2006

Image content annotation based on visual features

Lei Ye
University of Wollongong, lei@uow.edu.au

Philip Ogunbona
University of Wollongong, philipo@uow.edu.au

J. Wang
University of Wollongong

Publication Details
This paper was originally published as: Ye, L, Ogunbona, P & Wang, J, Image Content Annotation Based on Visual Features, 8th IEEE International Symposium on Multimedia 2006 (ISM’06), San Diego, USA, 11-13 December 2006, 62-69. Copyright IEEE 2006.
Image content annotation based on visual features

Abstract
Automatic image content annotation techniques attempt to explore structural visual features of images that describe image content and associate them with image semantics. In this paper, two types of concept spaces, atomic concept and collective concept spaces, are defined and the annotation problems in those spaces are formulated as feature classification and Bayesian inference, respectively. A scheme of image content annotation in this framework is presented and evaluated as an application of photo categorization using MPEG-7 VCE2 dataset and its ground truth. The experimental results show a promising performance.

Disciplines
Physical Sciences and Mathematics

Publication Details
This paper was originally published as: Ye, L, Ogunbona, P & Wang, J, Image Content Annotation Based on Visual Features, 8th IEEE International Symposium on Multimedia 2006 (ISM'06), San Diego, USA, 11-13 December 2006, 62-69. Copyright IEEE 2006.
Image Content Annotation Based on Visual Features

Lei Ye, Philip Ogunbona and Jianqiang Wang
School of Information Technology and Computer Science
University of Wollongong, Australia
{lei, philipo, jw69}@uow.edu.au

Abstract

Automatic image content annotation techniques attempt to explore structural visual features of images that describe image content and associate them with image semantics. In this paper, two types of concept spaces, atomic concept and collective concept spaces, are defined and the annotation problems in those spaces are formulated as feature classification and Bayesian inference, respectively. A scheme of image content annotation in this framework is presented and evaluated as an application of photo categorisation using MPEG-7 VCE2 dataset and its ground truth. The experimental results show a promising performance.

1. Introduction

Annotated images are useful for image retrieval based on keywords and image content management. Manual annotation is not only tedious but also not practical in many cases. Most images are therefore available without adequate annotation. Automatic image content annotation becomes a recent research interest.

Automatic image content annotation techniques attempt to explore the visual characteristics of images and associate them with image semantics. In recent years, most reported work has been conducted in the context of image classification or categorisation that labels images with a few high-level concepts that are defined in an application domain.

In this paper, it is recognized that some concepts can be characterised by structural visual features of images, some concepts are not directly characterised by structural visual features of images but can be described by certain concepts that can be characterised by structural visual features of images, and some concepts can not even be derived from image visual features without further information or domain knowledges. We propose two categories of concepts, named atomic concepts and collective concepts, and formulate the annotation problems as feature classification and concept inference problems. An image content scheme based on this formulation is presented and evaluated with MPEG-7 VCE2 dataset and its ground truth [21].

The rest of the paper is organised as follows. Section 2 reviews prior work in the area. Section 3 discuss the general annotation problem and concepts for annotation. Sections 4 and 5 provide the formulation of the annotation problems. Section 6 presents an annotation scheme and experimental results.

2. Prior Work

Saber et al. [23] proposed a colour classification method based on image pixels to annotate local areas of images. To label photos of city scenes and landscape scenes, Gorkani et al. [12] used a multiscale steerable pyramid to find dominant orientations in 4×4 subblocks of the image. The image is classified as a city scene if enough subblocks have strong dominant vertical orientation, or alternatively medium-strong vertical orientation and also horizontal orientation. The performance was tested with a very limited number of 98 test images. Yiu [32] used the same dominant orientation features as [12] and together colour features to classify indoor and outdoor scenes. A nearest neighbour classifier was used for the colour feature and an SVM classifier for dominant orientation.

Vailaya et al. [28] attempted to capture high-level concepts from low-level image features by using binary Bayesian classifiers. Their work focused on hierarchical classification of vacation images. Images are first classified into indoor and outdoor images. Outdoor images are further classified as city or landscape. Finally, a subset of landscape images is classified into sunset, forest, and mountain images. A vector quantizer is used and class-conditional densities of the features are estimated for Bayesian classifiers.

Chang et al. [5] proposed a solution to the annotation problem by using Bayesian Point Machines (BPM). In their method, each training image is manually assigned a concept term from the lexicon, and the visual characteristics of the whole image are modelled using a colour and texture
feature vector (144-dimension). BPM is then used to train a classifier for each concept to determine the confidence score of assigning the concept to the image. For a new image, the system chooses those concept terms with high confidence scores.

Li et al. [15] pointed out that the fixed set of semantics, set of low-level features and set of training instances (3 common assumptions in training-based methods) result in a static classifier, and thereby are likely to suffer from the followings: (1) inability to recognize an instance of new semantics; (2) inability to provide a way to realize a potential misprediction automatically; (3) inability to comprehend the causes of a misprediction. Therefore, they proposed a Confidence-based Dynamic Ensemble (CDE). CDE uses multi-level indicators to assert the class prediction confidence at the SVM binary-class level, the ensemble multi-class level, and the bag (multiple multi-class classifiers) level.

Methods based on global features of images can classify images into certain classes that can be characterised by global features. Some methods have been proposed to classify images based on local features of regions or partitions of images.

A method proposed by Mori et al. [20] assumed that each image in the training set associates with several keywords. The image is divided into fixed-size blocks (from 3×3 to 7×7 pixels) and each block inherits the whole set of keywords associated with the image. Blocks are then clustered using vector quantization, and the accumulation of frequencies of keywords in each cluster are used to predict the keywords for new images.

Wang et al. [29] proposed a method that assigns a textual description of concepts for an image collection and employs a 2-D multi-resolution Hidden Markov Model (HMM) to capture the cross blocks and cross resolution dependencies between blocks for the entire image collection. Given a new image, the feature vector of the image is compared with the trained models, and statistically significant terms are extracted to annotate the image.

Tsai et al. [27] proposed a new approach to classify images based on the combination of image processing techniques and hybrid neural networks. In their approach, images are divided into a number of blocks using the quadtree decomposition algorithm. Five biggest blocks are chosen from 5 sub-regions (4 quadrant regions and 1 centre region) as the representative blocks to represent the main regions/objects of the image. An unsupervised neural network, Self-Organizing Maps (SOMs), is then applied to cluster the images based on colour and texture features extracted from the representative blocks. Finally, Support Vector Machines (SVMs) are trained by the representative images generated by SOMs to classify images into semantic categories.

Barnard et al. [2] used Blobworld [4] to produce the segmented regions within an image. The method uses statistics of word and region feature occurrence and co-occurrence. The region-word probabilities are then used to associate words with regions in new images.

Jeon et al. [14] assumed regions in an image can be described using a small vocabulary of blobs. Blobs are generated from image features using clustering based on Blobworld [4] segmentation method. Given a set of training image with annotations, the relationship between the set of keywords and the set of blobs in each image is derived by using the cross-media relevance models. Given an input image, the maximum-likelihood estimator is used to obtain a set of keywords for the image.

Fan et al. [10] proposed a multi-level approach to annotate images of natural scenes by using both the salient objects and the relevant semantic concepts. To detect the salient objects automatically, it firstly segments images using the mean shift technique [6]. Then the image regions are classified using an SVM classifier with an optimal model parameter search scheme. To exploit the contextual relationships between the concepts and the relevant salient objects, the Finite Mixture Model (FMM) is used to approximate the class distribution of the salient objects that are relevant to a certain concept.

To overcome segmentation problem, a novel statistical learning-based approach is proposed by Feng et al. [11]. In this method, the Blobworld [4] and UCSB [7] segmentation methods are used to segment the image into two independent sets of regions. The association between each set of regions and the semantic concepts is separately learned by a classifier combined with traditional binary SVM and soft decision binary SVM. Given a new image, a greedy strategy is used to annotate the image by using the trained classifier to associate one or more concepts to each region.

Rui et al. [22] proposed a method for clustering of regions into region clusters by incorporating pair-wise constraints and a greedy selection and joining algorithm to find the independent sub-sets of region clusters.

Yang et al. [30] used a Bayesian classifier for image regions with class conditional probabilities constructed by Complement Components Analysis (CCA).

Izquierdo et al. [13] proposed a method to reduce feature space for pattern classification using MPEG-7 descriptors of image regions.

In another direction of research, some methods have been proposed based on learning from user feedback [31, 26].

In addition, Lu et al. [17] proposed a method to map the feature vector to a model vector.

Our approach recognised that not all concepts used to annotate images can be visually perceived and therefore they can not be characterised by structural visual features. In this
paper, distinction is made between two types of concepts. Images are first annotated with atomic concepts that can be characterised by visual features and the collective concepts that can not be directly characterised by visual features but can be characterised by atomic concepts are then inferred from the atomic concepts.

3. Image Content Annotation Based on Visual Features

Image content annotation is a mapping A from an image I to a set C of concepts, known as the annotation space. In an image content annotation system based on visual features, visual features are first extracted from images, denoted as E_f, then features are mapped to concepts, denoted as C_f. Visual features are represented as a set F of feature vectors f_i, $i=1, 2, ..., m$, where $f_i \in F_i \subset R^{k_i}$. Generally, the image content annotation based on visual features can be expressed as operations as follows.

$$I \xrightarrow{A} C = I \xrightarrow{E_f} F \xrightarrow{C_f} C.$$ (1)

3.1. Visual Feature Extraction

A great variety of image visual features have been explored for image retrieval and, recently, annotation, including features describing colours, textures and shapes etc. ISO/IEC MPEG-7 standardised a set of visual feature tools, called visual descriptors, for image and video content description [25, 19, 1, 18].

The following MPEG-7 descriptors are used in the proposed scheme in Section 6.

- Dominant colour Descriptor (DCD);
- Scalable colour Descriptor (SCD);
- colour Structure Descriptor (CSD);
- colour Layout Descriptor (CLD);
- Edge Histogram Descriptor (EHD).

In general the best features to characterise a concept are unknown and different from one concept to another. Concepts are not normally characterised by one visual feature. Eidenberger [9] analysed MEPG-7 visual descriptors and found that most of them are highly redundant. In our work, a selected set of visual features will be used for image grouping and image atomic concept annotation.

3.2. Concepts in Images

Normally, an image can be described by a few keywords. The description can be very subjective. For example, a photography taken at a water side of Hawaii in an evening can be described as a photography of beach, holiday, seascape, sunset even Hawaii beach etc. It can also be described as a photography of sea, water, sand, sky, dark sky, reddish sky etc. An image contains a great varieties of concepts. Some of them related to visual perceptions and some not. Some of concepts can be described by other concepts. For example, beach can be described as water, sand etc., and sea as a lot of water. The photography can be only possibly annotated as Hawaii beach with human feedback. In a practical automatic image content system, the concept set needs to be defined properly.

In an automatic image content annotation system, the concept set C are often predefined. We recognise that there are two types of concepts: atomic concepts and collective concepts. Atomic concepts are those concepts that describe a portion of an image and can be characterized by visual features; collective concepts are those concepts that describe the whole image and can be described by a few atomic concepts. For example, beach is a collective concept that describe the whole image content and can be described by water, sand, sky etc.

Let $C_a = \{c_i, i=1, 2, ..., M_a\}$ denote the atomic concept set, also called atomic concept space and $C_c = \{C_i, i=1, 2, ..., M_c\}$ the collective concept set, also called collective concept space. We have

$$C = C_c \cup C_a = \{C_1, C_2, ... C_{M_c}\} \cup \{c_1, c_2, ... c_{M_a}\}.$$ (2)

We assume that a well specified annotation system requires all collective concepts be described in the atomic concept space. If a collective concept C_i is described by m atomic concept, we denote it as

$$C_i = \{c_j; j = 1, 2, ..., m; c_j \in C_a\}.$$ (3)

In our proposed scheme, the feature mapping C_f from F to C can be decomposed as

$$I \xrightarrow{A} C = I \xrightarrow{A_c} C_c \lor I \xrightarrow{A_a} C_a \xrightarrow{A_c} C_c,$$ (4)

where \lor means either one mapping.

Image categorisation classifies images into a few categories that can usually be described by collective concepts. With our notation, image categorisation is a special case of annotation that can be defined as the mapping from I to C_c, as

$$I \xrightarrow{A} C_c = I \xrightarrow{A_c} C_c.$$ (5)

3.3. From Features to Concepts

In our proposed framework, features are first mapped to atomic concepts by C_{fa} and atomic concepts are then mapped to collective concepts by C_{fc}. In this paper, the mapping C_{fa} is treated as a feature classification problem and the mapping C_{fc}, a statistical inference problem, which are discussed in detail in following sections.
4. Feature Classification

Visual features can be extracted from the whole image or from a partition of an image. In order to obtain atomic concepts that describe portions of an image, the features are extracted from partitions of an image. In our work, an image is partitioned into small blocks. Let \(I_{b,i} \) denote the \(i \)th block of the image and the same notation \(A_a \) is used for the atomic concept annotation of image blocks for simplicity.

\[
A_a(I) = A_a(\{I_{b,i}, i = 1, 2, ..., N\}) = \bigcup_{i=1}^{N} A_a(I_{b,i}),
\]

where \(A_a \) annotates the image block by mapping it to an atomic concept, as

\[
A_a(I_{b,i}) = c_j; \ c_j \in C_a.
\]

The size of \(I_{b,i} \) is sufficiently small so that it is from a region that can be described by an atomic concept. The advantage of using small image blocks is that there is not region or object segmentation required.

Atomic annotation is based on visual features of the image block.

\[
E_I(I_{b,i}) = f.
\]

The problem of image annotation with atomic concepts becomes the classification of features of image blocks according to a given atomic concept set [8]. An atomic concept \(c_j \) is represented by a prototype feature vector \(f_j \). The problem here is to find a prediction for \(f_I \) given the values of \(f \), with squared error as the loss function. The problem is solved by nearest-neighbour methods using the training data as

\[
\text{Average}(f \in N(f_I)),
\]

where \(N \) is the neighbourhood of \(f_I \).

The semantic meaning of each block is determined by the atomic concept associated with the image region where the block is located. The association is subjective in terms of use of words for the concept and created manually. In practice, a training set for each predefined atomic concept is created to train a classifier.

5. Collective Concept Inference

Once all image blocks are classified with the atomic concepts, the collective concept can be inferred from the resulting atomic concepts.

The problem of image content annotation by the collective concept is to find what is the most possible collective concept given a set of atomic concepts. As discussed in the SubSection 3.2, a collective concept can be described by a set of atomic concepts and expressed as Eq.(3). Generally, a collective concept \(C_i \) can be parameterised by the probability distribution of atomic concepts, which is represented by a vector,

\[
p_i = (p_{i1}, p_{i2}, ..., p_{ij}, ..., p_{iM_i}),
\]

where \(p_{ij} \) is the probability that the atomic concept \(c_j \) appears in the set of atomic concepts that describes the collective concept \(C_i \). For an image \(I \), if \(N_j \) is the total number of image blocks that are described by the atomic concept \(c_j \), the probability \(p_{ij} \) is estimated by the frequency \(N_j/N \). Let \(p \) denote the atomic concept distribution of the image \(I \), that is

\[
p = (N_1/N, N_2/N, ..., N_j/N, ..., N_{M_i}/N).
\]

The collective concept annotation becomes the problem of finding the most probable collective concept \(C_i \) among the given collective concept space \(C \), for the atomic concept distribution vector \(p \) of an image \(I \). That is, for a distribution \(\Pr(p|C_i) \) for the atomic concept distribution (parameters) of each collective concept \(C_i \), the posterior probability of a given collective concept, the probability of the image \(I \) has the collective concept \(C_i \), is

\[
\Pr(C_i|I) = \Pr(C_i|p) = \Pr(p|C_i).
\]

According to Bayesian rules,

\[
\Pr(C_i|p) \propto \Pr(p|C_i) \cdot \Pr(C_i).
\]

Using the maximum a posterior criterion,

\[
C_i = \max_{C_i \in C_a} \Pr(p|C_i) \cdot \Pr(C_i).
\]

It is assumed that the atomic concept distribution vector \(p \) for a collective concept follows a Gaussian distribution, the conditional density is given as

\[
\Pr(p|C_i) = \frac{1}{\sqrt{2\pi^{M_a} \cdot \Sigma}} e^{-\frac{(p - \bar{p})(p - \bar{p})^T}{2}}
\]

where \(\bar{p} \) is the mean of atomic concept distribution for the collective concept \(C_i \). \(\Sigma \) is the covariance matrix. It is further assumed that each collective concept is independent. The prior probability \(\Pr(C_i) \) can be estimated from the training set. Therefore, the collective concept annotation can be solved as Bayesian-Gaussian inference [3].

6. An Image Content Annotation Scheme and Experimental Results

An image content annotation scheme is designed based on the models of atomic concept and collective concept spaces.
It is found that the atomic concepts have very different visual features under different environmental illumination such as daylight, night-time or evening etc. A grouping is therefore employed using a colour feature of the whole image to group images into three groups. Then the images are partitioned into fixed-size blocks. Each image block is annotated with an atomic concept. The atomic concept histogram is calculated to estimate the probability distribution of atomic concepts of the image. Then Bayesian-Gaussian inference is used to determine the collective concept of the image. Fig.1 shows the block diagram of the scheme.

6.1. Experiment Dataset

Experiments are carried out to evaluate the performance of the scheme. We used the MPEG-7 VCE2 image dataset and its ground truth (GT) [21]. VCE2 dataset contains 3828 photographic images including consumer photos and photos from Corel Image Collection. This dataset was created for photo categorisation tests. The images in the VCE2 dataset are labelled with 7 categories including architecture, interior, terrain, night-scene, snowscape, sunset and water-side. These categories form the collective concept space in our experiments. The performance will be evaluated on the VCE2 dataset as a photo categorisation application against the VCE2 GT, which is a special case of collective concept annotation in our notation.

6.2. Grouping

The same atomic concepts under various environmental illumination have dramatically different perceptual characteristics and visual features. A image grouping is used as a pre-processing stage. The groups are dependent on the application domain. For example, the water in daylight and night-time is visually dramatically different. As the difference as such is a result of illumination conditions, three groups are determined according to the time, including night-scene, daylight and sunset for the VCE2 dataset. This grouping is basically reflected by the colour characteristics of images so that a colour feature of the whole image is to be selected for this purpose.

Four MPEG-7 colour descriptors, including DCD, CLD, CSD and CSD, are evaluated. A simple 3-class clustering classifier is trained using a colour feature. Table 1 shows the comparative performance of the four colour descriptors. It is found that DCD outperforms other colour descriptors for image grouping into the defined 3 groups. This finding is the same as our intuition since the dominant colour of photography is usually determined by the environmental illumination.

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Group</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>Overall Precision</th>
<th>Overall Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>Night-Scene</td>
<td>91.2</td>
<td>100.0</td>
<td>91.0</td>
<td>91.5</td>
</tr>
<tr>
<td></td>
<td>Daylight</td>
<td>92.7</td>
<td>92.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sunset</td>
<td>89.1</td>
<td>82.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLD</td>
<td>Night-Scene</td>
<td>83.9</td>
<td>95.7</td>
<td>88.6</td>
<td>88.3</td>
</tr>
<tr>
<td></td>
<td>Daylight</td>
<td>90.7</td>
<td>96.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sunset</td>
<td>91.3</td>
<td>72.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSD</td>
<td>Night-Scene</td>
<td>78.2</td>
<td>75.1</td>
<td>79.4</td>
<td>76.4</td>
</tr>
<tr>
<td></td>
<td>Daylight</td>
<td>92.0</td>
<td>96.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sunset</td>
<td>67.9</td>
<td>57.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCD</td>
<td>Night-Scene</td>
<td>90.5</td>
<td>95.5</td>
<td>89.7</td>
<td>89.7</td>
</tr>
<tr>
<td></td>
<td>Daylight</td>
<td>91.2</td>
<td>90.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sunset</td>
<td>87.3</td>
<td>83.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Colour Descriptor Evaluation for Image Grouping
6.3. Feature Extraction and Classification

Images are partitioned into 64 small blocks and each block is annotated with an atomic concept. The atomic concept space is domain dependent. For VCE2 dataset and the defined 7 collective concepts, an atomic concept space containing 20 atomic concepts is defined. The atomic concept space contains concepts such as sky, water, sand, tree, rock, grass and building etc. These concepts describe various local areas of an image. Two MPEG-7 visual descriptors, CSD and EHD, are used to characterise image blocks. As formulated in the section 4, clustering classifiers are used for feature classification. A training set is created for each atomic concept to train the classifier using the GLA algorithm [8, 16].

Multi-feature description of images are studied in the context of content-based image retrieval and a linear combination of multiple features with a weighted Euclidean distance are commonly used [24]. However, the linear combination is not a good model for multi-feature description of visual characteristics of images for semantic clustering [24]. In our scheme, the 2 visual descriptors are used in tandem.

6.4. Parameter Estimation

As formulated in Section 5, collective concepts are parameterised with the atomic concept distributions as Eq. (10). The histogram of atomic concepts of images are calculated using Eq. (11) to estimate the distributions of atomic concepts.

6.5. Collective Concept Annotation - Bayesian Inference

The model is trained with a training set based on the VCE2 GT. We used 100 images randomly selected from each category as a training set except snowscape and sunset from which 50 images are selected.

Table 2 shows the experimental results with EHD followed by CSD. Table 3 shows the experimental results with CSD followed by EHD. There is no significant difference between the orders of applications of the 2 descriptors because they are independent in describing the images. In both cases, the annotation performances are promising.

Direct comparisons with other published approaches are not possible because different datasets and concepts or categories are used in experiments published in literatures. Furthermore, various performance measures have been used in image annotation research. In this paper, the precision and recall is used to measure the annotation performance against the ground truth of the dataset, which is the performance measure adopted by the ISO/IEC MPEG committee for the photo categorisation core experiments.

<table>
<thead>
<tr>
<th>Categories</th>
<th>Number of Test Images</th>
<th>Precision(%)</th>
<th>Recall(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>1325</td>
<td>69.1</td>
<td>57.2</td>
</tr>
<tr>
<td>Interior</td>
<td>647</td>
<td>78.2</td>
<td>27.9</td>
</tr>
<tr>
<td>Terrain</td>
<td>1494</td>
<td>77.6</td>
<td>62.3</td>
</tr>
<tr>
<td>Night-scene</td>
<td>216</td>
<td>91.7</td>
<td>98.6</td>
</tr>
<tr>
<td>Snowscape</td>
<td>137</td>
<td>66.2</td>
<td>54.0</td>
</tr>
<tr>
<td>Sunset</td>
<td>77</td>
<td>88.6</td>
<td>80.1</td>
</tr>
<tr>
<td>Waterside</td>
<td>523</td>
<td>70.1</td>
<td>68.1</td>
</tr>
<tr>
<td>Average</td>
<td>2167 (total)</td>
<td>74.7</td>
<td>58.2</td>
</tr>
</tbody>
</table>

Table 2. Performance of the Annotation Scheme with EHD followed by CSD

<table>
<thead>
<tr>
<th>Categories</th>
<th>Number of Test Images</th>
<th>Precision(%)</th>
<th>Recall(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>1325</td>
<td>65.2</td>
<td>52.2</td>
</tr>
<tr>
<td>Interior</td>
<td>647</td>
<td>71.5</td>
<td>26.3</td>
</tr>
<tr>
<td>Terrain</td>
<td>1494</td>
<td>75.3</td>
<td>59.1</td>
</tr>
<tr>
<td>Night-scene</td>
<td>216</td>
<td>86.5</td>
<td>96.4</td>
</tr>
<tr>
<td>Snowscape</td>
<td>137</td>
<td>64.1</td>
<td>52.7</td>
</tr>
<tr>
<td>Sunset</td>
<td>77</td>
<td>85.9</td>
<td>79.2</td>
</tr>
<tr>
<td>Waterside</td>
<td>523</td>
<td>61.9</td>
<td>63.7</td>
</tr>
<tr>
<td>Average</td>
<td>2167 (total)</td>
<td>70.5</td>
<td>54.8</td>
</tr>
</tbody>
</table>

Table 3. Performance of the Annotation Scheme with CSD followed by EHD

7. Conclusions

In this paper, we proposed the concept of atomic and collective concept spaces and formulated the annotation problems in there spaces as feature classification and concept inference. This work provided a framework for image content annotation. A scheme of image content annotation in this framework was presented and evaluated as an application of photo categorisation using MPEG-7 VCE2 dataset and its ground truth. The experimental results showed a promising performance.

We used the GLA algorithm in feature classification for atomic concept annotation and Bayesian-Gaussian inference in collective concept annotation. In fact, other feature classification techniques and inference models can be used.

The concept space construction is domain dependent. What concepts are atomic and what collective are an open problem. In our work, we defined 20 atomic concepts to describe 7 collective concepts for MPEG-7 VCE2 dataset. Besides these two concept spaces, there are non-visual concepts that can not be characterised by visual features nor described by atomic concepts. Image content is hardly annotated with those non-visual concepts in an automatic annotation based on visual features. They may be associated with image content by making use of other information or
domain knowledge, such as location, event and time etc. or learned from user feedback.

Future work includes semantic and linguistic analysis of vocabularies according to their perceptual meaning and characteristics that can be described by visual feature descriptors. Concept space design algorithms based on some clustering analysis will be highly desirable.

References

[31] Z. Yang and C.-C. J. Kuo. Learning image similarities and
categories from content analysis and relevance feedback.
Proceedings of the 2000 ACM workshops on Multimedia,
pages 175–178, November 2000.