2007

A maximum likelihood watermark decoding scheme

Wenming Lu
University of Wollongong, wl86@uow.edu.au

Wanqing Li
University of Wollongong, wanqing@uow.edu.au

Rei Safavi-Naini
University of Wollongong, rei@uow.edu.au

Philip Ogunbona
University of Wollongong, philipo@uow.edu.au

Publication Details
This conference paper was originally published as Lu, W, Li, W, Safavi-Naini, R, Ogunbona, P, A Maximum Likelihood Watermark Decoding Scheme, 2007 IEEE International Conference on Multimedia and Expo ICME 2007, Beijing, 2-5 July 2007, 1247-1250. The original paper is available here.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Abstract
Based on the observation that an attack applied on a watermarked image, from a decoding point of view, modifies the distribution of the detection values away from the ideal distribution (without attack) for corresponding watermarking scheme, we propose a generic maximum likelihood decoding scheme by approximating the distribution with a finite Gaussian mixture model. The parameters of the model are estimated using expectation-maximization algorithm. The scheme allows the decoding to be automatically adapted to attacks that the watermarked images have undergone and, in consequence, to improve the decoding accuracy. Experiments on a QIM based watermarking system have clearly verified the significant improvement of the decoding accuracy achieved by the proposed maximum likelihood decoding in comparison to conventional threshold decoding.

Disciplines
Physical Sciences and Mathematics

Publication Details
This conference paper was originally published as Lu, W, Li, W, Safavi-Naini, R, Ogunbona, P, A Maximum Likelihood Watermark Decoding Scheme, 2007 IEEE International Conference on Multimedia and Expo ICME 2007, Beijing, 2-5 July 2007, 1247-1250. The original paper is available here.
A maximum likelihood watermark decoding scheme

Wenming Lu, Wanqing Li, Rei Safavi-Naini, Philip Ogunbona
University of Wollongong, Australia

ABSTRACT

Based on the observation that an attack applied on a watermarked image, from a decoding point of view, modifies the distribution of the detection values away from the ideal distribution (without attack) for corresponding watermarking scheme, we propose a generic maximum likelihood decoding scheme by approximating the distribution with a finite Gaussian mixture model. The parameters of the model are estimated using expectation-maximization algorithm. The scheme allows the decoding to be automatically adapted to attacks that the watermarked images have undergone and, in consequence, to improve the decoding accuracy. Experiments on a QIM based watermarking system have clearly verified the significant improvement of the decoding accuracy achieved by the proposed maximum likelihood decoding in comparison to conventional threshold decoding.

1. INTRODUCTION

A typical image watermarking system consists of three major steps: 1) embedding a message into a host image; 2) the watermarked image undergoing an attack; 3) decoding the message from the attacked image. Research in the past has mainly focused on devising new or optimizing existing embedding schemes to achieve the desired embedding capacity and/or robustness against a set of attacks, such as additive noise, image processing and compression [1, 2, 3]. Characteristics of the attacks are sometimes taken into consideration in designing the embedding schemes. For instance, Local Average QIM (LAQIM) [3, 2] was designed to be robust against zero-mean additive noises and JPEG compression. However, decoding schemes are usually assumed to be simple and tightly bound to embedding schemes. Optimization of decoding against attacks has been virtually ignored [4]. This paper proposes a generic maximum likelihood (ML) approach, which automatically adapts to attacks through an unsupervised estimation of the way that the attacks modify the watermarked images, and is applicable to a variety of watermarking systems with little modifications.

Considering a scenario where a binary message, m_e, is to be embedded into an image. The image is first divided into blocks, and each block is then encoded with one bit of m_e using a chosen embedding algorithm. The watermarked image may undergo a number of attacks before it is communicated to the decoder where m_e is to be recovered. At the decoder, the detection algorithm associated with the embedding algorithm is employed to each block independently. It calculates a detection value from each block, compares it with a threshold and decides the embedded bit, 0 or 1, accordingly. The detection value may be a correlation coefficient or linear correlation in the spread spectrum system [1], or the distances to the closest bit 0 and 1 centroid in QIM. We refer this type of decoding as threshold decoding.

From decoding point of view, any attack to a watermarked image tends to change the detection values away from the ideal values and, therefore, modifies the distribution of the detection values. Ideal detection values are the detection values without any attack. Threshold decoding is to essentially compare the calculated detection values with the ideal values for bit 0 and 1. If an attack modifies the detection values in such a way that they form a symmetric distribution around the ideal detection value, threshold decoding shall continue to perform well to certain extent. However, attacks sometimes change the detection values in a non-symmetric manner. In this case, estimation of the statistical distribution of the detection values not only can improve the decoding, but may also reveal the types of attacks. Fig. 1 shows the distributions of the detection values of all embedding blocks after the attack of JPEG70% or additive Gaussian $N(2,2)$, where the embedding scheme is LAQIM with $\Delta=10$. The ideal detection values is concentrated at 0 for bit 0, -5 and $+5$ for bit 1. The curves show that JPEG tends to modify the detection values in a symmetric manner whereas $N(2,2)$ does not.

In this paper, we propose to model the distribution of the detection values with finite gaussian mixture model (FGMM) and to automatically estimate the related parameters using the Expectation-Maximization (EM) algorithm. A maximum likelihood (ML) decoding scheme is formulated using the estimated distribution. The FGMM does not assume any knowledge of the attacks that the watermarked image has undertaken and the EM algorithm tries to adapt FGMM to the unknown attacks.

The paper is organized as follows. Section 2 presents a generic ML decoding framework given the probability density function (pdf) of the detection values. Section 3 describes the Gaussian mixture modeling of the distribution and the estimation of its parameters using EM. In Section 4, experimental results of applying the proposed ML on LAQIM are presented. Section 5 concludes the paper with remarks and future work.

2. ML DECODING

Without losing generality, we consider embedding an n-bit message m_e in the spatial domain of an image I. I is partitioned into n em-

Fig. 1. Distributions of ideal detection values without attacks and detection values after JPEG 70% and Gaussian noise $N(2,2)$ attacked lena. The embedding scheme is LAQIM with quantization step $\Delta=10$.
bedding blocks. A watermarking algorithm, Γ, is chosen to embed
me into I, one bit per block. In decoding, the corresponding detection
algorithm, Γ \(^{-1} \), calculates a detection value from each block of the
watermarked image that may have been subjected to attacks. The
detection values from all blocks form a d-map. Let D be a random
variable and each detection value \(d \) is considered as an observation
of the random variable \(D \). The random process of D is governed by the
attacks that the watermarked image has undergone. Let \(p(D) \) be the
probability density function (pdf) of D. If the respective proportions
of the bit 0 and bit 1 in the message \(m_t \) are \(\alpha_0 \) and \(\alpha_1 \), where
\(\alpha_0 + \alpha_1 = 1 \), then \(p(D) \) can be written as
\[
p(D) = \alpha_0 p_0(D) + \alpha_1 p_1(D),
\]
where \(p_0(D) \) and \(p_1(D) \) are the respective pdfs of the detection values
produced from blocks that are actually embedded bit 0 and 1.

Given a detection value, \(d \), ML estimates a bit \(b \in \{0, 1\} \) such that
\[
b = \arg \max_{b \in \{0, 1\}} \alpha_b p_b(d),
\]
where \(\alpha_b p_b(d) \) is the likelihood of the originally embedded bit to be
bit \(b \) given the detection value \(d \).

Obviously, the proposed ML decoding relies on the estimation of
\(\alpha_0 p_0(d), b = 0, 1 \). In the following section, we propose to model
\(p(D) \) using finite Gaussian mixture and estimate the underlying par-

terms using EM. The \(\alpha_b p_b(d), b = 0, 1 \) is obtained by heuristically
partitioning the Gaussian densities that fit to \(p(D) \) into two
groups, one for \(p_0(D) \) and another for \(p_1(D) \), respectively.

3. FGMM AND PARAMETER ESTIMATION OF \(p(D) \)

We assume that \(p(D) \) can be approximated by a finite Gaussian mix-
ture model (FGMM) with \(k \) components [5], i.e.
\[
p(D|\Psi) = \sum_{i=1}^{k} a_i f_i(D|\mu_i, \sigma_i),
\]
where \(a_i \) is the mixture weight for the \(i \)’th component, \(\sum_{i=1}^{k} a_i = 1 \); \(f_i(\cdot) \) is a Gaussian function with mean \(\mu_i \) and variance \(\sigma_i \); \(\Psi \)
denotes the parameter set \(\{a_i, \mu_i, \sigma_i, i = 1, 2, \ldots, k\} \).

Now the problem becomes how to estimate the parameter set \(\Psi \)
such that \(p(D|\Psi) \) best fits the given d-map, \(\mathcal{d} \), that consists of \(n \)
detection values. Let \(L(\Psi) \) be the total log-likelihood [5] of the \(n \)
detection values fitting to \(p(D|\Psi) \), i.e.,
\[
L(\Psi) = \ln \prod_{i=1}^{n} p(d_i|\Psi) = \ln p(\mathcal{d}|\Psi),
\]
where \(\prod_{i=1}^{n} p(d_i|\Psi) = P(\mathcal{d}|\Psi) \). Given a \(\Psi \), \(L(\Psi) \) measures
the goodness of fit of \(p(D|\Psi) \) to the observed d-map. Hence, maxi-
mization of \(L(\Psi) \) with respect to \(\Psi \), for a given d-map \(\mathcal{d} \), yields
the maximum likelihood estimation (MLE) of \(\Psi \), i.e., the best fit-
ted \(p(D|\Psi) \). The problem of estimating \(p(D) \) is then to produce a parameter set \(\Psi \{a_i, \mu_i, \sigma_i, i = 1, 2, \ldots, k\} \) that maximizes \(L(\Psi) \).

EM is an iterative algorithm that is popularly adopted to maximize
the likelihood function \(L(\Psi) \) [5]. Assume at the \(q \) iteration, there is
a parameter set \(\Psi^q \). The objective is to find a new parameter \(\Psi \)
that satisfies \(L(\Psi) > L(\Psi^q) \). This goal is equivalent to maximizing
the difference between
\[
L(\Psi) - L(\Psi^q) = \ln p(\mathcal{d}|\Psi) - \ln p(\mathcal{d}|\Psi^q).
\]

A hidden variable is introduced purely as an artifice for making MLE
of \(\Psi \) tractable with the assumed knowledge of the hidden variable.
Denote the hidden random vector as \(Z \) and a given realization as \(z \),
the updated value \(\Psi_{q+1} \) can formally be updated as
\[
\Psi_{q+1} = \arg \max_{\Psi} \{E_{\Psi, z} \ln p(\mathcal{d} | Z, \Psi)\},
\]
and clearly, the EM algorithm consists of two iterating steps:
(i) E-step: determining the expectation \(E_{\Psi, z} \ln p(\mathcal{d} | Z, \Psi) \);
(ii) M-step: maximizing the expression with respect to \(\Psi \).

For Gaussian function \(f_i(\cdot) \), the concrete updating rules of the
weights, the mean values and the variances are,
\[
a_i^{q+1} = \frac{1}{n} \sum_{j=1}^{n} f(i|d_j, \Psi^q)
\]
\[
\mu_i^{q+1} = \frac{\sum_{j=1}^{n} d_j f(i|d_j, \Psi^q)}{\sum_{j=1}^{n} f(i|d_j, \Psi^q)}
\]
\[
\sigma_i^{q+1} = \frac{\sum_{j=1}^{n} (d_j - \mu_i^{q+1})^2 f(i|d_j, \Psi^q)}{\sum_{j=1}^{n} f(i|d_j, \Psi^q)}
\]
in which \(f(i|d_j, \Psi^q) \) is formally updated as \(\frac{f(i|d_j, \Psi^q)}{\sum_{j=1}^{n} f(i|d_j, \Psi^q)} \). The updating rules actually
include both E-step and M-step in each iteration and the algorithm
keeps iterating until convergence, i.e., \(L(\Psi) \) reaching the maxima.

3.1. Determining the number of components \(k \)

The iteration equations in (6) give the best estimation of the parameter
set \(\Psi \) of FGMM with \(k \) components. However, the fitness of
\(p(D) \) to the given d-map also depends on the number of components
\(k \) in FGMM. Determining the best \(k \) for the given d-map is a classical
problem with many existing solutions including likelihood ratio (LR)
test, Akkie’s Information Criterion (AIC) and Minimum Description
Length (MDL). A good review and comparative study of this problem
is found in [6]. In this paper, we adopt the LR approach. Let \(L_k(\Psi) \) be
the total log-likelihood of fitting \(k \) component FGMM into the d-map
using EM. We choose \(k \) such that
\[
k = \arg \max_{k_e \leq k \leq k_u} L_k(\Psi)
\]
where \([k_e, k_u]\) is a range of possible values of \(k \) that is sufficient
to capture the characteristic of various attacks. Our experiments have
shown that \(k \) usually ranges from 2 to 8 components for attacks.

3.2. Determining \(\alpha_b p_b(D) \)

Given an estimated \(k \)-component \(p(D|\Psi) \) that best fits the d-map,
we need to separate \(k \) components into two groups: one represents
the distribution of the detection values with originally embedded bit
0 and the other represents the distribution of the detection values
with embedded bit 1, i.e., determining \(\alpha_b p_b(D), b = 0, 1 \) for the
ML decoding.

The fact that the ideal detection values for bit 0 and 1 are often
distinguished themselves well from each other leads to a number of
heuristic methods for determining the \(\alpha_b p_b(D), b = 0, 1 \). Let \(\lambda_0 \)
and \(\lambda_1 \) be the ideal detection values for bit 0 and 1, respectively.
The simplest method is to sort \(k \) components in an ascending order
by mean values and group the Gaussians into two groups with equal
number of Gaussians. It is easy to determine which group should
be \(p_0(D) \), \(b = 0, 1 \) based on the relationship between \(\lambda_0 \) and \(\lambda_1 \). If \(\lambda_0 \leq \lambda_1 \), then the group with lower means belongs to \(p_0(D) \). This method may not work well when tends to influence the detection values from blocks encoded with bit 0 or 1 in a different way, or the bits in \(m_n \) is heavily biased to 0 or 1.

The second method is to cluster the \(k \) Gaussians into two groups. The Gaussians with means closer to \(\lambda_0 \) are said to belong to \(p_0(D) \) and those with means closer to \(\lambda_1 \) form \(p_1(D) \). That is

\[
\begin{align*}
|\mu_i - \lambda_0| &< |\mu_i - \lambda_1| : f_i(\cdot) \Rightarrow p_0(d) \\
|\mu_i - \lambda_0| &\geq |\mu_i - \lambda_1| : f_i(\cdot) \Rightarrow p_1(d).
\end{align*}
\]

Then \(\alpha_0 \) and \(\alpha_1 \) can be estimated as,

\[
\begin{align*}
\alpha_0 &= \frac{\sum d, u_k \in D}{\sum d, u_k \in D} \\
\alpha_1 &= \frac{\sum d, u_k \in D}{\sum d, u_k \in D}.
\end{align*}
\]

where \(u + v = k \). As in the first method, this simple clustering-based method assumes that the attacks modify the detection values moderately such that the relationship, between the detection values for both bit 0 and 1 and the ideal detection values, remains unchanged after attacks. If the attacks are strong enough to reverse the relationship, then the estimated \(p_0(D) \) is actually for bit 1 and \(p_1(D) \) for bit 0. The decoding bits will then be flipped.

To avoid bit flipping in the presence of strong attacks, additional information may be needed so that \(p_0(D) \), \(b = 0, 1 \) can be properly obtained from the estimated \(p(D) \). Assume the proportions of the bit 0 and bit 1 in \(m_n \) are known, then the grouping of the Gaussians has to meet the constraint that the estimated \(\alpha_0 \) matches the proportion of bit 0 contained in the message and the estimated \(\alpha_1 \) matches that of bit 1 of the message. In this case, a search method of estimating parameters may be developed. It is feasible to employ Brute-Force search since \(k \) is usually small.

4. **Experimental Results**

In the section, we present results of applying the proposed ML decoding scheme to recover the binary logos that are embedded into grey-scale images using LAQIM [2]. We not only compare the ML decoding with conventional threshold decoding in terms of decoding accuracy, but also demonstrate how well the estimated \(p(D) \) fits the real distribution of the detection values.

4.1. **The LAQIM System and Attacks**

In LAQIM, an image is divided into \(n \) square blocks of size \(B \times B \) to embed an \(n \) bit message \(m_n \). Each bit is embedded into the average pixel intensity of a block using QIM [3]. In decoding, the distances between the average pixel intensity of the attacked block and the closest bit 0 and 1 centroid, \(d^0 \) and \(d^1 \), are calculated respectively. Conventional minimum distance decoding is,

\[
\begin{align*}
&d^0 \geq d^1 \Rightarrow \text{ bit 1} \\
&d^0 < d^1 \Rightarrow \text{ bit 0}.
\end{align*}
\]

Since LAQIM is a one-dimension QIM, \(d^0 \) and \(d^1 \) are correlated, \(d^0 + d^1 = \Delta / 2 \), where \(\Delta \) is the quantization step used for embedding. We define the detection value \(d \) as, \(d = d^0 \), if the average pixel intensity is bigger (right to) the closest bit 0 centroid, and \(d = -d^0 \) otherwise. The following threshold decoding is then equivalent to the minimum distance decoding,

\[
\begin{align*}
&d \in [-\Delta/2, -\Delta/4), (\Delta/4, \Delta/2] \Rightarrow \text{ bit 1} \\
&d \in [-\Delta/4, \Delta/4] \Rightarrow \text{ bit 0}.
\end{align*}
\]

Additive Gaussian noises, \(N(\mu, \sigma) \) with the mean \(\mu \) and standard deviation \(\sigma \), and uniform noises, \([l, u] \), where \(l \) and \(u \) represent the range of the noise level, are used to simulate attacks.

4.2. **Experimental Parameters**

In our experiments, we set \(B = 2 \) and \(\Delta = 10 \). The PSNRs between the original and the watermarked images are around 38.8db. The chosen attacks include Gaussian noises: \(N(1,2), N(2,2) \) and \(N(3,2) \), and uniform noises: \([-4,6], [-3,7], [-2,8] \) and \([-1,9]\).
The decoding error rate (DER) is used to quantitatively compare the decoding performance, \(\text{DER} = \frac{l_{\text{err}}}{n} \), where \(l_{\text{err}} \) is the number of the error bits in the decoded message. Noticed that when \(\text{DER} > 50\% \), we could consider that the decoded message is bit-wise flipped and the original message can be recovered by simply XOR each bit with 1. In the case that the embedded message is a binary logo, the effective decoding error rate is \(1 - \text{DER} \). In other words, the worst decoding performance is \(\text{DER} = 50\% \) as bits are completely randomized.

Thirty 512×512 8-bit gray-scale images that represent a wide range of different types of images are carefully selected as the test images. Five 256×256 binary logos are selected as the embedding messages. It has to be pointed out that the proposed ML decoding also works for random messages. We use binary logos for the sake of easy visual justification of the decoding results.

In threshold decoding, the threshold values are set at \(-\Delta/4=-2.5\) and \(\Delta/4=2.5\). The bit 0 is decoded for the detection value within \([-2.5, 2.5]\) or bit 1 otherwise.

In the estimation of \(p(D) \), the possible values for \(k \) are set to be 2, 4, 6 and 8. For each \(k \), the EM algorithm is employed to find the best fitted parameters, \(\Psi \). The EM algorithm is initialized with equal weights. All mean values and variances are randomly initialized to the values around the mean and variance of the given \(d\)-map, but guaranteed to be different with random perturbation. The EM estimation stops when the increment of \(L(\Psi) \) in two consecutive iterations is less than 0.001. The \(p(D) \) that gives the maximum total log-likelihood, \(L(\Psi) \), is chosen as the final approximation.

4.3 Results

The experiments on lena, pepper, f16, mandrill and boat using all attacks demonstrate that DER is minimum when \(L_k(\Psi) \) reaches the maxima. This verifies that our proposed method for estimating \(p(D) \) and \(p_b(D) \) works effectively. For example, \(L(\Psi) \) are -139150, -138554, -139231 and -139308 against \(N(2,2) \) on lena for \(k \) being 2, 4, 6 and 8, respectively; the corresponding DERs are 2.2%, 1.6%, 4.8% and 4.8%. Clearly, \(L(\Psi) \) is maximized when \(k=4 \) and also DER reaches the best of 1.6%. Under the attack of uniform[-4,6], \(L(\Psi) \) are -159150, -151122, -152139 and -152541 for \(k \) being 2, 4, 6 and 8 separately; the DERs are 18.8%, 10.5%, 14.7% and 14.7%, respectively. DER is again optimal at \(k=4 \) by which \(L(\Psi) \) is also maximized. Fig.2 illustrates the estimated distributions with \(k = 2, 4, 6 \) and the actual distribution of \(d \) after Gaussian noise attack \(N(2,2) \) and uniform[-4,6]. Fig.3 shows the estimated \(p_b(d) \) and \(p_1(d) \), using the clustering-based partition versus the ground truth.

Table 1 and 2 highlight the decoding results averaged on 30 images against the additive Gaussian and uniform noise attacks. The results show that ML outperforms threshold decoding significantly. Fig.2 shows a few decoded logos from the host image lena. Fig.3 also demonstrates two logos under joint attack of JPEG 70% and Gaussian noise \(N(2,2) \) in which ML decoding provides substantially better decoding than the threshold decoding.

Note that under attacks of \(N(3,2) \) and uniform[-2.8], DER is close to 100% and most bits in the decoded logo are flipped. This is due to the clustering-based method allocating the components to the opposite pdfs, \(p_b(d) \) and \(p_1(d) \). However, the visual quality of the logo remains greatly improved. To avoid bit flipping, the partition method of determining \(p_b(D) \), \(b = 0, 1 \), needs further optimization with or without the prior knowledge on \(\alpha_0 \) and \(\alpha_1 \).

5. CONCLUSION

In this paper, we proposed a generic ML image watermarking decoding scheme by approximating the distribution of detection values with a finite Gaussian mixture model and estimating the parameters of the model using the EM algorithm. The scheme is able to adapt itself to attacks and produce accurate decoding. Experimental results on LAQM have clearly demonstrated the significant improvement of the decoding accuracy compared to conventional threshold decoding. More experiments on image processing-based attacks are being conducted and will be reported in the near future.

It is obvious that the grouping of Gaussians into \(p_b(D) \), \(b = 0, 1 \) is an important step in our proposed ML decoding method. The clustering approach is usually enough for moderate attacks and small \(k \). Also in the paper, the components are fixed at Gaussian. The research of using large \(k \) for complicated attacks, and other distribution functions as the components, will be explored and addressed in the future work.

6. REFERENCES

