipulate their own 

cognitive processes); (d) from ‘expert-novice’ towards ‘expert-expert’ performance 

mappings, and (e) from specific learning objectives towards authentic reference 

situations.  

Instructional design typically begins with defining learning outcomes, then 

identifies the cognitive processes and structures involved in achieving these 

outcomes, determines the relevant methods and techniques to activate these cognitive 

and personality dispositions, and finally measures the effects of the instructional 
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arrangements according to particular criteria. Defining learning outcomes is related to 

analyzing possible reference situations for a particular educational program, which 

contains a set of ill-structured problems. This means confronting learners with 

authentic real-life situations and constructing a set of ill-structured learning tasks 

representing these situations. The question, however, is not only to involve learners in 

solving ill-structured problems but also to provide them with necessary and sufficient 

operational support, preferably matched to their individual needs and preferences 

(Van Merrienboer, Kirschner, & Kester, 2003). Learning to cope with ill-structured 

learning tasks requires not only domain-specific knowledge and skills but also 

domain-general competencies. Domain-general competencies are based on 

metacognitive strategies that operate on the cognitive structure and processes, which 

themselves are bound up with domain-specific knowledge and skills. Observing and 

comparing the performances of high profile professionals provides valuable 

information for the ways these experts behave in ill-structured problem situations, 

which can be used for modeling instruction in the most effective way. 

The capability of solving problems is widely recognized as the most important 

competence that students should acquire to behave adequately in various professional 

contexts (Ge & Land, 2004; Jonassen, 2004; Merrill, 2002). Current theories of 

problem solving mostly reflect the results of research conducted on well-structured 

problems, while ill-structured problems are ill understood (Pretz, Naples, & 

Sternberg, 2003). However, more focus on ill-structured problems is necessary. Many 

authentic problems encountered in various fields are ill-structured, that is, are 

characterized by the availability of incomplete data or insufficient access to 

information; the existence of alternative and often conflicting approaches; the lack of 

a clear-cut problem-solving procedure; multiple possibly appropriate solutions 
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(Jonassen, 2004; Schön, 1996). Another distinguishing feature of ill-structured 

problem solving is the combination of multi-contextual influences and dynamics of 

uncertainty (Mirel, 2004). Often, the problem solver has to take different perspectives 

on a problem before finding one that gives insights into viable solution paths (Pretz et 

al., 2003). Research points out that different intellectual skills are needed for solving 

well-structured problems, which rely on applicative or recurrent skills that are highly 

domain-specific, and ill-structured problems, which rely not only on applicative but 

also on interpretive or non-recurrent skills that are less domain-specific (Cho & 

Jonassen, 2002; Hong, Jonassen, & McGee, 2003; Van Merriënboer, 1997). In this 

respect, the meaning of domain-specific and domain-general competencies is also 

changing because the combination of both is needed to solve ill-structured problems. 

Domain-specific knowledge, skills, and attitudes are a substantial part of 

professional competence. But sometimes they are not sufficient for adequately 

responding to the challenges posed by ill-structured problem situations. Then, other 

types of competencies are required to manage the problem-solving process, in 

particular, the analysis of the problem situation, the generation of alternative 

solutions, the selection of the most appropriate solution for the given situation, and its 

implementation into practice. Pretz et al. (2003) describe these domain-general 

competencies as ‘metacognitive’ components of professional competence. This is 

indicated by the fact that these components emphasize the regulation, monitoring, and 

control of problem-solving activities to make the best use of technical, domain-

specific knowledge and skills (Chambres, Izaute, & Marescaux, 2002; Metcalfe & 

Shimamura, 1996; Zimmerman & Campillo, 2003). Domain-general competencies 

may prevent the negative effects of ‘functional fixedness’ (Davidson, 2003; De Bono, 

1990; Gick & Holyoak, 1983; Holyoak & Thagard, 1995; Keane, 1997; Weisberg & 
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Alba, 1981) and ‘analysis-paralysis’ (Von Wodtke, 1993), which are often present in 

ill-structured problem solving. Functional fixedness reflects the hindering effect of 

past experiences on problem solving, emphasizing the negative role of a problem-

solving strategy that works well for certain tasks, but not for other tasks. When 

functionally fixed, people tend to look for existing solutions and easily jump to 

conclusions, completely ignoring the opportunity to identify better solutions. 

Analysis-paralysis is the tendency to spend unlimited time on analyzing the problem 

situation and generating ideas, with an inability to select among alternative solutions, 

draw conclusions, and plan the next steps in the problem-solving process. 

 Most research on learning from problem solving refers to the limited capacity 

of working memory as the most important cognitive factor determining learning 

performance (Hambrick & Engle, 2003; Paas et al., 2003, 2004; Van Merriënboer & 

Sweller, 2005). However, several cognitive theories emphasize the crucial role of 

long-term memory in learning from problem solving as well (Lubart & Mouchiroud, 

2003; Robertson, 2001; Wenke & Frensch, 2003). Whereas long-term memory may 

be unlimited in terms of storing information elements, the retrieval of relevant 

information elements may cause problems in ill-structured problem-solving situations. 

Then, the information might actually be available, but not be accessible, which affects 

problem-solving performance of both novices and experts.  

Most of the issues related to the role of long-term memory in ill-structured 

problem situations and the negative problem solving effects such as functional 

fixedness (i.e., cognitive bias that limits a person to using an object only in the way it 

is traditionally used) and negative transfer (i.e., detrimental effect of prior experience 

on the learning of a new task), can be explained by the ‘paradox of knowledge 

structure.’ This paradox states that the structure of knowledge both enables and 
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restricts ill-structured problem solving. Knowledge organizes itself in knowledge 

structures (patterns, schemas), which are absolutely necessary for successful problem 

solving. They are easily recognizable, repeatable, give rise to expectancy, provide 

useful short-cuts to the solutions, and offer a platform for interpreting incoming 

information and communicating new solutions. Knowledge structures, however, may 

have a detrimental effect that hinder problem solving, especially in ill-structured 

situations. A knowledge structure can establish a dominance, which forces the 

problem solver to see and follow only one path and not be aware of other possibilities 

(Anderson, 1983; De Bono, 1990). People tend to quickly pick and apply a dominant 

problem-solving schema without investigating the problem situation for possible 

alternative solutions. Because of that, individuals are prone to select an inappropriate 

schema. Once a knowledge structure presents itself, the tendency is for it to get larger 

and more firmly established. This makes it very difficult to break off and jump into an 

alternative line. A person with insufficient knowledge structures might be unable to 

look at the information in a meaningful way, but a person with strong knowledge 

structures might not be able to look at the information in a new way.  

Recent research on experts’ problem solving performance in ill-structured 

situations emphasizes the crucial role of metacognitive knowledge and strategies for 

regulation, monitoring and control of problem solving activities, which could prevent 

the negative effects of the ‘paradox of knowledge structure’ (Jonassen, 2004; Pretz et 

al., 2003; Zimmerman & Campillo, 2003). Metacognitive processes operate on the 

internal representations of the problem solver, such as cognitive schemas, mental 

models, and plans. Metacognition emphasizes two essential functions: self-

management and self-appraisal (Paris & Winograd, 1990; see also McCormick, 

Volume 1). Self-management refers to ‘metacognition in action,’ that is, operational 



Designing Instruction   17 

support of problem solving in terms of analysis of the problem situation, idea 

generation, idea selection, and solution implementation. Self-appraisal refers to self-

reflections on cognitive and affective processes in a problem-solving situation. 

Awareness about the existence of the ‘paradox of knowledge structure’ is 

metacognitive knowledge. The next step is successfully managing this phenomenon, 

that is, promoting the enabling part and suppressing the restricting part. Studies on 

expertise provide evidence that the ‘paradox of knowledge structure’ should be 

attributed to both novices and high profile professionals (Ericsson, 2003; Ericsson & 

Kintsch, 1995; Holyoak, 1991). High levels of domain knowledge can sometimes be 

an impediment to problem solving by limiting the search space to readily available 

ideas. 

 Research on expert-novice differences has been very fruitful to determine 

cognitive factors that play a role in the acquisition of expertise (Chase & Simon, 

1973; Chi, Feltovich, & Glaser, 1981; De Groot & Gobet, 1996; Frensch & Sternberg, 

1989). Comparing the performances of experts in different professional domains has 

equally proven valuable (see Ericsson, 2003; Ericsson & Charness, 1994; Ericsson, 

Charness, Feltovich, & Hoffmann, 2006). Holyoak (1991) identified issues in expert 

performance that cannot easily be explained by findings from classical novice-expert 

research: Experts do not always easily accomplish what novices accomplish with 

difficulties; expert search strategies are extremely varied and often opportunistic; 

expert performance does not show continuous improvement with practice; knowledge 

can sometimes be transferred across domains; the teaching of expert rules often does 

not lead to expertise; expertise depends on induction, retrieval, and instantiation of 

schematic knowledge structures rather than the acquisition and use of highly specific 

production rules, and skilled performance depends on the parallel integration of 
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multiple sources of information rather than serial information processing. It has 

become clear that not only novices but also experts need specific support to improve 

their performance. Investigating what makes one expert better than another expert in 

ill-structured problem situations is a valuable research target in the field of learning 

and instruction. Such research may identify specific skills and underlying cognitive 

and metacognitive processes, such as factors related to ‘deliberate practice’ (Ericsson, 

2003), which may have important consequences for instructional design.  

 The formulation of learning objectives has always been a critical part of the 

instructional design process. Traditional instructional design models analyze a 

learning domain in terms of distinct objectives, after which instructional methods are 

selected for reaching each of the separate objectives. This often results in atomistic, 

part-task models that yield instruction that is fragmented and piecemeal (Van 

Merriënboer, Clark, & de Croock, 2002), and learners' inability to combine the many 

pieces they have learned into coherent wholes, to integrate acquired knowledge, 

skills, and attitudes, and to apply what they have learned to new problems and new 

situations.  

As mentioned in previous sections, transfer of learning is a major goal of 

contemporary education in order to meet the challenges posed by rapid societal and 

technological changes. Holistic or whole task instructional design models (e.g., Van 

Merriënboer & Kirschner, 2007) address these problems by analyzing a learning 

domain as a coherent, interconnected whole, which leads to a highly integrated set of 

objectives. Learning tasks are used that are based as much as possible on the real-life 

tasks that have to be performed after the learning phase. The use of ‘whole tasks’ 

facilitates the integration and coordination of knowledge, skills, and attitudes. That is, 

in contrast to the part-task approach, it is not left up to the learners to integrate and 
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coordinate the parts later on when they have to perform the whole task after training 

(Van Merriënboer & Kester, 2008). Thus, a whole-task sequence for training is to be 

preferred and fosters transfer (see also Peck & Detweiler, 2000; Wightman & Lintern, 

1985; Wightman & Sistrunk, 1987). It is important to note that using authentic whole 

tasks does not mean these tasks should be completely identical to real-life tasks. It is 

important to distinguish cognitive authenticity from physical authenticity, and 

cognitive authenticity is in general more important than physical authenticity. There 

can be good reasons for adopting a somewhat less physically authentic (simulated) 

learning environment (e.g., reducing material costs and costs of errors; reducing 

seductive details; to be able to take time for feedback and reflection during task 

performance, et cetera).  

Real-life reference situations are used during assessments, to ask the learner to 

demonstrate that an integrated set of objectives has been reached. This not only puts 

learning objectives in a broader context and makes them meaningful but also requires 

learners to apply their knowledge, skills, and attitudes in an integrated manner, thus 

promoting transfer.  

In designing instruction based on real-life tasks, several principles need to be 

taken into account in order to ensure that instruction is aligned with WM and LTM 

characteristics. These principles are also part of the four component instructional 

design model (4C/ID model, see Van Merriënboer, 1997; Van Merriënboer & 

Kirschner, 2007) that addresses the issue of how to teach complex cognitive skills.  

First of all, to prevent the excessive cognitive load that is typically associated 

with authentic tasks, learners typically start working on learning tasks that represent 

relatively simple versions of the whole tasks that experts encounter in the field and 

progress towards learning tasks that represent more complex versions of the whole 



Designing Instruction   20 

tasks as their expertise increases. For example, some of the task factors that determine 

how complex it is to perform a scientific literature search skill are the clearness of the 

concept definitions within the domain, the number of articles written about the topic 

of interest, and the number of search terms and Boolean operators needed to identify 

the topic of interest. Using these factors, the simplest task can be defined as a 

category of learning tasks (i.e., task class) in which the concepts are clearly defined, 

with only a few search terms, and which yields a limited amount of relevant articles. 

In contrast, the most complex task class can be defined as a category of learning tasks 

in which concept definitions within the domain are unclear and searches require many 

terms and Boolean operators in order to limit relevant articles. Additional task classes 

of an intermediate complexity level can be added in between by varying one or more 

of the task factors. 

Learning tasks are grouped in so called task classes, in such a way that each 

task class consists of learning tasks at the same level of complexity. The task classes 

are sequenced to increase in complexity. In this way cognitive load is optimized 

because at any time in the training program learners receive learning tasks that are 

challenging to them but never too demanding on their cognitive capacities. The final 

task class represents all tasks, including the most complex ones that professionals 

encounter in the real world. For example, some of the task factors that determine how 

complex it is to perform the task of scientific literature search, which could be used to 

create less and more complex task versions are: (a) the clearness of the concept 

definitions within the domain (ranging from clear to unclear); (b) the amount of 

articles that are written about the topic of interest (ranging from small to large), and 

(c) the amount of search terms and Boolean operators needed (ranging from few 

search terms to many search terms that are interconnected with Boolean operators). 
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Given these factors, the assumptions for the first, simplest task class can be defined as 

follows: A category of learning tasks that confronts learners with situations in which 

the search is performed in a domain in which the concepts are clearly defined, with 

only few search terms and yielding a limited amount of relevant articles. The most 

complex task class is defined as a category of learning tasks that confronts learners 

with situations where concept definitions within the domain are unclear and in which 

searches have to be performed with many search terms interconnected by Boolean 

operators in order to limit the otherwise large amount of relevant articles. Additional 

task classes of an intermediate complexity level can be added in between by varying 

one or more of the task factors. 

Secondly, within each task class, high levels of support or guidance should be 

provided on the first tasks, and should be gradually decreased. Task formats that 

provide high degrees of support and have been shown to foster learning for students 

who lack prior knowledge of tasks within that class are worked examples (i.e., a 

written, worked-out solution procedure is presented; for a review, see Atkinson, 

Derry, Renkl, & Wortham, 2000) or modeling examples (i.e., a solution procedure is 

demonstrated by a model; for a review, see Schunk, 1987), completion problems (i.e., 

partially worked-out examples in which the learner has to complete the steps that 

were not worked-out; e.g., Paas, 1992), process-worksheets or process steps (i.e., an 

overview of the general steps to be taken, but the learner has to work-out those steps; 

e.g., Hummel, Paas, & Koper, 2005; Van Gog, Paas, & Van Merriënboer, 2006). 

However, research has shown that such high-support formats like worked examples 

are only effective when they are well-designed, that is, prevent split-attention (i.e., 

when learners have to split their attention between various types of information within 

the same display to understand a task; for a review, see Ayres & Sweller, 2005) and 
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presentation of redundant information (for a review, see Sweller, 2005). Also, they 

are only effective for novice learners who lack prior knowledge, and may lose their 

effectiveness or even have adverse effects on learning once learners have acquired 

some prior knowledge (see Kalyuga, Ayres, Chandler, & Sweller, 2003, for a 

discussion). Research has shown that taking into account the developing levels of 

knowledge of the learner, by starting out with a high degree of support or guidance 

and gradually decreasing that support, makes learning more effective and efficient. 

For example, a completion or fading strategy can be used, in which a transition is 

made from studying worked examples via completion problems with increasingly 

more blank steps for the learner to complete, to solving problems without any support 

(for a review, see Renkl & Atkinson, 2003). A factor to be considered in the design of 

problem-solving tasks for instruction, is that learners are usually given an explicit 

goal to reach, whereas research in a variety of domains has shown that providing 

people with a non-specific goal for problem solving leads to better learning outcomes 

(e.g., Ayres, 1993; Owen & Sweller, 1985; Paas, Camp, & Rikers, 2001; Sweller & 

Levine, 1982; Vollmeyer, Burns, & Holyoak, 1996).  

It is possible that the tasks in the first task class (i.e., containing the least 

complex tasks that professionals may encounter in the real world) are too complex 

even with high levels of support and guidance. In this case, it becomes necessary to 

manage the intrinsic load imposed by the task, using a strategy that involves both 

whole-task and part-task sequencing (see also Pollock, Chandler, & Sweller, 2002; 

Van Merriënboer, Kester, & Paas, 2006) or that manipulates the relative emphasis of 

selected subcomponents, but leaves the whole task intact (i.e., emphasis manipulation 

approach; Gopher, Weil, & Siegel, 1989). Roessingh, Kappers, and Koenderink 

(2002) developed and tested a model to determine the optimal training time schedule 
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for a combined training sequence with whole and part task practice. They concluded 

that if one part-task has to be included in the training, more than 50 % of the total 

training time has to be devoted to whole-task practice in order to maximize 

performance. So they suggested that even in cases where whole-task practice is not 

the only possible type of training, it still should take up the largest part of it. 

Third, learning and especially transfer can be promoted by increasing the 

contextual interference between tasks within each task class. The contextual 

interference effect has been widely investigated in instruction of both motor skills 

(e.g., Magill & Hall, 1990; Shea & Morgan, 1979; Wulf & Shea, 2002) and cognitive 

skills (e.g., Carlson, Sullivan, & W. Schneider, 1989; De Croock, Van Merriënboer, 

& Paas, 1998; Helsdingen, Van Gog, & Van Merriënboer, in press; Jelsma & Pieters, 

1989; Paas & Van Merriënboer, 1994; Schneider, Healy, & Bourne, 2002). This effect 

indicates that low contextual interference, as in a blocked sequence of different types 

of learning tasks (tasks of the same type are trained in blocks: e.g., AAA-BBB-CCC-

DDD), often leads to better performance and lower cognitive load during learning 

than high contextual interference resulting from a random sequence of different types 

of learning tasks (different types of tasks are trained in a random order: e.g., A-C-D-

B-B-C-A-D-A-B-D-C). This random sequence, however, leads to better retention and 

transfer after learning. Paas and De Croock (2004) have argued that the increase in 

cognitive load by contextual interference constitutes germane load, as it promotes 

meaningful learning by stimulating learners to compare the solutions to the different 

learning tasks and to abstract more general knowledge for solving a wide range of 

problems.  

Another task-sequencing strategy that has been extensively investigated in 

cognitive psychology and is somewhat related to contextual interference is spacing. 
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The spacing effect refers to the consistent finding that in a given amount of study 

time, memory for repeated stimuli is mediated by the interval between the repetitions 

of the stimulus, that is, spaced stimulus presentations lead to better memory than 

massed presentations (for a review, see Dempster, 1988). Despite the robustness of 

both the contextual interference and the spacing effects in experimental research, 

these strategies are still not widely implemented in instruction programs (see 

Dempster, 1988, for a discussion of potential reasons concerning the spacing effect, 

many of which also seem to apply to contextual interference and still seem to apply 

today). 

Fourth, supportive and procedural information should be provided ‘just-in-

time’. Supportive information supports problem solving and reasoning within a task 

class, by providing learners with for example causal, structural, or conceptual domain 

models, that help them acquire general, abstract schemata that apply to multiple tasks 

within that class (Van Merriënboer & Kirschner, 2007). Teachers typically call this 

information ‘the theory’, which is often presented in study books and lectures. 

Supportive information reflects both mental models and cognitive strategies. Models 

of how the world is organized may be described in a general sense and are typically 

illustrated by case studies. Cognitive strategies may be presented as systematic 

approaches to problem solving, describing the successive phases in a problem-solving 

process and the rules-of-thumb or heuristics that may be helpful to successfully 

complete each of the phases. Procedural information supports routine procedures and 

consists for example of specific descriptions of rules, scripts, or procedures (e.g., 

decision flow charts) necessary to perform a task (‘how to’ information; Van 

Merriënboer & Kirschner, 2007). However, if one would present all this additional 

information with the complex learning tasks, it would probably lead to cognitive 
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overload. Therefore, ‘just-in-time’ information presentation is necessary, and 

according to the four component instructional design model (Van Merrienboer, 1997), 

supportive information is best presented before a task class because of its own 

inherent complexity, whereas procedural information is best presented during task 

performance. Surprisingly, however, findings by Kester, Kirschner, and Van 

Merriënboer (2006), are not entirely in line with this information presentation model. 

Their results indicated that the order of presentation did not really matter, as long as 

supportive and procedural information were not both presented at the same time 

(before or during task performance). Possibly, even though the theoretical 

assumptions for what is just-in-time presentation for supportive and procedural 

information seem sensible, it may really just be a matter of preventing cognitive 

overload by not presenting all information sources at the same time.  

Fifth, feedback is one of the most important variables influencing the learning 

process. Feedback during instruction usually consists of external information about 

performance that can be used to reduce the gap between current and desired 

performance (cf. Ramaprasad, 1983). Giving appropriate feedback can not only 

contribute to learning by allowing learners to verify their answers, evaluate their 

progress, and determine the cause of errors (Johnson & Johnson, 1993), but can also 

motivate learners to remain involved in the learning tasks, provided that they perceive 

the feedback as helpful (Azevedo & Bernard, 1995; Chai, 2003; Hattie & Timperley, 

2007; Hoska, 1993; Hyland, 2001; Keller, 1983; Mory, 2003; Ross & Morrison, 

1993; Vollmeyer & Rheinberg, 2005). However, there are some important mediators 

of the effectiveness of feedback for learning: Content, frequency, and timing of 

feedback (Goodman & Wood, 2004; Kulhavy & Wager, 1993). Regarding content, 

feedback that not only allows learners to verify the correctness of their answers, but 
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also provides information that will guide them towards obtaining a correct answer on 

future tasks seems to be the most effective for learning (Kulhavy & Stock, 1989). 

However, learners’ prior knowledge is recognized as a factor of influence on feedback 

effectiveness (Hannafin, Hannafin, & Dalton, 1993).  

Finally, learners may be prompted to process learning tasks more deeply, 

which is held to foster transfer via processes of reflection, elaboration, abstraction, 

and generalization. Many learners do not spontaneously engage in deep processing 

and need to be prompted to do so, for example with self-explanation prompts (Chi, 

Bassok, Lewis, Reimann, & Glaser, 1989; Renkl, 1997), such as “talk aloud and 

verbalize anything that comes to your mind” (according to the guidelines of Ericsson 

& Simon, 1993), or critical thinking prompts, such as the following proactive prompt 

used by Helsdingen (2008: p.97): “Are there any similarities between the following 

two cases? Which are they, and what is different between these cases?”. Self-

explaining has been mostly studied in combination with worked examples, however, 

there are some studies that have shown beneficial effects of self-explanation prompts 

on learning when combined with problem solving tasks (Aleven & Koedinger, 2002; 

De Bruin, Rikers, & Schmidt, 2007) or expository texts (Chi, De Leeuw, Chiu, & 

Lavancher, 1994). Moreover, self-explanation prompts can also be combined with a 

completion or fading strategy to enhance transfer even further (Atkinson, Renkl, & 

Merrill, 2003). Helsdingen (2008) studied the effects of critical thinking instruction 

(cf. Cohen, Freeman, & Wolf, 1996) consisting of a general introduction to the 

method prior to the learning phase and prompts during the learning phase, in relation 

to contextual interference. She found that blocked practice (i.e., practice with a series 

of similar learning tasks) combined with proactive critical thinking prompts resulted 

in transfer performance comparable to that obtained with random practice. The 
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differential effectiveness of timing of prompts in different practice schedules is 

presumably due to cognitive load factors. Proactive prompts (i.e., given before a set of 

tasks) should be manageable in blocked practice, because the load imposed by a 

blocked schedule is lower. So, learners should be able to keep the prompts given 

before a set of tasks in mind and engage in more elaborate processing while working 

on those tasks. For a random schedule, it is exactly the other way around: providing 

prompts before a set of tasks might lead to cognitive overload, as the load imposed by 

a random schedule is already high.  

In sum, there are many different instructional principles available for 

optimizing cognitive load and enhancing learning and transfer, and many of those 

principles can be successfully combined, but potential adverse effects on cognitive 

load resulting from certain combinations need to be considered.  

Enabling personalized instruction 

In the previous section we have described strategies for optimizing cognitive 

load, learning, and transfer, when designing ‘fixed’ or one-size-fits-all instruction. As 

mentioned before, changes in learners and in the learning context, require more 

personalized instructional trajectories adapted to the individual learner’s abilities and 

needs. In the last decades, new technologies have ‘technically’ enabled the 

individualization of instruction. Nevertheless, up until now individualization in 

education has not been very successful because highly individualized learning 

trajectories can only be realized if the number of possible trajectories is very large. 

Thus, there is the need to develop a large amount of learning tasks and instructional 

materials beforehand in order to make individualization possible—and this threatens 

its cost-effectiveness. Only since the upsurge of Web technologies it has become 

possible to develop instruction for very large target groups. And thanks to the 
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combination of technologies and large groups individualization is now not only 

technically feasible, but also becoming cost-effective. This process is known as ‘mass 

individualization’ or ‘mass customization’, and may be expected to yield an enormous 

increase in the flexibility of education (Schellekens et al., 2003). Research has shown 

that personalized, adaptive instruction in which the level of support and the level of 

complexity of learning tasks are adapted to the learner’s level of prior knowledge can 

be more effective and efficient than fixed training programs (see Camp, Paas, Rikers, 

& Van Merriënboer, 2001; Corbalan, Kester, & Van Merriënboer, 2006, 2008; 

Salden, Broers, Paas, & Van Merriënboer, 2004; Salden, Paas, & Van Merriënboer, 

2006). Three types of models can be distinguished with regard to the design of 

adaptative instruction: system controlled, shared responsibility, and advisory (Van 

Merriënboer, Sluijsmans, Corbalan, Kalyuga, Paas, & Tattersall, 2006).  

In system-controlled models, an instructional agent (trainer, e-learning 

application) selects the optimal learning task from all available tasks based on an 

assessment of the learner’s performance aspects on the previous task(s). An important 

question is how the dynamic adaptation of learning tasks can best be achieved. The 

algorithms that underlie task selection in such models can be based on assessment of 

different performance aspects (accuracy or time taken), cognitive load, or a 

combination of those (see e.g., Camp et al., 2001; Salden et al., 2004, 2006). As we 

have described earlier, the cognitive capacity needed to perform a task depends not 

only on task complexity but also on the level of schema construction and schema 

automation that an individual has attained (i.e., someone’s level of prior knowledge or 

expertise). This implies that individuals with more expertise are able to attain equal or 

higher levels of performance with less investment of mental effort (a measure of 

actually experienced cognitive load; Paas, Tuovinen, Tabbers, & Van Gerven, 2003). 
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Therefore, if performance is low, but mental effort is very high, a learner may need a 

task that is lower in complexity or provides more support. If performance is high, and 

effort is low, a learner may need a far more challenging task or one that does not 

provide any support. Algorithms for task selection that implement this strategy ensure 

that each next task is in optimal alignment with the individual learner’s developing 

expertise. Even though there is no theoretical reason why such models (i.e., 

assessment and task selection algorithms) could not be implemented by trainers in 

regular settings, it will be very difficult to implement if instruction is not on a one-to-

one basis. Therefore, this model is usually implemented in e-learning environments, 

using an application that automatically assesses performance, effort, or both; and uses 

this to select a next task based on some defined algorithm.  

Kalyuga (2006, 2008; Kalyuga & Sweller, 2004, 2005) has extended the 

research on system-controlled adaptive instruction by studying different techniques 

for rapid assessment of prior knowledge or expertise. For example, Kalyuga and 

Sweller (2005) used a rapid assessment measure in the domain of algebra, which 

entailed asking learners to indicate their first step towards the solution as fast as 

possible. Another rapid assessment procedure used by Kalyuga (2008) relies on rapid 

verification rather than generation of solution steps: learners need to rapidly verify 

suggested steps at various stages of a problem solution procedure. This line of 

research seems very promising for system-controlled adaptive instruction, although it 

should be noted that the domains in which it has been studied thus far are highly 

structured, such as algebra, geometry, or kinematics. An interesting question is 

whether comparable techniques for rapid assessment could be found for more ill-

structured tasks or problems. 



Designing Instruction   30 

In shared responsibility models an instructional agent registers the learner’s 

performance and/or effort, and selects a suitable subset of learning tasks from all 

available tasks, after which the learner makes a final selection from this subset 

(Corbalan et al., 2006). These models can provide an improvement on system-

controlled models, which do not provide students with freedom of choice over tasks, 

and with the opportunity to learn how to select learning tasks. Shared responsibility 

models provide some freedom of choice, which seems to have positive effects on 

learners’ motivation (e.g., Corbalan et al., 2008; see also Graham & Weiner, Volume 

1; Kaplan, Katz, Flum, Volume 2), but not too much, as too much freedom may lead 

to stress, high mental effort, and demotivation (Iyengar & Lepper, 2000; Schwartz, 

2004). They also provide students with some control over their own learning process, 

without giving them full responsibility. Full responsibility (or fully self-

regulated/self-directed learning; see the next section) may seem the ultimate way of 

realizing personalized instructional trajectories, but research has shown that this often 

leads to detrimental effect on learning when learners are not able to accurately 

evaluate their own performance or to select an appropriate next task in response to 

that assessment (Kostons, Van Gog, & Paas, 2010). Shared responsibility models can 

allow for gradual transfer of responsibility over assessment and task selection from 

the system to the learner.  

In advisory models, either shared responsibility is implemented (i.e., an 

instructional agent selects a suitable subset of tasks) or learners have full 

responsibility (i.e., fully self-regulated/self-directed learning; see the next section), 

but in both cases the learner receives advise to support them in selecting a new 

learning task. Three types of advisory models may be distinguished: Procedural 

models, social models, and metacognitive models (Van Merriënboer et al., 2006).  
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Procedural advisory models basically provide learners with advice for task 

selection using the same rules or algorithms that could be applied to implement 

system control. These may include rules to compute efficiency on the basis of 

performance and invested time and/or effort, rules to decide on the desired level of 

support for a next learning task, and rules to decide when to continue to a next task 

class or difficulty level based on the performance and/or invested time and effort for 

conventional learning tasks (Kicken, Brand-Gruwel, & Van Merriënboer, 2008). Due 

to their algorithmic nature procedural advisory models are highly specific and will be 

difficult to transfer to other domains and learning settings. 

 Social advisory models apply self-organization principles to open an 

additional channel of advice for learners when sequencing learning tasks (Koper et 

al., 2005; Tattersall et al., 2005). The approach revolves around a continuous process 

of collecting, processing and presenting data on the paths taken by all different 

learners who use the learning tasks. A feedback loop is set up in which the progress of 

previous, successful learners is fed back to learners facing a similar sequencing choice 

(e.g., “other learners successfully reached the goal you are striving to attain by 

proceeding this way”). The aim is to allow learners to make informed choices 

concerning steps on their learning journey, based on actual rather than predicted 

learner behavior. In contrast to procedural models, social models apply a very general 

approach that is applicable over many learning domains and settings. But the 

feedback principles used are not very helpful for learners to improve their self-

regulation skills.  

To that end, metacognitive advisory models are more suited. These explicitly 

help learners to apply cognitive strategies for assessing their own performance, for 

matching these assessment results with the qualities of available learning tasks, for 
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making an informed selection from those tasks, for planning their own work on those 

learning tasks, and so forth. This may help learners to develop cognitive strategies for 

regulating their own learning. As such, it may be hypothesized that a metacognitive 

advisory model is more effective than a procedural or social model for the 

development of self-regulation skills (see Zimmerman & Labuhn, Volume 1) and, in 

particular, task selection skills, but more empirical research is necessary to establish 

whether this is indeed the case.   

Fostering self-regulated learning skills to sustain future and lifelong learning 

Next to fostering transfer, a major aim of contemporary education is to foster 

self-regulated learning skills, because these play a major role in future self-directed 

learning (Loyens et al., 2008) in professional as well as in informal settings (i.e., 

lifelong learning). As was clear  in the last section, this aim of helping learners 

acquire self-regulated learning skills is not effectively achieved by providing learners 

with full responsibility over what tasks to work on, in what order, and for how long. If 

self-regulated learning is to be as effective as fixed or adaptive instruction controlled 

by some instructional agent, learners need to have the ability to accurately judge their 

own learning and select an appropriate new learning task in response to that 

assessment (Kostons et al., 2010). Unfortunately, research has shown that many 

students are not very accurate in assessing their own performance and deciding which 

learning activities to pursue (either restudying or selecting novel information; Bjork, 

1999; Kornell & Bjork, 2007). Instruction that aims to foster self-regulated learning 

might therefore need to incorporate training of self-assessment and task selection 

skills (Van Gog, Kostons, & Paas, 2010). 

It is also often argued that stimulating students to reflect on their learning 

might make them more aware of their own learning processes and possible alternative 
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strategies. The awareness of alternatives is considered a critical aspect of self-

regulated learning, as it is prerequisite for changing a less than optimal study habit 

(Boekaerts, 1999; Boud, Keogh, & Walker, 1985; Ertmer & Newby, 1996). However, 

the beneficial effect of reflection on self-regulated learning can be expected to arise 

only if learners actually engage in reflection and when –again- their reflection is of 

good quality, meaning that they should be able to accurately diagnose their own 

process (what went well, what needs to be improved?) and come up with alternative 

strategies.  

Research has shown that many learners are not likely to spontaneously engage 

in reflection and will require reflection prompts to trigger this process (Van den 

Boom, Paas, & Van Merriënboer, 2007; Van den Boom, Paas, Van Merriënboer, & 

Van Gog, 2004). However, even when prompted, high-quality reflection may be very 

difficult. When learners are prompted to reflect during the learning task, reflection 

becomes a kind of dual task that requires additional cognitive resources and therefore 

may interfere with learning from the task. Moreover, novices might not be able to 

engage in high-quality reflection, because –by definition- they lack knowledge of the 

task as well as knowledge of performance standards (i.e., what constitutes 

good/average/poor performance on a task; Dunning, Johnson, Erlinger, & Kruger, 

2003). As a consequence, they will have difficulties determining what they need to 

improve, and determining what better alternatives for future courses of action would 

be. For learners with more knowledge of a task (advanced learners), this problem will 

be alleviated, because for them, the same task will impose a lower intrinsic load for 

them than for novices (see Sweller et al., 1998), and they are likely to have some 

more knowledge about performance criteria and standards based on their experience 

(Dunning et al., 2003). To make reflection prompts beneficial for novices, they might 
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need to be followed by feedback (Butler & Winne, 1995) or reflective dialogues with 

a tutor (Chi, 1996; Van den Boom et al., 2007). 

In the previous sections, learners’ prior knowledge has repeatedly been 

mentioned as a learner characteristic that influences the effectiveness of instructional 

formats or sequences. This is a characteristic that is of course also important in 

lifelong learning, because of large variations in background and experience within 

groups of learners, and thus in levels of prior knowledge or expertise development. 

Another learner characteristic that is important for lifelong learning, although it has 

not received nearly as much attention in instructional design research, is the learner’s 

age (see also Rogers, Stronge, & Fisk, 2005), as lifelong learning will evidently mean 

that more and more elderly people become involved in both formal and informal 

learning. A substantial body of research (for a review, see Reuben-Lorenz, 2002) has 

demonstrated that cognitive aging is accompanied by a reduction of working-memory 

capacity (e.g., Salthouse, Mitchell, Skovronek,& Babcock, 1989), slowed processing 

speed (e.g., Salthouse, 1996), difficulties inhibiting responses to irrelevant 

information (e.g., Hartman & Hasher, 1991), and deficits in integrative aspects of 

WM (e.g., Mayr, Kliegl, & Krampe, 1996). Given the important role that working 

memory capacity plays in learning, effects of aging on cognitive load and learning 

should be taken into account in instructional design.  

In general, since instructional formats that deal with cognitive limitations in 

that they lead to an efficient use of the available WM capacity, for example by 

providing high degrees of support or guidance, it can be hypothesized that they will 

be especially effective for elderly learners (Paas, Van Gerven, & Tabbers, 2005; Van 

Gerven, Paas, Van Merriënboer, & Schmidt, 2000). Among others, Van Gerven, Paas, 

Van Merriënboer, and Schmidt (2002; see also Paas et al., 2001) tested this 
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hypothesis by comparing learning by studying worked examples (high level of 

instructional support) with learning by solving conventional problems (no 

instructional support). As may have been clear from the discussion on (decreasing) 

instructional support above, according to cognitive load theory, novices who lack 

prior knowledge of a task learn more from instructional formats that provide a high 

degree of support, such as studying worked examples, than from solving the 

equivalent problems (Sweller et al., 1998). Their results indeed showed that, 

especially for older learners (above 60 years), the efficiency of studying worked 

examples is higher than the efficiency of solving conventional problems (i.e., less 

learning time and cognitive load leads to a comparable level of performance; for a 

discussion of instructional efficiency, see Paas & Van Merriënboer, 1993; Van Gog & 

Paas, 2008). Declines in working memory processes may not only be relevant for the 

choice of task formats though, but also for self-regulated learning, as this requires 

many of the control processes that may be affected by aging. 

Current and future issues in designing instruction 

Current instructional design is driven by contemporary education's focus on 

ill-structured realistic problems and the associated demands for flexible application of 

acquired knowledge and skills (i.e., transfer), and self-regulated learning. Holistic or 

whole task instructional design models are responsive to these demands by analyzing 

a learning domain as a coherent, interconnected whole, which leads to a highly 

integrated set of objectives, and facilitates the required integration and coordination of 

knowledge, skills, and attitudes. This chapter describes the four component 

instructional design model as an example of such models. This model is based on five 

principles that ensure that instruction is aligned with human cognitive architecture. 

Firstly, to prevent the excessive cognitive load that is typically associated with 
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authentic tasks, learners start working on learning tasks that represent relatively 

simple versions of the whole tasks that experts encounter in the field and progress 

towards learning tasks that represent more complex versions of the whole tasks as 

their expertise increases. Secondly, within each task class, high levels of support or 

guidance are provided on the first tasks, and are gradually decreased. Thirdly, 

learning and especially transfer are promoted by increasing the contextual 

interference between tasks within each task class. Fourthly, supportive and procedural 

information is provided ‘just-in-time’. Fifthly, feedback is used to reduce the gap 

between current and desired performance. 

An important future issue in designing instruction is related to new 

technologies that have ‘technically’ enabled the individualization of instruction. Until 

now, individualization in education has not been very successful because highly 

individualized learning trajectories can only be realized if the number of possible 

trajectories is very large. Thus, there is the need to develop a large amount of learning 

tasks and instructional materials beforehand in order to make individualization 

possible. Only since the upsurge of Web technologies it has become possible to 

develop instruction for very large target groups. And thanks to the combination of 

technologies and large groups individualization, it is now not only technically 

feasible, but also becoming cost-effective. A distinction is made between system-

controlled, shared-responsibility, and advisory models, in which an instructional 

agent, a learner, or both selects the optimal learning task from all available tasks 

based on an assessment of the learner’s performance aspects on the previous task(s).  

Conclusion 

In this chapter we have provided a historical overview of the field of 

instructional design and discussed the characteristics of the contemporary learning 
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landscape in terms of what ought to be learned, the learning context and the learners 

with regard to their consequences for instructional design. Next, the main principles 

for the design of instruction for complex cognitive tasks that pose relatively great 

challenges to the cognitive capacity of the learner were described. Using the 

theoretical framework of cognitive load, it was argued that the structures that 

constitute human cognitive architecture need to be taken into account in the design of 

effective and efficient instruction. Design principles for achieving transfer, enabling 

personalized instruction, and fostering self-regulated learning skills to sustain future 

and lifelong learning of complex cognitive tasks were discussed. Finally, current and 

future issues in designing instruction were discussed. 

A challenge for evaluating the effectiveness of instruction designed according 

to the models and principles discussed here, lies in the fact that whether aims such as 

improving transfer to new tasks and situations, or improving the ability to regulate 

ones own future learning have been achieved only becomes apparent long after the 

instruction has ended. It is possible, however, to attain some indications of whether 

these goals have been achieved. For one, learners performance on authentic tasks that 

draw on transfer and self-regulation skills could be assessed repeatedly during 

instruction as well as immediately at the end of instruction and some time after that. 

Testing after instruction has ended is important; very often learners’ performance 

improvement is measured only during instruction and although there is nothing wrong 

with this, one should not confuse improvements in performance during instruction 

with actual learning (Bjork, 1999). The research on the contextual interference effect 

discussed in this chapter shows for example that performance during the learning 

phase is not always a good indicator for learning: blocked practice may lead to 

performance improvement during the learning phase compared to random practice, 
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although the latter is more effective on retention and transfer measures after the 

learning phase.  

In this chapter, we have repeatedly discussed the influence of learner 

characteristics, but primarily from a cognitive perspective. Students’ perceptions of 

instructional methods and learning environments can also affect the way in which 

they respond to instruction, and as a consequence, could affect their learning. For 

instance, Könings, Brand-Gruwel, and Van Merriënboer (2005) studied the 

perceptions of young Dutch students (13–16 years of age) who were confronted with 

an educational innovation, characterized by the use of meaningful learning tasks, 

more independent learning, and individualization. Whereas some students perceived 

this innovation as desirable and an impetus for their learning, others perceived it as 

undesirable and not helpful at all for promoting their learning.  

In conclusion, we hope that this chapter will stimulate instructional designers 

and researchers to design instruction that is compatible with the characteristics of the 

contemporary learning landscape, thereby enabling people to learn effectively and 

efficiently from complex cognitive tasks.  
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