For years the world has lived under the threat of a nuclear war. Millions who grew up in the shadow of the Bomb have learnt to live with and even accept the unstable 'peace' of the nuclear 'balance of terror'. The certainty that any nuclear attack by one of the Superpowers would instantly involve massive retaliation, has helped the world to get to 1978 without a second use of nuclear weapons.

But, how much longer can it last? Can the nuclear world survive into the 21st century? For the name of the nuclear strategy game has changed.

The accelerating arms race and the technological advances of the 1970s, coupled with the looming dangers of the plutonium economy, make the chances of survival seem daily more remote. Whether, in fact, a nuclear holocaust will eventuate however, depends on many factors, not least on the ability of world forces for change prevailing over imperialism. But that time is running short there is no doubt.

This year has seen a marked deterioration in international relations and increasing tensions between West and East bloc countries, and in other areas. The Middle East continues to be a major flash-point with the ever-present danger of widening conflict; on the African continent and elsewhere the struggle for ideological and military supremacy continues. And the conflict between Kampuchea and Viet Nam and China's worsening relations with Viet Nam, are closely connected to the mutual distrust and jostling for position of China and the Soviet Union.

Ironically, it was the UN first-ever Special Session on Disarmament in May which highlighted the shaky detente between the two Superpowers, neither of whom sent their Heads of State. Instead, President Carter attended a NATO war-planning meeting in Washington and spoke of confrontation with the Soviet Union. Soon after, the outcry against the trials of the Soviet dissidents was used to further a re-emergence of Cold War hysteria and fear.

Counterforce Strategy

In the early 1960s some American hawks wanted to move from 'deterrence' to a position of nuclear superiority, and by the late 1960s the shift was underway. It is now clear that with the tremendous technological advances in weaponry in the 1970s and emphasis on quality rather than quantity, United States' policy has decidedly shifted towards a 'Counterforce' strategy.
Translated this means an unanswerable first strike capacity.

Former Lockheed engineer and US weapons expert, Robert Aldridge, estimates that the US should achieve a first-strike capacity by the mid-1980s — i.e. in about seven years from now. (1)

Defense Secretary, Robert McNamara, first expounded the new Counterforce doctrine in June 1962. America’s “principal military objective should be the destruction of the enemy’s military forces, not his civilian population”, he said. (2) The previous year, President Kennedy had stated that “our arms will never be used to strike the first blow”, but it was clear his Defense Secretary was elaborating a plan, and retargeting his missiles, to give the US that capability.

Twelve years later, in 1975, Defense Secretary Schlesinger rephrased the doctrine. While telling a Senate Foreign Relations Subcommittee that the US has “no desire to develop a counterforce capability against the Soviet Union”, he nevertheless went on: “What we wish to avoid is the Soviet Union having a counterforce capability against the United States without our being able to have a comparable capability.” (Emphasis added.) The President must not be limited to any single strategy, Schlesinger said, but must have the capacity for “flexible response”. (3)

In February 1974 Schlesinger told a Senate hearing on the military budget that “We have no announced counterforce strategy, if by counterforce one infers that one is going to attempt to destroy silos. We have a new targeting doctrine that emphasizes selectivity and flexibility”. (Emphasis added.) And on May 30, 1975, Schlesinger admitted publicly that the US would consider using nuclear weapons first to stop communist advances such as in Europe and Korea. (4)

The new targeting doctrine is designed to make limited nuclear war acceptable — after all, it sounds more humane to retaliate against military targets than population areas. But the very concept of limited nuclear war flies in the face of the inevitable logic of escalation to total force usage. As the authoritative Stockholm International Peace Research Institute (SIPRI) commented after Schlesinger’s announcement: “In making nuclear war more ‘flexible’ (the new doctrine) makes it more thinkable, more tolerable and consequently more probable”. (5)

The likelihood of ‘limited’ nuclear strikes escalating to an all-out nuclear war in which both sides would be devastated, means that the only plausible reason for the US developing a counterforce capability is to achieve the capacity to launch an unanswerable first strike against the Soviet Union.

The Arms Race

To understand how the US is moving towards that capacity, one needs to examine the current state of the arms race, particularly technological developments.

The size of the world’s nuclear stockpiles is staggering — representing the capacity to destroy every person on earth 24 times over. Or put another way, the US could destroy every person in the Soviet Union 40 times over and the Soviet Union could destroy every American 20 times over. These frightening, if somewhat ludicrous statistics illustrate the insanity of the runaway nuclear arms race. (Not to mention the insanity of diverting $400 billion a year away from spending on health, alleviating poverty and other pressing social needs.)

SIPRI Director, Frank Barnaby, gives the following picture of the Superpowers’ nuclear arsenals at July 1976:

United States: 2,124 strategic nuclear delivery systems — 1,054 land-based intercontinental ballistic missiles (ICBMs); 656 submarine-launched ballistic missiles (SLBMs) on 41 strategic nuclear submarines; 414 strategic bombers. Can deliver about 8,500 independently targetable nuclear warheads.

Soviet Union: 2,404 strategic nuclear delivery systems — 1,452 ICBMs; 812 SLBMs on 41 strategic nuclear submarines; 414 strategic bombers. Can deliver about 8,500 independently targetable nuclear warheads.

In addition to their 12,000 or more strategic nuclear warheads, both the US and the Soviet Union have tens of thousands of tactical nuclear weapons, mostly more powerful than the Hiroshima atomic bomb. (6)
The key point however, is not so much the number of strategic delivery vehicles (i.e. missiles and bombers) but the total number of bombs that can be delivered. And here the US is far ahead.

Most US missiles carry multiple warheads (MIRVs — multiple individually-targeted re-entry vehicles), whereas, Aldridge says, the Soviet Union “has not mastered the ability to miniaturize hydrogen bombs”. For example, of the 41 US ballistic missile submarines, 31 are armed with 16 Poseidon missiles, each missile having 10-14 MIRVs of 40-kiloton yield. “That means that each of these 31 Poseidon submarines could destroy at least 160 cities with bombs at least twice the explosive energy that ripped into Hiroshima and Nagasaki”. (7)

Andrew Mack says that the US has nearly three times more nuclear warheads than the Soviet Union, largely because of their five-year lead in MIRV technology. He also points out that US missiles “are far more accurate than their Soviet counterparts — cancelling the megatonnage/throw weight ‘advantages’ of the Soviet missiles”. (8)

From the time the US shifted its nuclear strategy from Deterrence to Counterforce, it has been modernising and developing its nuclear arsenal to achieve a First Strike capacity. The whole point of that capacity is to deliver an unanswerable first strike; to destroy the enemy’s nuclear weaponry before it can strike back. And that means having the type of weapons with the required accuracy, which can hit at ‘hard’ targets, i.e. land-based missiles in their hardened concrete silos, rather than ‘soft’ cities or industrial centres.

The US scenario for a disabling first strike was spelt out by former Defense Secretary Donald Rumsfeld in the Pentagon’s annual statement of 1970:

... The most ambitious [damage limiting] strategy dictates a first strike capability against an enemy’s strategic offensive forces which seek to destroy as much of his megatonnage as possible before it can be brought into play. An enemy’s residual retaliation, assumed to be directed against urban-industrial targets, would be blunted still further by a combination of active and passive defenses, including ASW (anti-submarine warfare), ABMs (anti-ballistic missiles), anti-bomber defenses.... (9)

Robert Aldridge details these military ‘defenses’ as the four major interacting systems the US is developing to first strike capacity. They are:

* A missile arsenal with counterforce accuracy to destroy land-based military targets;
* An anti-submarine (ASW) capability that can instantly kill the Soviet missile-launching submarines;
* An anti-ballistic missile (ABM) system and an antibomber system to intercept residual retaliation;
* A space-based system to provide communication, navigation, weather, and intelligence information, as well as to track and destroy Soviet early warning, communication and navigation spacecraft.

As stated above, the biggest technological breakthrough was the development of MIRVs. And the US is now developing a more accurate version — the MARV — which can be remotely manoeuvred during re-entry into the earth’s atmosphere to correct any deviation from the flight path.

The current development of the US and Soviet nuclear arsenals bears out what has always been true of the arms race, sometimes called the “action-reaction cycle”.

Thus four years after the Hiroshima bomb the Soviet Union tested their first A-bomb. This was followed a day later by the formation of NATO. Nearly six years later the Warsaw Pact was signed. In 1954 the US deployed tactical nuclear weapons in Europe, followed three years later by the Soviet Union. In 1960 the first Polaris ballistic missile submarine was launched and five years later the first Soviet comparable ballistic missile submarine. The Soviet Union tested MIRVs five years after the first US tests — the US deployed them in 1970 and the USSR in 1975. By the time the Soviet Union had caught up with and exceeded the US in numbers of ICBMs and SLBMs around 1970, the Pentagon had already switched their emphasis from
quantity to quality improvements, in line with their shift in strategy from deterrence to counterforce.

Trident Horror Weapon

The Trident is the US Navy’s plan for updating the sea leg of the strategic nuclear triad. It will be composed of a new fleet of submarines, two generations of missiles and a sophisticated communications system. Engineering development of Trident began in 1971. It is scheduled to be operational in 1981, with thirty submarines planned by the 1990s. Trident will be based in the Pacific Ocean with its home port in Puget Sound, near Bangor, Washington.

Trident submarines will be 560 feet long (about two football fields) and about four stories high. Each sub will carry 24 missiles, half as many again as the present Polaris and Poseidon. Its longer-range missiles will give Trident ten times as much ocean area in which to hide than Poseidon.

Two generations of Trident missiles are planned. Trident-I will have a range of 4,000 nautical miles with a full load of eight 100-kiloton warheads, while being as accurate as Poseidon is at 2,000 miles. Trident-I missiles will also be backfitted into 10 Poseidon subs as from 1980.

The much larger Trident-II missiles, due by the mid-1980s, will only fit into the new Trident submarines. They will have a range of 6,000 nautical miles, carrying fourteen 150-kiloton warheads or seven 300-kiloton MIRV warheads, with an accuracy of 300 feet. However, by using MARVs on the Trident-II missile, that miss distance would be whittled down to a few feet.

So each Trident sub equipped with 24 Trident-II missiles armed with 17 manoeuvring warheads, would be capable of striking any point on over half the earth’s surface. With a typical payload of 75-100 kilotons per warhead, one Trident submarine could destroy 408 cities or military targets with a blast five times that unleashed on Hiroshima. A fleet of 30 Trident subs would be able to deliver an unbelievable 12,240 nuclear warheads — 30 times the number originally thought sufficient for strategic deterrence.

Clearly, if Trident attains the accuracies the Navy seeks, it will constitute the ultimate first-strike weapon. (10)

In a Saturday Review editorial the American journalist Norman Cousins pointed out that a Trident submarine commander will be the third most powerful man in the world, next to the US and Soviet Presidents. He will control more destructive...
force than Britain, Italy, Spain, Brazil, Argentina, West Germany, Japan, the Philippines, India and Pakistan put together.

Australia's Role

In February 1978, US Defense Secretary Harold Brown confirmed that Trident submarines would be based in the Pacific and in June the US Navy announced it would deploy 13 Tridents in the Pacific and concentrate its nuclear strategy for the 1980s in this area. (11)

Writing from Washington, John Edwards examined the implications of this strategy in a *National Times* articles entitled “Australia Moves Into Nuclear Frontline” (March 6-11, 1978): “Australia is to play a much more significant role in the strategic weapons planning of the United States, Russia and China”, he said. “This will place Australia in the front line of any nuclear exchange between the United States and either the Soviet Union and China, both of which latter now have the capability to attack targets in Australia with nuclear missiles.”

This is evident not only from Defense Secretary Brown’s February statement, but also from a State Department agency announcement to Congress a week later that the Soviet Union and the US have agreed in the SALT negotiations to accept a mutual interim ban on the deployment of mobile land-based intercontinental missiles.

These two statements, says Edwards, point to the probability that:

* The Pacific will emerge as the principal theatre for the deployment of US weapons directed against Russia and China;
* The US defence communications facilities located in Australia will play a pre-eminent part in the control of at least a proportion of these weapons;
* Australia may play an increasingly important role in the protection and maintenance of the US Trident fleet, both in the Pacific and in the Indian Oceans.

U.S. Bases in Australia

It has long been known that the US facilities here were an important part of the US nuclear network, although their exact operations have been shrouded in secrecy. In 1974 a US Navy magazine reported that “classified messages to Polaris-Poseidon submarines deployed in the Indian Ocean” are sent from the North-West Cape Station. And as Dr. Des Ball pointed out in 1974, the North-West Cape base no longer performs a nuclear ‘stabilising’ role when the submarines it controls can deliver accurate hard-target weapons. (12)

Out of the 20-30 US military, scientific and communications facilities in Australia, the three most important are the Defence Space Research Station at Pine Gap near Alice Springs; the Defence Space Communications Station at Nurrungar, near Woomera; and the Harold E. Holt Naval Communications Centre at North West Cape, Western Australia.

The Pine Gap base, established in 1968, had its lease renewed in 1977 for a further 10 years. Built at a cost of $250 million, it is the largest and most important base of its kind outside United States territory. One of its major functions is to receive, analyse and transmit data from 647 early warning satellites, which are used to detect missile launchings, and from the ‘Big Bird’ surveillance satellite placed over the USSR, China, India and Indo-China. Two private American companies — TRW and F-Systems — control the Pine Gap operations.

The Nurrungar station provides a back-up function for Pine Gap. It transmits satellite early warning and reconnaissance data generated by Pine Gap via military satellite to US command centres.

The North West Cape naval communications station transmits very low frequency (VLF) radio signals to submerged nuclear missile-carrying submarines, enabling them to launch their missiles without surfacing to receive firing orders.

The strategic importance of North-West Cape will be further upgraded by a new satellite system, AN-MSC-61. When installed in 1980, it will be one of 21 new facilities around the world forming part of the latest phase of the US defense satellite communications system.

A US company was awarded a contract in 1977 to supply the satellite terminals. But the Australian people, Parliament and even the Government, were not informed about this upgrading until the information was picked up in May 1978 from a leaked US Congress memo.
The **Omega** navigation station planned for Gippsland in Victoria also has a significant role to play in the sea leg of the US nuclear network. Its function, in conjunction with seven other Omega stations elsewhere, is to allow world-wide all-weather navigation for all kinds of craft, both military and civilian. VLF Omega signals penetrate sea water to considerable depths, so a completely submerged submarine can be guided through any seas without revealing its position.

US bases have long made Australia a target in the event of a nuclear war. With the development of Trident as a first-strike weapon, any pretence that the bases play a defensive rather than an offensive role, is shattered. Even journalist Alan Reid, who could hardly be classified as a left-winger, recently warned of the dangers to Australia from the shift in US nuclear strategy:

> ... If Australia is to house a facility which contributes to the efficiency of a first-strike system, carrying atomic warheads, that is a quite different proposition from housing a facility which is part of a deterrent ... It enhances the priority that the North-West Cape base would have as a target in the event of a major conflagration. (13)

It is clear that the deployment of Tridents in the Pacific and/or Indian Oceans will make North West Cape one of the most vital strategic bases in the world. As John Edwards points out:

To achieve the accuracy necessary for a flexible response, Trident submarines will need to be positioned and the Trident-2 missile will need to be corrected in flight from land facilities. Both these operations may be conducted from Australia.

He concludes that all of these developments will draw Australia into a role as the junior partner in the Pacific and Indian Ocean nuclear competition between the great powers, so that the exhausted traditional ANZUS alliance of regional conventional co-operation will be replaced by a nuclear alliance — and one little known to the Australian people.

The Nuclear Connection

Turning from the vertical nuclear proliferation of the two Superpowers, the other main areas of concern are the increasing militarisation of the entire world through the sale and transfer of conventional, tactical weapons; and the growing horizontal nuclear proliferation through the export of nuclear power technology and materials to potential nuclear weapon countries.

Some people, including sections of the peace movement, argue for development of nuclear power for ‘safe’ peaceful energy purposes, which they say is essential for economic growth, particularly in the Third World. At the same time, they affirm their opposition to nuclear power being used for nuclear weapons. But is it possible to separate the peaceful and military in the real politics of our unstable world, and above all — how can the safety of future generations be assured while nuclear power reactors constantly produce deadly wastes which must be safely stored virtually forever?

In looking at the connections between nuclear weapons and nuclear power, the most obvious is the danger of nuclear weapons proliferation. But others include nuclear waste, high cost and low job creation of both nuclear industries, extreme health hazards, nuclear industrial-government connections and further steps towards a police state.

Reactor waste has received most attention. Yet in the US 90 per cent of stored nuclear waste comes from the production and breakdown/recycling of more than 30,000 stockpiled nuclear weapons. And although power-generated waste will increase over the coming years, nuclear weapons production — and therefore waste — continues to escalate.

The major concerns about the dangers of nuclear power to the health and safety of humanity, the unsolved waste disposal problem and the inadequacies of safeguards against the proliferation of nuclear weapons, have yet to be answered by the pro-nuclear power lobby. And there is growing evidence that they cannot be satisfactorily answered, at least in the foreseeable future. For instance, a recent report from the US President’s Office of Science and Technology Policy stressed that it will probably be at least 10 years before any of the suggested waste disposal methods can be tested sufficiently to warrant a decision in favour of one form of disposal over another. (14)
The “second nuclear age” started when India exploded a nuclear device in 1974 (the first country in ten years to join the nuclear “club”).

In the first nuclear age, a country that wanted a bomb had to mount an expensive complex program. In the second nuclear age, a country acquires the capability to produce a nuclear weapon with relative ease — as a by-product of developing nuclear power. (15)

The US trained 1,100 Indian nuclear scientists and engineers prior to 1974 and provided the nuclear materials used to produce the Indian bomb, while Canada provided the equipment and specific technology — all in the name of “peaceful” nuclear energy.

The pro-nuclear power lobby used to argue that “reactor grade” plutonium, useable as a fuel in a civilian reactor, was not of sufficient quality to provide the material for an atomic bomb. But this was refuted last year by the US Energy Research and Development Administration (ERDA) who confirmed that at the Nevada test site, the US has exploded a nuclear device using reactor-grade plutonium obtained from a nuclear power plant. (16) All a country needs to utilise its uranium — U-235 — in the manufacture of weapons is an uranium enrichment facility.

As SIPRI Director, Frank Barnaby, states:

The major problem in controlling the spread of nuclear weapons is that the fissile material for atomic bombs can be produced on a relatively small scale. A 40-megawatt electrical graphite-moderated, natural-uranium reactor could, for example, produce about 20 kilograms of plutonium-239 per year, more than enough for two 20-kiloton atomic bombs (e.g. Hiroshima-size).

The components for such a reactor could be easily and secretly obtained on the open market for a cost of less than $20 million. The reactor and a small chemical reprocessing unit to remove the plutonium from the reactor fuel elements could be clandestinely constructed and run. (17)

At the end of 1976, Barnaby says, there were 173 power reactors in 19 countries, capable of producing 16,000 kgms of plutonium annually. About 30 per cent of this was in 15 non-nuclear countries Argentina, Belgium, Bulgaria, Canada, Czechoslovakia, West Germany, the German Democratic Republic, India, Italy, Japan, the Netherlands, Pakistan, Spain, Sweden and Switzerland.

By the end of 1980, about 250,000 kgms of plutonium will probably have been accumulated worldwide. Austria, Brazil, Finland, Hungary, Iran, South Korea, Taiwan and Yugoslavia will also then have nuclear power reactors.

By 1984, 28 non-nuclear weapon countries will probably have nuclear power reactors potentially able to produce about 30,000 kgms annually — theoretically enough to produce ten 20-kilogram atomic bombs each day.

How safe are the “political barriers” to horizontal spread imposed by the 1968 Nuclear Non-Proliferation Treaty? About 100 countries have ratified the Treaty, thereby stating their intention not to produce nuclear weapons. However, the overwhelming majority have no capacity to do so. And many near-nuclear countries have not ratified it, thus keeping their options open. Nor have India, France and China. The biggest loophole of the Treaty is Article Ten, which says that any country can withdraw within three months’ notice if it deems this necessary in its own “national interest”. Who can say how the fascist Pinochet, or Marcos of the Philippines may interpret this?
The nuclear industry is already beset by mounting political and economic problems. In country after country people are mobilising against nuclear power; and achieving significant victories. Last March the people of conservative Kern County in California voted in a referendum 2 to 1 against the siting of a nuclear reactor in their area. The State's energy policy now excludes new nuclear power stations. And on June 30 a planned nuclear plant at Seabrook, New Hampshire, was suspended, following a 20,000-strong anti-nuclear protest on June 3.

The fight against nuclear power can be won through continuing mass opposition and the effects of the industry's own inner contradictions. The Australian anti-uranium and peace movements have a particularly important role to play. The struggle to stop Australian uranium from being mined and exported is an important national struggle to protect Aboriginal land rights, the health and safety of all Australians, our environment, our civil liberties; and against the continued multinational exploitation of our resources. It also has vital international implications as a positive Australian contribution against the arms race and the spread of nuclear weapons.

The anti-uranium movement has achieved a great deal already in its relatively short existence, including positive positions by sections of the trade union movement and the Labor Party. Above all, it has made uranium a public political issue and has mobilised hundreds of thousands onto the streets in the biggest marches and demonstrations since the Vietnam Moratorium. Providing this can be built on and the movement developed by greater involvement of rank-and-file workers and greater unity between the labour, peace and anti-uranium movements, together with environmentalists and others, the Fraser Government and the pro-nuclear lobby can be defeated.

A key aspect of strengthening the movement is to increase realisation that the struggle against nuclear power and nuclear weapons cannot be separated; that the struggle to keep uranium in the ground is also a struggle against the nuclear arms race and for disarmament.

This realisation is gradually being translated into united activities and a coming together of the anti-nuclear power and the anti-war/peace movements internationally.

At the Australian People's Disarmament Conference held in Sydney and Melbourne in April this year organised by the Australian Peace Liaison Committee, many speakers stressed the need to develop these links, including Joe Camilleri from Melbourne, Terry Provance from the USA and Sheila Oakes from Britain. At the Hiroshima Day Rallies, visiting American biologist and anti-nuclear activist, Professor George Wald, pointed to the urgency of developing unity among all anti-nuclear activists, to force not only an end to uranium mining, but an end to the nuclear arms race leading to disarmament.

As mentioned earlier, some sections of the peace movement accept nuclear power which they maintain can be used safely for peaceful purposes, given adequate safeguards against nuclear weapons proliferation. This attitude has led to some differences internationally and in Australia. The World Peace Council was for many years the principal body uniting peace movements throughout the world. However, recently many peace activists have become concerned at a tendency to think that all activities and movements should be directed by, or channelled through, one international body.

The World Peace Council's attitude towards nuclear power, expressed in Sydney recently by its President, Romesh Chandra (and in its journal New Perspectives 3/78), has led to a contradiction between its position and the most significant mass movement in the capitalist countries since the Viet Nam protests. And this is reflected among members of its Australian branch, the Australian Peace Committee. If the movement here is to achieve the potential for developing into a much larger mass movement, involving all those working for a non-nuclear world, one essential point is that no one organisation or ideology can attempt to attain a monopolistic position, and that the movement is able to reach many more people through unity around the common goal.

If the struggle against uranium mining in Australia were achieved tomorrow, the vital problem of the nuclear arms race and disarmament would still be confronting humanity. An urgent task is to deepen the
understanding of anti-uranium activists about the wider dangers of nuclear power and the present nuclear arms race, by continuing to project these issues and developing closer unity between the peace and anti-uranium movements.

For the arms race and disarmament to become relevant political issues in the Australian context, the very word “disarmament” must be translated into identifiable goals and campaigns relevant to Australia. The feeling among many socialists that disarmament is not possible this side of world socialism must also be combatted. If one accepted that, one might as well sit back with arms folded and wait for whatever disaster might befall. It is tantamount to saying that nothing can be done to curb world imperialism and that national liberation struggles or the class conflict against capitalism aren’t winnable, so why bother.

I would suggest that campaigns with the potential to involve large numbers of people can be developed around the following issues in particular:

* **An end to U.S. bases in Australia:** Such a campaign would expose the real nature of the bases and the danger to Australia in the event of a nuclear conflict; their vital role in the American nuclear network, particularly as part of a first strike strategy; their control by the CIA and the complete lack of any Australian control or even knowledge of their functions. Getting rid of the US bases would be a tremendous contribution towards disarmament and would have far-reaching international effects.

* **Nuclear-free zones in the Pacific and Indian Oceans** embodying the closure of all military bases in the region; an end to nuclear testing in the region; an end to visits of nuclear-powered ships in Australian ports and the deployment of nuclear-powered submarines (such as Trident) in the two oceans.

* **An independent and non-aligned Australian foreign policy** embodying an end to our subservience to the dictates of the US in particular, our military involvement in ASEAN, arms sales to Indonesia or any other nation for use in counter-insurgency; and a more enlightened, co-operative policy towards our South-East Asian neighbours.

* **No mining and export of uranium.**

These are tangible political issues involving struggle against the Fraser Government and being part of the wider struggle against imperialism. The tasks seem immense: but so is the struggle for socialism against capitalism and imperialism. The hardest obstacle to overcome is people’s feeling of helplessness in the face of the nuclear arms race. But we must overcome it and develop mass action built on the understanding that the only force standing in the way of nuclear holocaust is the power of people united in their common struggle.

References

(3) Lens, S., *ibid*.

(8) Mack, A., *op. cit*.

(17) Barnaby, F., *op. cit.*