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RESEARCH ARTICLE Open Access

An olfactory ‘stress test’ may detect preclinical
Alzheimer’s disease
Peter W Schofield1*, Houman Ebrahimi2, Alison L Jones3, Grant A Bateman4 and Sonya R Murray5

Abstract

Background: The olfactory bulb (OB) receives extensive cholinergic input from the basal forebrain and is affected
very early in Alzheimer’s disease (AD). We speculated that an olfactory ‘stress test’ (OST), targeting the OB, might be
used to unmask incipient AD. We investigated if change in olfactory performance following intranasal atropine was
associated with several known antecedents or biomarkers of AD.

Methods: We measured change in performance on the University of Pennsylvania Smell Identification Test (UPSIT)
in the left nostril before (20-items) and after (remaining 20-items) intranasal administration of 1 mg of atropine.
We administered cognitive tests, measured hippocampal volume from MRI scans and recorded Apolipoprotein E
genotype as indices relevant to underlying AD.

Results: In a convenience sample of 56 elderly individuals (14 probable AD, 13 cognitive impairment no dementia,
29 cognitively intact) the change in UPSIT score after atropine (‘atropine effect’=AE) correlated significantly with
demographically scaled episodic memory score (r = 0.57, p< 0.001) and left hippocampal volume (LHCV) (r = 0.53,
p< 0.001). Among non-demented individuals (n = 42), AE correlated with episodic memory (r = 0.52, p< 0.001)
and LHCV (r = 0.49, p< 0.001) and hierarchical linear regression models adjusted for age, gender, education, and
baseline UPSIT showed that the AE explained more variance in memory performance (24%) than did LHCV (15%).
The presence of any APOE E4 allele was associated with a more negative AE (p = 0.014).

Conclusions: The OST using atropine as an olfactory probe holds promise as a simple, inexpensive screen for early
and preclinical AD and further work, including longitudinal studies, is needed to explore this possibility.

Background
Recent clinico-pathological studies suggest that up to
40% of the non-demented elderly have Alzheimer’s dis-
ease(AD) pathology at autopsy in amounts sufficient to
justify a neuropathological diagnosis of the disease [1]. It
is plausible that such individuals would have progressed
to clinically apparent AD had they lived long enough.
A simple, inexpensive, widely-available test that could
identify such individuals in vivo would facilitate the
enrichment of investigational drug trials and would clearly
have great value once disease-modifying agents for AD
become available.
The neuropathological changes of AD arise initially

within temporal lobe structures and the olfactory bulb

(OB) [2,3]. Olfactory impairment is a characteristic fea-
ture of clinically-established AD which may arise earlier
in its evolution [4–7]. Cholinergic neurons are especially
vulnerable to the effects of β-amyloid [8] which is pro-
duced in excess in AD and, at least in an animal model,
has been shown to deposit in the OB very early in the
disease [9]. The OB receives a large cholinergic input
from the basal forebrain and modulation of cholinergic
function at the level of the OB has been shown to
significantly impact olfactory functioning [10,11]. In a re-
cent study of individuals with AD, treatment with the
cholinesterase inhibitor (i.e. pro-cholinergic) drug donepe-
zil led to improvements in global functioning that were
best predicted by treatment-related changes in olfactory
test performance [12]. Anticholinergics cause exaggerated
cognitive decline in those with AD relative to normal con-
trols [13] and we hypothesized that such agents might
also have an exaggerated impact on olfactory function
in those with the disease. The OB is separated from the
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nasal cavity by the thin cribriform plate and a range of
pharmacological agents have been shown to concentrate
in the OB when administered intranasally [14,15]. We
hypothesized that the anticholinergic drug atropine, given
as a nasal spray, might concentrate in the OB where,
by impacting cholinergic pathways already compromised,
it could cause exaggerated reduction in olfactory perform-
ance in those with underlying AD pathology, and thus
‘unmask’ incipient AD. In which case, within an appropri-
ate sample of elderly individuals, we would expect to find
associations between the change in olfactory performance
due to the atropine and other potential antecedents or
biomarkers of AD, including Apolipoprotein E genotype,
memory performance and hippocampal volume. Our
study was designed to explore these associations.

Methods
We recruited study participants through our memory dis-
orders clinic, by referral from interested colleagues and
word of mouth and they were seen over the period
November 2009 to August 2010. Spouses and friends of
patients were recruited as controls. Our intent was to
assemble a sample of individuals spanning a spectrum
from cognitively normal through to mildly demented due
to AD. The study was approved by the Hunter New
England Human Research Ethics Committee, and all par-
ticipants provided written consent. Potential participants
were all 65 years or older and lacked conditions other
than AD likely to affect cognition, such as past traumatic
brain injury, stroke, active psychiatric illness or major
medical illnesses. Participants underwent clinical assess-
ment comprising history, neurological examination and
focused physical examination. The Mini Mental State
Examination (MMSE)[16] and the Audio Recorded
Cognitive Screen (ARCS), a cognitive assessment instru-
ment that we have developed [17], were administered.
The ARCS probes five cognitive domains (episodic memory,
language, visuospatial function, fluency, and attention/
executive function) and also generates an overall global
score [http://www.cognitionhealth.com]. All raw scores
can be scaled, based on normative data, according to
age, gender and education, whereby expected (i.e. nor-
mal) performance is 100 (SD 15). The ARCS has good
psychometric properties and has been used in a variety
of clinical settings [17–19]. On the basis of the assess-
ments above, participants were grouped into three cat-
egories: probable Alzheimer’s disease (AD) based on
DSM IV [20] and NINCDS-ADRDA [21] criteria, cognitive
impairment (CI), or normal control (NC). The diagnosis of
CI was made when performance on any one of the cogni-
tive domain scores on the ARCS fell more than 1.5 SD
below appropriate norms for age, gender and education
[17], and the individual did not meet criteria for dementia
(general functioning was intact and MMSE was 24 or

greater). Participants were adjudged normal if they did not
meet criteria for either CI or dementia.

The olfactory stress test (OST)
We used the well-validated 40-item University of
Pennsylvania Smell Identification Test (UPSIT) [22]
‘scratch and sniff ’ instrument in which odors are presented
for recognition in a multiple-choice format. For the OST,
20 items of the UPSIT (UPSIT_20) were initially adminis-
tered to the left nostril (with the right nostril occluded by
a wad of cotton wool) after which 1 mg of atropine (0.1ml
of 10mg/ml solution) was sprayed high into the left nostril.
Atropine sulphate at 1 mg was chosen because its half-life
is of a few hours, and because it is safely used at that dose
intravenously in routine clinical practice. The patient then
adopted a crouching head down position for one minute
(the ‘Mecca Position’) to retain the spray. The remaining
20 items of the UPSIT were administered 40–45 min later
through the left nostril, again with the right nostril
occluded. The change in UPSIT score from baseline to
post atropine, or ‘atropine effect’ (AE), represented an ob-
jective measure of the impact of atropine on olfactory
functioning. Subjects were block randomised with respect
to order of UPSIT (first or the second set of 20 items
administered at baseline).The internal consistency correl-
ation for 20-item fractions of the 40- item UPSIT is of the
order of 0.86 [23].

Manual hippocampal volumetry
Magnetic Resonance (MR) acquisitions were performed
on a Siemens Avanto 1.5 T MR scanner (Siemens AG,
Erlangen, Germany). A true inversion recovery sequence
(TR 4000 ms, TE 373 ms, TI 350 ms) was used to pro-
vide strongly T1-weighted 2 mm coronal slices for man-
ual measurement. Using the departmental PACS image
viewer and with reference to a validated manual tracing
method [24,25] the hippocampi were traced on each of
the relevant images. Total hippocampal volume was
obtained by summation of the area measurements of
each tracing multiplied by the slice thickness. We chose
to use left hippocampus for the purposes of analysis, this
being the same side as the olfactory structures being
challenged and bearing in mind that our ARCS instru-
ment probes verbal episodic memory. Two independent
raters (HE and CA) made measurements blinded to the
clinical status of the study participant. For 10 randomly
selected left hippocampi the inter-rater intraclass correl-
ation was 0.78 and for 10 random remeasured left hippo-
campi the intra-rater intraclass correlations were r = 0.90
and 0.89 respectively.

Correction for intracranial volume (ICV)
A 3-D T1-weighted gradient-echo sequence (MPRAGE,
Siemens) was used with the FreeSurfer image analysis suite
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[26]. Up to eight simultaneous analyses were performed
on an eight-core Mac Pro with 16 GB RAM (Apple Inc.,
Cupertino, CA) with an average recon-all time of 19 hours
per subject [http://surfer.nmr.mgh.harvard.edu].
Given the inherent difficulty of determining the

CSF/skull interface on T1-weighted images, FreeSur-
fer uses an atlas normalization procedure to deter-
mine total intracranial volume. Although an estimate,
this is a validated method for standardizing hippo-
campal volume for intracranial volume [27] which we
did using the covariance approach described by Jack
et al. [24].
Apolipoprotein E (APOE) genotyping for the presence

of the three main alleles, E4, E3 and E2 was conducted on
all study participants.

Statistics
SPSS version 19.0 was used for all analyses. Chi squared
was used for comparison of categorical data. ANOVA
was used to compare clinical groups with respect to
basic demographic, cognitive and olfactory measures,
with Scheffe followup pairwise comparisons. Univariate
associations between AE, LHCV, baseline olfaction,
APOE and cognitive measures were initially explored
using Pearson correlations. Linear regression analyses
were used to assess the associations between key inde-
pendent variables (AE and LHCV) and memory, while
adjusting for potential confounding variables. Logistic re-
gression was used to quantify the association between
APOE E4 allele and dichotomous AE.

Results
Table 1 summarises the characteristics of the sample by
cognitive category. All participants were 65 years or
older (mean 75.0, SD 6.0); mean years of education was
10.9 (SD 3.0); 25 (45%) of the subjects were males and
31 (55%) females. The initial sample comprised 29 cogni-
tively normal (NC), 14 with cognitive impairment (CI)

and 17 meeting clinical criteria for AD. Two individuals
with dementia meeting clinical criteria for AD performed
at chance level (5/20) on baseline testing with the
UPSIT_20 and another was found to have lacunar
infarcts bilaterally in the hippocampi (her atropine effect
(AE) was 0). One participant with CI was noted to have
changes of a right parietal lobe stroke that may have
affected her cognition (her AE was also 0). These indivi-
duals were all excluded from further analyses. Three
individuals declined MRI scanning, and two had contra-
indications to MRI scanning but all were retained in the
sample, leaving 56 in all.
There were significant cognitive group-specific differ-

ences in MMSE (NC, CI>AD), global ARCS (NC>CI
>AD), and scaled memory domain scores (NC>CI,
AD). Mean baseline UPSIT scores (UP_20) did not differ
between NC and CI, but both were significantly greater
than that for the AD group (Table 1). By contrast, mean
AE differed between NC and both CI and AD groups,
but there were no group-specific differences in AE
between CI and AD. Similar findings were present for left
hippocampal volume, adjusted for ICV (LHCV), which
was greater in the NC than in either CI or AD groups.
AE ranged from +5 to −6. Figure 1 depicts the distri-

bution of AE by cognitive category. AE< 0 was present
in 31% NC, 92% with CI and 86% with AD. Figure 2
shows the scatter plot of AE against scaled memory
score. Figure 3 shows the scatter plot of AE and LHCV.
The univariate associations between AE, baseline

UPSIT_20, LHCV, APOE genotype and scaled cognitive
domain scores are depicted in Table 2. Correlations
within the entire sample and in the non-demented sub-
sample showed highly significant associations between
AE, scaled memory domain score and LHCV. Baseline
UPSIT_20 score was significantly associated with memory,
but not with either LHCV or APOE genotype. Within the
dementia sample, LHCV was significantly associated with
overall cognition, memory, and visuospatial function.

Table 1 Participant characteristics

NC n=29 CI n=13 AD n=14 Significance n=56

Age 74.0 (6.6) 77.1 (5.6) 75.3 (4.6) F(2,53) = 1.3, P= 0.28

Female n, (%) 20 (69) 7 (54) 4 (29) χ(2)2 =6.2, P= 0.04

Education y (SD) 10.6 (3.1) 11.3 (3.3) 11.1 (2.6) F(2,53) = 0.33, P= 0.77

MMSE (SD) 29.0 (1.6) 27.6 (2.4) 23.6 (4.0) F(2,53) = 21.0, P< 0.001, NC, CI>AD

ARCSg 107.2 (9.3) 84.7 (10.8) 57.2 (21.1) F(2,53) = 66.2,P< 0.001, NC> CI>AD

Mem 104.0 (11.5) 72.1 (19.9) 60.4 (12.9) F(2,53) = 52.7,P< 0.001, NC> CI, AD

UPSIT_20 14.3 (2.6) 14.6 (2.9) 10.4 (2.7) F(2,53) = 11.5, P< 0.001, NC, CI>AD

AE 0.28 (2.15) −2.77 (2.71) −2.43 (1.45) F(2,53) = 12.5, P< 0.001, NC>CI, AD

LHCV 1819 (370) 1410 (363) 1385 (293) F(2,48) = 9.1, P< 0.001, NC> CI, AD

Numbers shown represent mean (SD). NC: Normal Control; CI: Cognitive Impairment; AD: Alzheimer’s Disease; ARCSg: Scaled global score on the Audio Recorded
Cognitive Screen (ARCS); Mem: Scaled memory domain score on the ARCS; UPSIT_20: Score on 20 items of the 40 item University of Pennsylvania Smell
Identification Test; AE: Atropine Effect; LHCV: Left hippocampal volume adjusted for intracranial volume (cubic mm).
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We conducted a series of linear regression analyses
within the non-demented sample with memory domain
score as the outcome. (See Table 3). In hierarchical
regression analyses, age, gender and education were
entered together, then baseline UPSIT_20 score and then
either LHCV (Model 1) or AE (Model 2) separately. AE
explained more variance (24%) in memory scores than
did LHCV (15%). Next, we entered the same 4 initial
variables, then AE followed by LHCV (Model 3). In this
model, LHCV explained only 2% additional variance in
memory, after accounting for that explained by AE. By
contrast, in Model 4 in which AE was entered after

LHCV, AE accounted for an additional 15% in the vari-
ance: equal to that explained by LHCV in the same
model. Analytic models run without baseline UPSIT_20
score gave essentially the same results. Finally, in a linear
regression model predicting memory domain score with
age, gender, education, LHCV and AE entered simultan-
eously, AE (t = 3.3, p = 0.003) but not LHCV (t = 1.2,
p = 0.24) retained significance.

Apolipoprotein E associations
One or more APOE E4 alleles were present in 50%
of individuals with dementia, 46% with CI, and 31% NC
(χ2 =1.76, p = 0.41). Relative to no E4, the presence of E4
was associated with lower mean AE in the entire sample
(any E4: -2.14, no E4: -0.44, t-test, p = 0.014), in non-
demented individuals (any E4: -1.73, no E4: -0.07,
p = 0.056) and in those with dementia (any E4: -3.00, no
E4: -1.86, p = 0.15). The percentages of AE <0 in the NC
(31%) and AD (86%) subgroups were very similar to the
respective rates of AD pathology at autopsy in cogni-
tively normal samples and clinically diagnosed AD, so we
chose AE <0 as potentially indicative of underlying AD
pathology for the purposes of exploratory analyses.
Within the entire sample, with the AE< 0 as the out-
come in a binary logistic regression adjusted for age, any
APOE E4 (relative to no E4) was associated with signifi-
cantly increased risk (Odds Ratio (OR) 3.53, 95% confi-
dence interval 1.09-11.38). Limiting the analysis to the
non-demented sample (OR 3.17, 95% confidence interval
0.84-11.94) slightly reduced the odds, with loss of statis-
tical significance.
Finally, in analyses stratified by APOE status, correlations

between AE and scaled memory score (no E4 (n=34)
r = 0.58, p< 0.001; any E4 (n=22) r = 0.49, p< 0.05), and

Figure 1 Atropine effect by cognitive group. NC: Normal Control;
CI: Cognitive Impairment; AD: Alzheimer’s disease. Box & whiskers
plots showing the median as a line and the boxes representing the
inter-quartile range (25%-75%). Whiskers indicate 5-95 percentile.
In terms of the atropine effect score, impaired study participants
were much more like those with clinically diagnosed Alzheimer’s
disease than controls, however there was broad overlap. AE< 0 was
present in 9/29 (31%) NC, 12/13 (92%) with CI and 12/14 (86%) with
AD. The rates of AE< 0 in the normal controls and individuals with
AD in this study are very similar to the rates of underlying AD at
autopsy reported in the literature in comparable clinical groups.

Figure 2 Atropine effect vs. scaled memory domain score.
Almost without exception, low memory performance is associated
with negative atropine effect (r = 0.57, P< 0.0001), but among those
who perform well on memory performance there is a substantial
range of atropine effect.

Figure 3 Atropine effect vs. left hippocampal volume. A strong
relationship exists between atropine effect and hippocampal volume
(r = 0.53, P= 0.0001) with more negative scores on AE associated
with more atrophic hippocampi.
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AE and LHCV (no E4 (n=30) r = 0.56, p= 0.001; any E4
(n=21) r = 0.44, p< 0.05), retained statistical significance.

Discussion
In this study, the change in performance on a standard
olfactory identification test, following an intranasal anti-
cholinergic challenge, (i.e. the AE), correlated strongly
with several well-recognized biomarkers or antecedents
of AD. These associations were significantly stronger than
those between baseline (i.e. conventional) olfactory testing
and the relevant biomarkers, and were preserved when
the analytic sample was restricted to non-demented study
participants. Linear regression analyses showed that the
AE explained more variance in memory performance in

non-demented individuals than did hippocampal volume,
inviting speculation that the AE might represent a proxy
for a process more salient than hippocampal atrophy in
the early stages of AD.
In previous, larger studies of elderly individuals the

results of conventional olfactory testing (i.e. comparable
to our baseline testing during the OST) have been shown
to correlate only modestly with cognitive performance
and hippocampal volume. Among 1092 non-demented
elderly participants in a recent community-based study
[7], UPSIT scores correlated with delayed recall (r = 0.28)
and, in a subsample of 571, hippocampal volume
(r = 0.16), comparable to the estimates we obtained
between baseline UPSIT and memory (r = 0.11) and
hippocampal volume (r = 0.12) among non-demented
individuals in the current study but substantially less
than the correlations between AE and memory (r = 0.52)
and hippocampal volume (r= 0.49) within the same sam-
ple. Other studies have examined the value of conventional
olfactory testing for predicting subsequent cognitive de-
cline [5,6,28,29]. Of these, several have demonstrated an
interaction between olfaction and APOE genotype status
indicating that the predictive value of olfactory testing may
be restricted largely to individuals who are APOE E4 posi-
tive [6,28]. Presumably, this reflects the greater probability
that any olfactory decline is due to underlying AD (rather
than to other non-specific local nasal pathology) in those
at increased genetic risk for this condition, relative to the
situation in APOE E4 negative individuals. By contrast,
correlations between AE of the OST and cognitive mea-
sures and hippocampal volume in the current study were
at least as strong within the APOE E4-negative sample
relative to E4-positive individuals. Together, the above
results suggest that the OST (AE) may be more sensitive

Table 2 Pearson correlations between baseline UPSIT, AE, LHCV and APOE and cognitive test scores

All participants n=56

UP_20 APOE LHCV MMSE ARCSg Mem Flu Lang VS Atten

UPSIT_20 1 −0.04 0.17 0.43** 0.41** 0.39** 0.15 0.19 0.46** 0.40**

AE 0.06 −0.33* 0.53** 0.37** 0.51** 0.57** 0.36** 0.38** 0.28* 0.31*

LHCV 0.17 −0.12 1 0.45** 0.56** 0.57** 0.34* 0.40** 0.43** 0.28*

Non – Demented n=42

UPSIT_20 1 −0.05 0.12 0.33* 0.12 0.11 −0.10 −0.02 0.25 0.17

AE −0.15 −0.30 0.49** 0.22 0.50** 0.52** 0.31* 0.29 −0.02 0.21

LHCV 0.12 −0.08 1 0.29 0.44** 0.47** 0.14 0.23 0.23 0.15

AD n=14

UPSIT_20 1 0.28 −0.53 −0.17 −0.31 −0.04 −0.42 −0.34 −0.07 0.18

AE −0.05 −0.41 0.52 0.50 0.48 0.47 0.16 0.38 0.46 −0.03

LHCV −0.53 −0.16 1 0.58* 0.80** 0.71** 0.48 0.54 0.59* 0.10

* P< 0.05; ** P< 0.01; UP_20: Score on 20 items of the 40 item University of Pennsylvania Smell Identification Test (UPSIT_20); AE: Atropine Effect; LHCV: Left
hippocampal volume adjusted for intracranial volume; APOE: Apolipoprotein E allele dichotomised (no E4= 0, any E4= 1); MMSE: Mini Mental State Examination;
ARCSg: Scaled global score on the Audio Recorded Cognitive Screen (ARCS); Mem: Scaled memory domain score on the ARCS; Flu: Scaled fluency domain score on
the ARCS; Lang: Scaled language domain score on the ARCS; VS: Scaled visuospatial domain score on the ARCS; Atten: Scaled attention/executive domain score on
the ARCS.

Table 3 Hierarchical linear regression models predicting
memory domain score

Independent variable ΔR2 ΔF Standardised
Beta

P value

Model 1 (R2 =0.39)

LHCV 0.15 7.9 0.42 0.008

Model 2 (R2 =0.49)

AE 0.24 17.1 0.51 0.0002

Model 3 (R2 =0.54)

AE 0.28 19.2 0.54 0.0001

LHCV 0.02 1.28 0.17 0.27

Model 4 (R2 =0.54)

LHCV 0.147 7.9 0.42 0.008

AE 0.151 10.5 0.46 0.003

LHCV: Left hippocampal volume adjusted for intracranial volume; AE:
Atropine Effect.
In all models, age, gender, education were entered first, then baseline UPSIT. In
model 3, AE was entered next, followed by LHCV. In model 4, this order was
reversed. Restricted to non-demented (n= 39 for analyses including LHCV,
n= 42 for model 2).
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and specific for underlying AD pathology than is conven-
tional olfactory testing.
Clinicopathologic studies of non-demented individuals

have shown associations between antemortem cognition,
particularly episodic memory, and the ‘burden’ of AD
pathology at autopsy [1,30]. In one study, the strongest
association was between limbic ‘diffuse senile plaques’
and logical memory (r =−0.58) [1]. Mortimer et al. [30]
found associations between neurofibrillary counts and
Braak stage (as indices of AD pathology) [2] and delayed
memory one year prior to death. When hippocampal vol-
ume was added to the linear regression models, it alone
remained a significant predictor of memory,
suggesting that the effect of the neuropathology was
mediated through hippocampal atrophy [30]. Similar con-
clusions have been reached from studies using Pittsburgh
Compound B (PiB) Positron Emission Tomography (PET)
imaging to detect insoluble amyloid deposits in the
brain. In one such study, the PiB index of amyloid depos-
ition within a combined sample of normal controls and
PiB+MCI subjects was significantly associated with both
episodic memory and hippocampal volume (HCV) [31].
However, when PiB index and HCV were both entered
into a regression model predicting episodic memory, only
HCV was significant. Our findings stand in direct contrast
to these results. AE but not LHCV remained as the sig-
nificant predictor of episodic memory in analyses, similar
to those described above, in which both variables were
included. This suggests that AE is a proxy for a process
that subsumes hippocampal atrophy in the evolution of
AD. Biological plausibility for the relevance of AE with
respect to AD pathology is further supported by the
strength of the relationship between AE< 0 and the
APOE genotype. The odds ratios we obtained were very
similar to the increased risk of AD due to APOE E4 that
has been estimated from clinical and pathological studies
[32,33].
Structural and functional mechanisms warrant consid-

eration in relation to the findings we report. The OB
receives massive cholinergic input from the basal fore-
brain [34]. Neuropathological studies have consistently
demonstrated a profound loss of cholinergic neurons in
the Nucleus of Meynert (Ch4) in the presence of other
pathological features of AD [35,36]. Similar changes in
the adjacent Ch3 nucleus, which provides the rich cho-
linergic innervation to OB, have also been documented
[10,37]. Damage to cholinergic structures occurs early in
the evolution of AD, although how early, and to what
extent, remains contentious [35]. Physiologically relevant
concentrations of β-amyloid specifically interfere with
cholinergic neurons and neurotransmission [36]. In neu-
ronal culture/in vitro studies, β-amyloid has been shown
to reduce high affinity choline uptake, decrease the rate
of acetylcholine (ACh) synthesis, inhibit ACh release, and

impair muscarinic receptor activation of G proteins
[8,36]. Elegant studies by Bales and colleagues produced
very direct and compelling evidence for the negative
impact of β-amyloid on cholinergic function [38]. These
workers measured ACh release within the hippocampus
using an in vivo microdialysis technique in awake,
moving mice. Measurements were made in PDAPP
transgenic (a well-characterized model of AD in which
β-amyloid is over-expressed) and wild type (WT) mice.
Relative to WT, PDAPP mice had significantly lower
basal production of ACh. When the experimental ani-
mals were injected with the pan-muscarinic receptor
antagonist scopolamine, WT mice showed a seven-fold
increase over basal rate in hippocampal ACh production,
but the response in transgenic animals was very signifi-
cantly blunted. Finally, when PDAPP mice were pre-
treated with a monoclonal anti β-amyloid antibody
(m266), the deficient, blunted ACh response to scopol-
amine was normalised [38]. The results implicate soluble
β-amyloid in the differential response of cholinergic
neurons to an anticholinergic. Soluble β-amyloid within
olfactory structures, perhaps the OB specifically, might
account via similar mechanisms for the results we have
obtained in the current study. Specifically, post-synaptic
cholinergic blockade might be overcome by enhanced
ACh release in normals but the absence of such a
response, related to amyloid, could explain a reduction in
olfactory performance from variable degrees of transient
cholinergic transmission failure. Noteworthy in this con-
text, Wesson et al. have recently shown in the Tg2576
(APP over-expressing) mouse model that soluble amyloid
appears earlier in the OB than in any other brain region,
and is associated with olfactory deficits [9]. The soluble
form of β-amyloid, including oligomers of dimers and
trimers, rather than the insoluble fibrillary form, such as
is detected by PiB imaging, may be most toxic [39,40], is
present before the development of amyloid plaques [41],
and has been shown to correlate better with cognition
than does fibrillary amyloid [42].
There are both uncertainties and important limitations

in relation to our study and it would be premature and
inappropriate at this point to apply the OST in a clinical
context to aid in diagnosis or prognostication. Based on
its modest molecular weight, lipophilic properties, and
the fact that it is known to cross the blood brain barrier,
we hypothesized that atropine sulphate would concen-
trate in the OB when delivered intranasally, as other
small drugs have been shown to do [15]. However, we
have no direct evidence either from the literature or
from our own study to support that. It is possible, for ex-
ample, that the atropine effect we have observed reflects
the consequences of systemically-absorbed atropine op-
erating more diffusely on cholinergic pathways within
the olfactory sytem. We did not administer a control,
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pharmacologically inactive, nasal spray to any of our par-
ticipants and it could be questioned whether our results
could have arisen due to some non-specific effect of a
nasal instillation. In the absence of data, we cannot abso-
lutely refute such a criticism. However, based on the co-
herence of the findings, all predicted a priori, of
associations between atropine effect and each of mem-
ory, hippocampal volume and APOE genotype, it seems
implausible that these could be accounted for by some
chance effect not under pinned by relevant biology. In
future studies, we will additionally administer a non-
active spray to a subset of study participants to address
this concern directly. The current sample was relatively
small. Inter- and intra-rater reliability of hippocampal
volume estimation was lower than has sometimes been
reported in the literature [7] and it is possible that meas-
urement error may have diminished the apparent associ-
ation between hippocampal volume and other measures.
In particular, this may have inflated the contribution of
AE, relative to hippocampal volume, in our regression
analyses predicting memory score. However, the correla-
tions we obtained between hippocampal volume and
baseline UPSIT score, and between hippocampal volume
and memory score, were very similar to those obtained
in other mixed samples of cognitively normal and
impaired individuals [7,43]. The current study does not
speak to the specificity of the OST in terms of aetiology
because we deliberately excluded individuals in whom
conditions other than AD might have contributed to
cognitive decline. We are undertaking further studies
with larger samples, more diagnostic heterogeneity and
longitudinal followup to better characterize the proper-
ties of the OST. The results of such studies would need
to be carefully evaluated before consideration could be
given to the use of the OST in clinical practice.
Finally, we note that the OB is a complex structure

which contributes to olfactory processing by engaging at
least 20 different neurotransmitters [4] and it seems
plausible that the olfactory stress test technique could
serve more broadly as a ‘window on the brain’. Appropri-
ate pharmacological probes could potentially be chosen
for intranasal administration to target specific neurotrans-
mitters known to be implicated both in olfactory function-
ing and a neuropsychiatric condition of interest. For
example, we are currently examining the effects of intra-
nasal methylphenidate and ketamine on olfactory func-
tioning in controls and individuals with schizophrenia
seeking group-specific differences that might be salient.

Conclusion
A simple, inexpensive ‘stress test’ of olfaction warrants
further evaluation as a possible screen for early and pre-
clinical Alzheimer’s disease. More generally, the approach
we have outlined potentially could, using appropriate

pharmacological stressors, constitute a window on the
brain for early detection of, or identification of
vulnerability for, other neuropsychiatric conditions in which
olfactory disturbances are characteristic.
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