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Abstract

Background: Many different cluster methods are frequently used in gene expression data analysis to find groups

of co–expressed genes. However, cluster algorithms with the ability to visualize the resulting clusters are usually

preferred. The visualization of gene clusters gives practitioners an understanding of the cluster structure of their

data and makes it easier to interpret the cluster results.

Results: In this paper recent extensions of R package gcExplorer are presented. gcExplorer is an interactive

visualization toolbox for the investigation of the overall cluster structure as well as single clusters. The different

visualization options including arbitrary node and panel functions are described in detail. Finally the toolbox can

be used to investigate the quality of a given clustering graphically as well as theoretically by testing the

association between a partition and a functional group under study.

Conclusions: It is shown that gcExplorer is a very helpful tool for a general exploration of microarray

experiments. The identification of potentially interesting gene candidates or functional groups is substantially

accelerated and eased. Inferential analysis on a cluster solution is used to judge its ability to provide insight into

the underlying mechanistic biology of the experiment.
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Background

Cluster analysis is frequently used in gene expression data analysis to find groups of co–expressed genes

which can finally suggest functional pathways and interactions between genes. Clusters of co–expressed

genes can help to discover potentially co–regulated genes or association to conditions under investigation.

Usually cluster analysis provides a good initial investigation of microarray data before actually focusing on

functional subgroups of interest. Genetic interactions are complex and the definition of gene clusters is

often not clear. Additionally microarray data are very noisy and co–expressed genes can end up in different

clusters. Therefore the set of genes may be divided into artificial subsets where relationships between

clusters play an important role.

In the literature numerous methods for clustering gene expression data have been proposed. Detailed

reviews of currently used methods and challenges with gene expression data are given in [1–3]. The display

of cluster solutions particularly for a large number of clusters is very important in exploratory data

analysis. Visualization methods are necessary in order to make cluster analysis useful for practitioners.

They give an understanding of the relationships between segments of a partition and make it easier to

interpret the cluster results. In hierarchical clustering dendrograms and heatmaps are routinely used

(e.g., [4]). The most popular group of partitioning cluster algorithms are centroid–based cluster algorithms

(e.g., K–means or Partitioning Around Medoids). Once a set of centroids has been found centroid–based

cluster solutions are usually visualized by projection of the data into two dimensions (e.g., by principal

component analysis). Silhouette plots [5] can be used to check whether clusters of points are well separated

whereas topology representing networks [6] reveal similarity between clusters. Neighborhood graphs [7]

combine these two approaches to visualize cluster structure.

In this paper recent extensions of R package gcExplorer [8] are presented. In the package neighborhood

graphs are used for visual assessment of the cluster structure. Several node functions can be used to add

further information to the graph, e.g., cluster size or cluster tightness. Additionally it is possible to use

distinct graphical symbols for the representation of single clusters, e.g. line plots or boxplots. Beside the

node function a panel function is implemented allowing to explore the corresponding clusters interactively

in more detail by looking at arbitrary cluster plots or HTML tables of the group of genes under

investigation. Further, external information about the genes like gene function or association to gene sets

like Gene Ontology [9] can easily be integrated into the exploration. Finally the toolbox can be used to

investigate the quality of a given clustering graphically as well as theoretically. In the functional relevance

test the association between a partition and a functional group under study is tested. Further, the validity
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of a cluster solution under different experimental conditions is tested.

Methods

The visualization methods discussed in this paper are designed for cluster solutions of partitioning cluster

algorithms where clusters can be represented by centroids (e.g., K–means and PAM or QT–Clust [10]).

Neighborhood graphs

Neighborhood graphs [7] use the mean relative distances between points and centers as edge weights in

order to measure how separated pairs of clusters are. Hence they display the distance between clusters. In

the graph each node corresponds to a cluster centroid and two nodes are connected by an edge if there

exists at least one point that has these two as closest and second–closest centroid.

For a given data set XN = {x1, . . . , xN} the distance between points x and y is given by d(x, y), e.g., the

Euclidean or absolute distance. CK = {c1, . . . , cN} is a set of centroids and the centroid closest to x is

denoted by

c(x) = argmin
c∈CK

d(x, c).

The second closest centroid to x is denoted by

c2(x) = argmin
c∈CK\{c(x)}

d(x, c).

The set of all points where ck is the closest centroid is given by

Ak = {n|c(xn) = ck}.

Now the set of all points where ci is the closest centroid and cj is second–closest is given by

Aij = {n|c(xn) = ci, c2(xn) = cj}.

For each observation x the shadow value s(x) is defined as

s(x) =
2d(x, c(x))

d(x, c(x)) + d(x, c2(x))
.

s(x) is small if x is close to its cluster centroid and close to 1 if it is almost equidistant between the two

cluster centroids. The average s–value of all points where cluster i is closest and cluster j is second closest

can be used as a proximity measure between clusters and as edge weight in the graph.

sij =

{

|Ai|
−1

∑

n∈Aij
s(xn), Aij 6= ∅

0, Aij = ∅
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|Ai| is used in the denominator instead of |Aij | to make sure that a small set Aij consisting only of badly

clustered points with large shadow values does not induce large cluster similarity.

Functional relevance test

Now the obtained similarity between clusters and the neighborhood graph can be used to evaluate a cluster

result at hand. The cluster structure can be used to decide whether the clustering is too coarse and needs

further subdivision to respect the data or if it is too fine and some clusters should be merged. On the one

hand this can be accomplished by defining some threshold t for the shadow value s above which two

clusters are merged. In the case of too large clusters more accurate clusters can for instance be obtained by

running the algorithm again with larger K.

On the other hand external knowledge about the data can be used to validate a given clustering. In the

case of microarray data a priori information about gene function or the association to functional groups

can be used as functionally related genes are more likely to be co–expressed. Clusters with similar

expression pattern are connected in the neighborhood graph. If functional group F is independent of the

experimental setup genes classified to group F will be assigned to arbitrary clusters, i.e., they are assumed

to be spread all over the neighborhood graph. Further, genes functionally independent of the experimental

setup do not have a common expression pattern. If functional group F plays a role in the experiment the

corresponding genes are more likely to show a typical pattern of either up– or down–regulation and there

should be clusters with accumulation of such genes.

Assigning all genes in the clustered data set to some functional group F yields proportions π1, . . . , πK

where K is the number of clusters or nodes and NF is the total number of genes in the data set assigned to

group F . If there is no association between the functional group and the cluster solution then all

proportions are the same, i.e., the differences between proportions dij = 0 where

dij = |πi − πj |, i, j = 1, . . . ,K.

If there is an association then some πk will be large and others small. The test for functional relevance of a

given clustering is conducted in a stepwise way.

Step 1: Perform a global test of the equality of proportions, i.e., test the null hypothesis that all

proportions πF
k are the same

H0 : dij = 0 ∀i, j = 1, . . . ,K.

The test procedure stops if there is no difference in proportions. But if there are significant differences in
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proportions each single difference has to be investigated in more detail. If the proportion of functionally

related genes is the same in two clusters these two clusters are similar with respect to functional group F

and can therefore be merged. This procedure yields separated subgraphs with common gene function

within the neighborhood graph.

Without knowledge about the cluster structure and the similarities between clusters given in the

neighborhood graph G each pair of clusters has to be tested for a significant difference in proportions, i.e.,

K(K − 1)/2 tests have to be conducted. Using the neighborhood structure only a fraction of all possible

pairs, i.e., clusters connected by an edge have to be tested. A further reduction of tests can be achieved by

taking into account only nodes where the number of functionally assigned genes is above a threshold m.

Step 2: Assess the significance of the observed differences with respect to a reference distribution by

permuting the function labels. The null hypothesis is again no difference in proportions.

• Select all clusters where the number of functionally assigned genes is above the predefined threshold

m and conduct all further calculations on the resulting subgraph G′.

• Calculate the difference between proportions dij , i, j = 1, . . . ,K for each edge in the subgraph.

• Permute the function labels, i.e., randomly assign N ′
F genes to functional group F , where N ′

F is the

number of assigned genes in the subgraph G′ with N ′
F ≤ NF . Compute the resulting differences in

proportions dl
ij , i, j = 1, . . . ,K and keep the respective maximum

M l = maxi,jd
l
ij

as used in [11] to form a reference distribution {M l}L
l=1 where L is the number of permutations

considered.

• Compute marginal tests whether a particular dij is extreme relative to the joint distribution M l, i.e.,

compute how often the maximum of the permuted differences in proportions is larger than the

observed one.

In other words, if the observed difference in proportions is very unlikely with respect to the reference

distribution of the maxima M l the edge will be removed. In this procedure a modified neighborhood graph

is formed for the cluster solution and functional group under investigation. In this modified graph two

clusters are only connected if they have

1. a large similarity value s and
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2. no significant difference in proportions of functionally related genes.

Compare cluster results

Validation of microarray cluster results is a challenging task (e.g., [2]) as there is in general no true cluster

membership. The quality of a cluster solution should be judged based on its ability to provide insight into

the underlying mechanistic biology. As described in the previous section the validity of a cluster solution

can be judged based on its ability to find groups of functionally related genes. Another approach is to find

genes with common mechanism of regulation by searching for groups of genes that show a common

response in different experiments.

For that purpose another test procedure was developed. We test how valid a given cluster solution is on a

different data set taking into account the average within cluster distance W = (w1, . . . , wK) where

wk =
1

|Ak|

∑

n∈Ak

d(xn, ck).

Let XN be the data matrix of N genes for a given experiment and let M be the vector of length N of the

corresponding cluster memberships. Further let YN be the data matrix of the same N genes in a different

experiment. In order to test if the cluster memberships M found for data set XN are also valid in data set

YN the following procedure is used.

1. Compute the new cluster centroids C̃K for data set YN using the vector of cluster memberships M .

2. For each cluster k compute the average within cluster distance of data points yn to their assigned

centroid c̃k, i.e.,

w̃k =
1

|Ak|

∑

n∈Ak

d(yn, c̃k).

3. Permute the cluster memberships, i.e., randomly assign the genes to clusters but do not modify

cluster sizes. Compute the resulting average within cluster distance w̃l
k for each cluster and keep the

W̃k = (w̃1
k, . . . , w̃L

k ) where L is the number of permutations considered.

4. Compute marginal tests for each cluster of whether a particular w̃k is extreme relative to the joint

distribution of W̃k.

For each k where k = 1, . . . ,K a single test is performed with the null hypothesis

H0 : w̃k = w̃l
k ∀l = 1, . . . , L
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and the alternative hypothesis is

H1 : w̃k < w̃l
k.

The null hypothesis is rejected if the propability of observing a smaller within cluster distance by randomly

assigning genes to clusters is less than e.g. 5%. In this case there is a relationship between the investigated

cluster solution on the original data set and on the new data set and genes with common expression

pattern across experiments are found.

Data

E. coli cultivation data were collected at the Department of Biotechnology of the University of Natural

Resources and Applied Life Sciences in Vienna. Two recombinant E. coli processes with different induction

strategies were conducted in order to evaluate the influence of the expression level of the inclusion body

forming protein NproGFPmut3.1 on the host metabolism [12]. The standard strategy with a single pulse of

inducer yielding in a fully induced system was compared to a process with continuous supply of limiting

amounts of inducer resulting in a partially induced system [13]. In order to analyze the cellular response to

different induction strategies on the transcription level two independent DNA microarray experiments were

performed. A dye–swap design was used and the cells in the non-induced state of each experiment were

compared to samples past induction. The two experiments are available at ArrayExpress

(http://www.ebi.ac.uk/microarray-as/ae/). The experiment with fully induced E. coli expression system

has accession number E-MARS-16 and the experiment with partially induced system has accession number

E-MARS-17. For standard low level analysis the data were preprocessed using print–tip loess

normalization. Differential expression estimates were calculated using Bioconductor ( [14],

http://www.bioconductor.org) package limma [15]. The two data sets were filtered by selecting genes with

p-value of the corresponding F-statistic smaller 0.05. Additionally, only genes expressed at a certain level

(average log intensity A larger 8) and genes with clearly defined pattern (log–ratio M larger ±1.5 at least

at one time point) were used. After filtering the data acquired from the experiment with a fully induced

E. coli expression system consists of 733 genes and the data acquired from the process with limited

induction consists of 429 genes.

For the functional relevance test another E. coli experiment was used where various mutants were

investigated under oxygen deprivation [16]. The mutants were designed to monitor the response from

E. coli during an oxygen shift in order to target the a priori most relevant part of the transcriptional

network by using six strains with knockouts of key transcriptional regulators in the oxygen response. These
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experiments provide expression profiles for 4205 genes derived from the original data set downloaded from

the Gene Expression Omnibus [17] with accession GDS680 by applying the altering steps described in [18].

Functional grouping

Cluster analysis is used to find groups of co–regulated genes in the microarray data without prior

knowledge about the gene functions. However, by clustering expression profiles of co–expressed genes

groups of genes with similar function are often found.

The annotation of genes to categories or classes is a very important aspect in the analysis of gene

expression data. The genes can for example be mapped to functional groups like Gene Ontology (GO, [9])

classifications or to protein complexes. Gene functions are very complex, therefore genes are usually

mapped to multiple classes. In any case the mapping is known a priori and does not depend on the data of

the currently investigated experiment.

External information about the annotation of genes to functional groups can easily be included in the

neighborhood graph, e.g., the accumulation of gene ontology (GO) classifications in certain gene clusters

can be highlighted in the node representation. In microarray data analysis gene ontology classifications

about Biological Process, Molecular Function and Cellular Component are typically investigated. In this

study experimental data from E. coli is used where further sources of external knowledge are the

GenProtEC ( [19], http://genprotec.mbl.edu/) classification system for cellular and physiological roles of

E. coli gene products and the RegulonDB ( [20], http://regulondb.ccg.unam.mx/) for detailed information

about operons and regulons.

Software and implementation

All cluster algorithms and visualization methods used are implemented in the statistical computing

environment R [21]. R package flexclust [7] is a flexible toolbox to investigate the influence of distance

measures and cluster algorithms. It contains extensible implementations of the K–centroids and QT–Clust

algorithm and offers the possibility to try out a variety of distance or similarity measures as cluster

algorithms are treated separately from distance measures. New distance measures and centroid

computations can easily be incorporated into cluster procedures. The default plotting method for cluster

solutions in flexclust is the neighborhood graph.

A linear projection of the data into 2 dimensions using for example linear discriminant analysis (LDA) has

the advantage that the lengths of edges in the graph are directly interpretable. However, LDA does not
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scale well in the number of clusters, and relationships between the centroids of more than 15 clusters can

hardly be displayed in the plane. As shown in [22] linear methods cannot be used for high–dimensional gene

expression data and a large number of clusters. R package gcExplorer [8] uses non–linear layout algorithms

implemented in the open source graph visualization software Graphviz (http://www.graphviz.org/) for the

display of neighborhood graphs. Bioconductor packages graph and Rgraphviz [23] provide tools for

creating, manipulating, and visualizing graphs in R as well as an interface to Graphviz. Rgraphviz returns

the layout information for a graph object, x- and y–coordinates of the graph’s nodes as well as the

parameterization of the trajectories of the edges. Several layout algorithms can be chosen:

dot: hierarchical layout algorithm for directed graphs

neato and fdp: layout algorithms for large undirected graphs

twopi: radial layout

circo: circular layout

The default layout algorithm in gcExplorer is “dot”. Even though distances between nodes and length of

edges are no longer interpretable when using non–linear layout algorithms the increase in readability and

clear arrangement is obvious.

The latest release of gcExplorer is always available at the Comprehensive R Archive Network CRAN:

http://cran.R-project.org/package=gcExplorer. Details on how to use the gcExplorer can be found in the

online appendix [see Additional file 1 for the vignette and Additional file 2 for the corresponding R code].

Results and Discussion
Exploratory analysis

Now the PS19 data is used to demonstrate the new functionality of gcExplorer. The data is clustered using

stochastic QT–Clust [24] yielding a cluster object which consists of 14 clusters.

The neighborhood graph of the cluster solution shown in Figure 1 allows a detailed view on the cluster

structure even for a large number of clusters. The nodes in the graph correspond to cluster centroids and

the shadow values between clusters defined above are used as edge weights. The thickness of an edge

between two clusters is proportional to their similarity. Related clusters are not forced to lie next to each

other in the graph as edges can have various lengths. For example cluster 13 located at the right end of the

graph is related to cluster 1 located in the top of the graph. Several groups of clusters can be found. The

9



clusters in the bottom left corner of the graph (e.g., clusters 3, 6, 12 and 14) are not connected to the

clusters in the right part of the graph (e.g., clusters 5, 9, 10 and 13) indicating that the corresponding

genes show very different expression profiles over time.

Color coding of nodes

In the graph shown above one single kind of node symbol is used for all nodes. This way no information

about the different clusters is revealed. There are several possibilities how to include additional information

in the representation of nodes. The most simple method is to use color coding, e.g., to color nodes by size

or tightness of the corresponding clusters. In this case the color of a node depends on the distribution of a

certain property over all nodes where the maximum will get the darkest and the minimum will get the

brightest color. Usually the smaller or tighter clusters are more interesting and can more easily be explored.

The percentage of genes in a cluster assigned to a functional group under investigation can also be used for

color coding. The visualization of functional groups in the graph is not only a validation of the cluster

method. It is also a very helpful tool for practitioners to quickly find subgroups of genes related to specific

functions under study.

Some examples of color coding are shown in Figure 2. In panel (a) cluster size is highlighted, i.e., dark node

symbols indicate large clusters and light node symbols indicate small clusters. In panel (b) cluster tightness

is used where dark nodes correspond to tight clusters which usually correspond to groups of genes with

clearly defined gene expression profiles. In panels (c) and (d) two functional groups are investigated. In

panel (c) clusters with accumulation of σ32–regulated genes are highlighted which are related to heat shock.

In panel (d) the GO term “flagellar motility” is shown which is part of the biological process classification.

Flagellar motility is an example of a functional group where the corresponding genes have similar

expression profiles and are therefore grouped into similar clusters (i.e., clusters 11, 3 and 14) which are

connected by edges in the neighborhood graph. In the case of σ32–regulated genes (panel (c)) there is no

clear relationship between the cluster solution and the functional group as the corresponding genes are

located in various clusters.

Node symbols

The second option for adding further information to the display of the neighborhood graph is to use

different graphical symbols for the representation of nodes. For that purpose gcExplorer makes use of R

package symbols ( [25], http://r-forge.r-project.org/projects/symbols). symbols is based on Grid [26], a
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very flexible graphics system for R. Grid features viewports, i.e., rectangular areas allowing the creation of

plotting regions all over the R graphic device. Due to the layout algorithms used in the gcExplorer nodes

remain quite large allowing large viewports for the visualization of nodes. Several grid–based functions are

implemented in package symbols which can directly be used as node functions in the gcExplorer.

The most natural node symbols in the case of time–course gene expression data are line plots showing the

gene expression profiles over time for either the cluster centroids or the whole group of genes in a certain

cluster. Figure 3 gives a very good overview of the cluster solution and the single gene clusters where

similarities in gene expression profile can directly be investigated. It can be seen that clusters containing

down–regulated genes are located in the bottom left part of the graph whereas up–regulated genes are

located in the right part of the graph. Further, there are no edges between clusters of up- and

down–regulated genes.

In order to visualize group memberships pie charts are frequently used. Figure 4 panel (a) shows the

portion of genes with F statistic (F) > 20 and F ≤ 20 respectively. In panel (b) of Figure 4 boxplots of the

log F statistic are shown.

Directed vs. undirected graph

The neighborhood graph is a directed graph as the similarity of cluster 1 to cluster 4 is different from the

similarity of cluster 4 to cluster 1 and so on. Besides plotting the original directed graph there are several

options how to plot edges taking into account for instance the mean, minimum or maximum of the

similarities between two clusters. In practice the mean similarity is frequently used especially when testing

the functional relationship between clusters (an example is given below).

Graph modifications

The non–linear layout algorithms implemented in Graphviz are optimized for the given set of nodes and

edges. Removing an edge or a node will result in a different graph which makes comparisons between

graphs rather complicated. R package gcExplorer contains the function gcModify which allows to modify a

given graph without changing the original layout. There are several possibilities how to modify a given

graph. However, it is only possible to remove nodes and edges from a larger graph. Adding new nodes and

edges is not allowed. The node symbols are independent of the graph structure so different node functions

can be used in each modified graph.

Sometimes only a subgraph of the original graph is of interest, e.g., clusters of all up–regulated genes. A
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subgraph can be created specifying either the set of nodes which should remain in the graph or by

specifying the nodes which should be removed from the graph. In the next step manual or automatic

zooming can be used to enlarge certain parts of the plot. An example of a subgraph is given in Figure 5.

Filtering by cluster similarity can be used to simplify the original neighborhood graph. Edges between

nodes are only drawn if the similarity between clusters is above a certain threshold, e.g., at least 10%. This

prevents the graph from being too complex. Examples of the neighborhood graph where different cutoff

values for drawing edges are shown are given in Figure 6.

Comparisons of different cutoff values as shown in Figure 6 are only possible when starting with the largest

set of edges.

Inferential analysis

Compare cluster solutions

Finally the goodness of the cluster solution of the PS19 data investigated so far is judged based on its

validity when applied to the PS17 experiment where the same set of genes was exposed to different

experimental conditions. Table 1 gives the results of the comp test consisting of cluster size, observed

average within cluster distance, the 5% quantile of the permuted average distances and the probability of

observing a lower within cluster distance by randomly assigning the genes to clusters. In this case 10 out of

14 clusters have a significantly smaller within cluster distance when using the cluster solution of the PS19

experiment compared to random assignment. In other words these 10 groups of genes form clusters under

different experimental conditions and are more likely to contain co–regulated genes.

Functional relevance test

Another possibility for external validation of a cluster solution is to test the functional relevance of single

edges, i.e., to test the relationship between a functional grouping and a cluster solution. In this example

the E. coli oxygen data set [16] is used and the GO term GO:0009061 (anaerobic respiration) is

investigated. The accumulation of genes involved in anaerobic respiration is displayed in Figure 7 left

panel. In the case of edge tests undirected graphs are used instead of the original directed graphs as each

pair of nodes is only tested once.

The output of function edgeTest (see Table 2) gives detailed information about the tested edges, i.e., the

corresponding cluster sizes, the difference in proportions and the p–value. Additionally, function edgeTest

gives the 95% quantile of the maxima of the permuted average distances which is 0.22 in this case. The
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p-values are now used to form a new similarity matrix using function newclsim. If the p–value of an edge

is smaller than 0.05 the edge weight is set to 0. This new similarity matrix based on the p–values of the

functional relevance test is finally used to draw a modified neighborhood graph where significant edges are

removed. In this case 11 edges have significant p–values and differences in proportions larger than 0.23. In

Figure 7 right panel the modified neighborhood graph is displayed. It can be seen that clusters 32, 43, 36,

34, 21 and 22 contain most of the genes involved in anaerobic respiration and form a disconnected

subgraph after testing the functional relevance of the edges.

Power simulations for the functional relevance test

The power of the functional relevance test is simulated on artificial cluster solutions. For defined

• datasize

• number of clusters

• difference in proportions between cluster 1 and 2

• proportion of grouped genes in cluster 1

• proportion of grouped genes in the total data set

a cluster solution is simulated where the difference in proportions between clusters 1 and 2 is fixed and the

remaining proportions are random. For a given setup the functional relevance test is run 1000 times where

only the power for the edge between clusters 1 and 2 is observed (see Table 3). The number of clusters is

10 in all data sets. It can be seen that the test performs best if the proportion of grouped genes in cluster 1

is large and the proportion of grouped genes in the total data set is small.

Conclusions

Clustering gene expression profiles is a helpful tool for finding biologically meaningful groups of genes

without prior information from databases. As the definition of gene clusters is not very clear and genetic

interactions are extremely complex the relationship between clusters is very important and co–expressed

genes can end up in different clusters. In order to make cluster analysis useful for practitioners the

interactive visualization tool gcExplorer was developed. It allows not only to visualize the cluster structure

in form of neighborhood graphs, beyond the gene clusters are plotted or shown in HTML tables with links

to databases. In this paper recent extensions of the package were presented including different node

13



representations using node coloring and the choice of node symbols. Additional properties of the clusters

like cluster size or cluster tightness can be highlighted as well as external information like functional

grouping. Graphs can be modified by removing nodes and edges or by zooming into a subgraph of interest.

Further, the functional relevance of a clustering can be tested using external information about gene

function from databases. Finally, the validity of a cluster solution can be judged based on its performance

on another data set where the same set of genes is investigated under different experimental conditions.

Availability and requirements

Project name: gcExplorer ; Project home page: http://cran.R-project.org/package=gcExplorer. Operating

system(s): A wide variety of UNIX platforms, Windows and MacOS. Programming language: R ; License:

GPL-2.

The gcExplorer package and its associated packages are part of the R/Bioconductor project, an

environment for statistical computing and bioinformatics. The R software environment is freely available

at http://www.r-project.org. The dependencies flexclust and Rgraphviz can be downloaded from CRAN

(http://cran.r-project.org) and the Bioconductor project website (http://bioconductor.org).
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Figures
Figure 1 - Neighborhood graph

Neighborhood graph of a cluster solution of the PS19 data.

Figure 2 - Color coding

Different options for color coding. Top left panel: cluster size, top right panel: cluster tightness, bottom

left panel: Sigma 32 regulated genes, bottom right panel: genes involved in flagellar motility.

Figure 3 - Gene expression profiles as node symbols

Neighborhood graph using line plots as node symbols where the gene expression profiles are plotted in grey

and the cluster centroids are plotted in red.

Figure 4 - Further node symbols

Neighborhood graph using pie charts (left panel) and boxplots (right panel) as node symbols.

Figure 5 - Subgraph

A subgraph of the neighborhood graph before zooming without specified node function (left panel) and

after zooming with node function (right panel).

Figure 6 - Edge modifications

Use of different cutoff values for drawing edges in the neighborhood graph. Top left panel: all edges, top

right panel: similarity > 10%, bottom left panel: similarity > 20%, bottom right panel: similarity > 30%.

Figure 7 - Functional relevance rest

Left Panel: Neighborhood graph of the oxygen data set where the mean edge method is used. Right Panel:

Neighborhood graph where significant edges are removed using the functional relevance test.
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Tables
Table 1 - Result of comp test

Judge the validity of the PS19 cluster solution for the PS17 data using the comp test.

size obs.av.dist 5%quantile.perm p.val.lower
1 302 0.58 0.95 0.00

2 299 0.55 0.94 0.00

3 41 0.65 0.83 0.00

4 59 0.62 0.85 0.00

5 52 0.73 0.84 0.00

6 31 0.61 0.79 0.00

7 30 0.66 0.78 0.00

8 26 0.82 0.77 0.10
9 14 0.52 0.68 0.00

10 10 0.38 0.62 0.00

11 10 0.70 0.63 0.12
12 5 0.49 0.45 0.07
13 12 0.96 0.66 0.53
14 10 0.62 0.63 0.04
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Table 2 - Result of functional relevance test

Functional relevance test of the E. coli oxygen data for functional group GO:0009061 (anaerobic

respiration).

Clsize1 Clsize2 Diff.in.Prop. P-value
1˜2 671 526 0.02 1.00
1˜3 671 424 0.01 1.00
4˜6 378 209 0.02 1.00
2˜7 526 121 0.01 1.00
4˜7 378 121 0.02 1.00
6˜8 209 108 0.01 1.00

4˜12 378 16 0.11 0.59
1˜14 671 33 0.14 0.51
2˜14 526 33 0.16 0.50
1˜16 671 13 0.11 0.59
3˜16 424 13 0.12 0.57
1˜21 671 9 0.40 0.00

3˜21 424 9 0.41 0.00

14˜21 33 9 0.26 0.05

14˜22 33 12 0.48 0.00

21˜22 9 12 0.22 0.13
4˜25 378 10 0.19 0.29
6˜25 209 10 0.17 0.34

12˜25 16 10 0.08 0.93
2˜32 526 11 0.34 0.01

7˜32 121 11 0.33 0.03

12˜32 16 11 0.24 0.05

22˜32 12 11 0.30 0.03

3˜34 424 6 0.30 0.03

5˜34 263 6 0.33 0.03

21˜34 9 6 0.11 0.77
2˜35 526 17 0.09 0.81

21˜36 9 5 0.04 1.00
34˜36 6 5 0.07 0.94
22˜43 12 9 0.44 0.00

32˜43 11 9 0.14 0.51
36˜43 5 9 0.18 0.33
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Table 3 - Power simulations for the functional relevance test

Power simulations for the functional relevance test using differences in proportion between 0.05 and 0.4.

Data size prop.c1 prop.all d 0.05 d 0.1 d 0.15 d 0.2 d 0.25 d 0.3 d 0.35 d 0.4
100 0.50 0.50 0 0.000 0.000 0.000 0.004 0.043 0.062 0.108
100 0.50 0.33 0 0.000 0.000 0.000 0.010 0.044 0.095 0.179
100 0.50 0.25 0 0.000 0.000 0.000 0.011 0.074 0.129 0.229
100 0.50 0.20 0 0.000 0.000 0.001 0.018 0.078 0.186 0.300
100 0.33 0.50 0 0.000 0.001 0.005 0.033 0.051 0.033 0.029
100 0.33 0.33 0 0.000 0.000 0.006 0.035 0.068 0.071 0.044
100 0.33 0.25 0 0.000 0.000 0.013 0.049 0.065 0.074 0.062
100 0.33 0.20 0 0.000 0.001 0.020 0.064 0.087 0.088 0.080
500 0.50 0.50 0 0.000 0.010 0.084 0.276 0.653 0.999 1.000
500 0.50 0.33 0 0.000 0.015 0.137 0.442 0.918 1.000 1.000
500 0.50 0.25 0 0.000 0.010 0.180 0.606 0.996 1.000 1.000
500 0.50 0.20 0 0.000 0.025 0.248 0.700 1.000 1.000 1.000
500 0.33 0.50 0 0.001 0.026 0.159 0.384 0.747 0.764 0.450
500 0.33 0.33 0 0.001 0.069 0.242 0.551 0.978 0.889 0.669
500 0.33 0.25 0 0.002 0.074 0.301 0.733 1.000 0.909 0.905
500 0.33 0.20 0 0.000 0.098 0.414 0.903 1.000 0.935 0.976
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Additional Files
Additional file 1

File format: PDF

Title: gcExplorer Vignette

Description: A detailed description of how to perform the analysis with the gcExplorer shown in this paper.

Additional file 2

File format: TXT

Title: R Code

Description: The corresponding R commands to perform the analysis with the gcExplorer shown in this

paper.
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