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Alpha-casein as a molecular chaperone

Abstract
Alpha-casein, more specifically known as αS-casein, is a predominant milk protein with important nutritional
properties. αS-Casein, composed of two individual gene products, αS1- and αS2-casein, has been described in
the past few decades as having molecular chaperone properties. In performing as molecular chaperones, αS-
casein and its purified constituent proteins, αS1- and αS2-casein, stabilise a wide range of proteins from milk
and non-milk sources against aggregation and precipitation under conditions of stress (e.g. heat, reduction).
Investigations into the chaperone action of αS-casein have revealed that it stabilises its partially unfolded
‘target’ proteins by interacting with them and forming a soluble, high molecular weight complex similar to that
formed by the small heat-shock proteins (sHsps) and another unrelated chaperone, clusterin. In addition, it
has been shown that αS-casein is able to protect target proteins from aggregation when forming either
amorphous or fibrillar aggregates, and that its chaperone activity is dependent on the target protein present,
the stress conditions applied, the mode of protein aggregation (i.e. amorphous versus fibrillar), the speed of
aggregation, and the presence of competing ions. Like the sHsps and clusterin, αS-casein is ATP-independent
in its action, is unable to refold partially unfolded proteins and cannot prevent loss of enzyme activity under
heat stress. Unlike the sHsps and clusterin, however, αS-casein binds its target proteins in a way that does not
facilitate interaction with Hsp70 which in the presence of ATP can refold partially unfolded target proteins.
The exploration of αS-casein’s relatively new role as a molecular chaperone in milk is of great interest to the
food industry as it opens up new avenues for the stabilisation of milk and milk products under a range of
environmental conditions (e.g. elevated temperature) and provides new possibilities for the development of
dairy foods with unique properties and textures.
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1. Introduction 

The caseins are a heterogeneous group of dairy proteins constituting 80% of the protein 

content of bovine milk. The operational definition of casein is that proportion of total milk 

protein which precipitates on acidification of milk to a pH value of 4.6 [1]. The remaining 

dairy proteins, known collectively as whey proteins, do not precipitate. Caseins are 

synthesised in the mammary gland and are found nowhere else among the plant and animal 

kingdoms [2]. The casein family of proteins comprises - , - and -caseins, all with little 

sequence homology [3]. As their primary function is nutritional, binding large amounts of 

calcium, zinc and other biologically important metals, amino acid substitutions or deletions 

have little impact on function. The caseins also lack well-defined structure and as a result 

their amino acid sequence is less critical to function than in many ‘classic’ globular proteins. 

As a result, the caseins are one of the most evolutionarily divergent protein families 

characterised in mammals [2]. Alpha-casein, also known as αS-casein, is in fact two distinct 

gene products, S1- and S2-casein, with the ‘S’ denoting a sensitivity to calcium. Of all the 

caseins, S1- and -casein are predominant in bovine milk, representing 37 and 35% of whole 

casein respectively, whereas αS2- and κ-casein make up 10 and 12% of whole casein, 

respectively [2].  

1.1. Key structural features of the casein proteins 

The casein proteins are important nutritionally not just because of their high phosphate content 

which allows them to bind significant quantities of calcium, but because they are high in lysine. 

The constituent proteins of S-casein, αS1- and αS2-casein, possess 14 and 24 lysines, respectively 

[2]. Lysine is an essential amino acid in humans and one in which many plant sources are 

lacking, therefore casein extracts form an effective nutritional supplement for cereals [2]. 

In addition to the variability inherent in their amino acid sequences, each of the caseins 

exhibit significant variability as a result of their degree of post-translational modification, 
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disulfide bonding, genetic polymorphism and the manner in which they are hydrolysed by 

the milk protease, plasmin. In terms of the extent of phosphorylation, each of the four 

caseins may have various numbers of phosphate groups attached via their serine or 

threonine residues [4]. For example, S1-casein may have 8 or 9, S2-casein 10, 11, 12 or 13, -

casein may have 4 or 5 and -casein, 1, 2 or 3 [5]. It is not known whether this variability 

results from the action of casein kinases phosphorylating to different degrees or by 

phosphatases dephosphorylating to a greater or lesser extent [5]. The predominant caseins, 

S1- and -casein, contain no disulfide bonds; however S2- and -casein contain two 

cysteine residues which form intra- or intermolecular disulfide bonds under normal 

conditions. In the absence of a reducing agent, αS2-casein exists as a disulfide-linked dimer 

and -casein can adopt dimeric to decameric forms, depending on the pattern of 

intermolecular disulfide bonding. -Casein is also the only casein which is glycosylated and 

the degree of glycosylation varies so that ten different molecular forms of -casein are 

possible on this basis alone [4].  

Genetic polymorphism is yet another source of variability in the caseins. This phenomenon 

was first described in 1955 in relation to -lactoglobulin [6] and exists when the same 

protein exists in a number of forms, differing from one another in just a few amino acids. 

This has since been shown to occur in all dairy proteins. The milk of one animal may contain 

one polymorphic form alone, or both, and the occurrence of particular polymorphs is breed-

specific [7, 8] . Genetic variants are indicated by a latin letter i.e. S1-casein has been shown 

to be present in bovine milk as S1-caseinA – D; S2- caseinA – D; -caseinA1, A2, A3 – E and 

-caseinA and B [9]. With the combined variability between the caseins themselves, 

contributed by low sequence homology, glycosylation and disulfide bonding and within 

individual caseins due to the degree of phosphorylation and genetic polymorphism, this is a 

very interesting family of proteins. As will be described in greater detail in this chapter, the 

caseins have created even greater intrigue with the recent discovery of their chaperone 

abilities. 

Structurally, the caseins are classified as ‘intrinsically or natively disordered’ proteins under 

physiological conditions [10, 11]. This disordered structure, which is present to some extent 

even in globular proteins, is different to random coil conformation. In natively disordered 

proteins, conformations of these regions are still relatively fixed with respect to the  and  

angles of the peptide bonds, as opposed to true ‘random coil’ polypeptide chains, which 

exhibit greater and more rapid fluctuation in bond angles [4]. The lack of well-defined  

structure in the casein proteins is believed to facilitate proteolysis and therefore ready 

absorption of amino acids and small peptides in the gut [2], but is another likely factor in the 

unwillingness of the caseins to crystallise to provide a 3D crystal structure [12]. Physical 

characterisations of caseins in solution and predicted 3D models have shown that the 

caseins have relatively little tertiary structure, but possess some secondary structure, similar 

to the classic ‘molten globule’ states described in [13]. The greatest degree of secondary 

structure exists in S2- and -casein, mainly in the form of -sheets and -turns rather than 

-helix [14-16]. The formation of higher proportions of secondary and tertiary structural 
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elements in the caseins is likely to be inhibited by high numbers of proline residues which 

distort protein folding into -helices and -sheets [2].  

Each of the casein proteins has a high degree of hydrophobicity as a result of containing 

approximately 35-45% non-polar amino acids (e.g. Val, Leu, Phe, Tyr, Pro), but this does not 

preclude them from being quite soluble in aqueous solvents due to the presence of high 

numbers of phosphate and sulfur-containing amino acids, and in the case of -caseins, 

carbohydrates [2]. These hydrophobic regions are likely exposed in the caseins as a result of 

their flexible and relatively unfolded structure. The hydrophobicity tends to occur in 

patches along the sequence of the caseins, however, and is interspersed with hydrophilic 

regions. It is this feature that is credited with making the caseins good emulsifying agents – 

a property exploited in the food industry. The clustered exposed hydrophobicity is also 

thought to be a major feature of the molecular chaperone action of the caseins [17] as 

discussed later in this chapter.  

1.2. Self-association, fibril formation and micellar arrangement of the caseins 

Although relatively small in size with molecular masses of 23.6 and 25.2 kDa for S1- and 

S2-casein, respectively, -caseins readily associate with one another and with the other 

caseins (- and -casein) to form large aggregates up to 1.4 MDa in size [18]. This tendency 

to form multimeric assemblies is likely to be another reason why it has not been possible to 

obtain crystal structures for the caseins thus far. In the presence of calcium, associations 

between the various caseins can lead to the formation of micelles [2]. These micelles are 

composed of approx. 94% protein and approx. 6% low molecular weight species such as 

calcium, phosphate, citrate and magnesium which together form ‘colloidal calcium 

phosphate’ [2] or amorphous calcium phosphate; APC [19]. Evolutionarily, it is thought that 

the formation of micelles has served as a means by which to increase the calcium 

concentration in milk over many millennia to satisfy its nutritional function without 

compromising physical stability [19]. The makeup of the micelle, which is roughly spherical 

in shape and has a radius of approx. 600 nm or less, comprises the amorphous calcium 

phosphate, more recently referred to as ‘nanoclusters’, bound to specific phosphorylated 

sequences in the surrounding  S1- , S2- and -casein chains [19]. The major protein 

constituent of casein micelles, accounting for 65% of protein is S-casein [4]. The function of 

-casein, present at the surface of the micelle, appears to be related to limiting the size of the 

micelle [19].  

The C-terminal region of -casein is strongly hydrophilic, whereas the N-terminal region is 

strongly hydrophobic [4]. Such amphipathic qualities have been shown to be of great 

importance for molecules residing at the interface between hydrophobic and hydrophilic 

environments in various biological contexts (e.g. the phospholipid cell membrane, the 

assembly of lipoprotein particles) and are no doubt also important in the stabilisation of the 

micelle in the aqueous environment of milk. Further evidence for the localisation of -casein 

at the surface of the micelle forming a diffuse outer region [20] was provided by the 

discovery that in the formation of cheese, the more hydrophilic C-terminal portion is the one 
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cleaved by the action of rennet [2]. Recent Cryo-TEM and TEM studies have shown that the 

small electron-dense regions consistent with calcium phosphate nanoclusters are evenly 

distributed throughout the micellar structure rather than being sequestered within the core 

of the micelle [21-24] and that these structures, linked together by chains of caseins, were 

continuous throughout the entire micelle [25]. The sequestration of calcium phosphate, 

which accounts for 7% of the solute mass of bovine casein micelles, within a phosphoprotein 

matrix in this way is critical to maintaining the stability of these potentially very insoluble 

minerals in milk which would otherwise precipitate, compromising lactation [19]. It is the 

light scattering caused by these large (103 to 3 × 106 kDa) casein micelles in a colloidal 

dispersion that is thought to give milk its characteristic white colour [2, 25, 26]. The caseins 

are also very stable at high temperatures, a property thought to be associated with their high 

phosphate content [2] and lack of well-defined structure [11] which makes them resistant to 

denaturation by heat and chemical agents. Milk may be heated at 100°C at its native pH 

(~6.7) for 24 hours without coagulating and will withstand 140°C temperatures for 20 min. 

The current ultra high heat treatments applied to milk and milk products are made possible 

by the extreme thermostability of the caseins [2]. Our studies have shown that solutions of 

individual S1- and S2-caseins are stable at 70°C for a period of at least 8 hours at a 

concentration of 5 mg/mL [18].  

Interestingly, both of the disulfide bond-containing caseins, - and S2-casein, have been 

shown to form amyloid fibrils under physiological conditions [27-30]. It has been suggested 

that casein proteins may have a propensity to form amyloid fibrils because they possessed 

similar structural features to the amyloid forming proteins tau, -synuclein and amyloid  

[31]. The similarity lies in the tendency of all four casein proteins to adopt a flexible and 

relatively unfolded conformation but also their possession of significant amounts of poly-L-

proline (PPII) helix structure which likely arose from the relatively uniform distribution of 

proline residues [2, 31]. In contrast to -helix, PPII helix is more open, flexible and extended 

and the conversion of this to antiparallel -sheets, the precursor to amyloid fibril, is a highly 

energetically-favourable one [32]. As suggested in [33], other factors in the formation of 

amyloid fibrils must also be important , as only two of the four caseins (namely - and S2-

casein) form fibrils under physiological conditions. Whole casein does not form fibrils under 

the same conditions as - and αS2-casein and this is thought to be related to the inhibitory 

action of other caseins present. It has been shown previously that both S1- and -casein are 

able to inhibit fibril formation by -casein [28].  

1.3. Separation and purification of S1- and S2-casein  

Caseins can be separated from whey proteins in milk by a variety of methods that are effective 

for large scale applications such as the acid precipitation already described [2]. The individual 

casein proteins can also be separated from one another by classical methods based on solubility 

differences and more recently via gel chromatography (summarised in [4]). In order to study S1- 

and S2-caseins separately, these proteins were purified from their associated form, αS-casein, by 

successfully employing the method previously described in reference [34] using a Q-Sepharose 

column with some minor modifications [17]. Subsequent investigation of the chaperone activities 
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of individual S1- and S2-casein proteins was then possible. As shown in Figure 1, purification 

gave an initial smaller peak corresponding to the predominant form of S2-casein, S2A-casein 

11P (25.2 kDa with 11 phosphate groups attached), and a second, much larger peak 

corresponding to the predominant form of S1-casein, S1B-casein 8P (23.6 kDa; 8 phosphate 

groups attached). It would be logical to expect that the areas under these peaks to be roughly 

representative of the 4:1 ratio of S1:S2-caseins present in bovine milk, however, due to their 

differing amino acid compositions S1- and S2-casein have quite different specific absorbances of 

10.1 and 14.0 A1%1 cm, respectively [2]. The smallest peak visible in Figure 1 is representative of 

a small amount of dimeric S2-casein eluting first from the column. This species had an 

approximate mass of 50 kDa due to the presence of intermolecular disulfide bonds between 

cysteine residues at positions 36 and 40 [17]. 

Successful separation and purification of the constituent S-casein proteins was confirmed 

by SDS-PAGE and ESI-MS, which gave a major peak at 23,619 kDa (Figure 2). This closely 

corresponded to the major variant of S-casein, S1B-casein 8P. Unfortunately it was not 

possible to obtain a similar spectrum for αS2A-casein 11P, most likely as a result of the 

greater hydrophobicity of this casein and its propensity for amyloid fibril formation [17]. 

  

Figure 1. Purification of S1- and S2-casein from total S-casein. Reprinted with permission from [17]. 

Copyright (2011) Elsevier Inc. 

1.4. Characterisation of purified S1- and S2-casein proteins 

Biophysical characterisation of the purified S-casein proteins showed that the proteins 

possessed a similar degree of secondary structure to that expected from literature values [3, 

35-38]. The far-UV CD spectra of purified S1-, S2- and S-casein proteins (Figure 3) show a 

minimum at approximately 202 nm for S1-casein, 203 nm for S-casein and 205 nm for S2-

casein and a second minimum for all three proteins at 222 nm. Deconvolution of the far-UV 

CD data for S1- and S2-casein shown in Figure 3 was performed using SELCON software 

via the DICHROWEB database [39-43]. These data are summarised in Table 1. 

Deconvolution of data for S-casein could not be performed due to the presence of a 4:1 ratio 

of S1:S2-casein, each with a different number of amino acid residues.  
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Figure 2. ESI-MS spectrum of purified αS1-casein with a major peak occurring at 23, 619 kDa 

corresponding to αS1B-casein 8P. Reprinted with permission from [17]. Copyright (2011) Elsevier Inc. 

 

Figure 3. Far-UV CD spectrum of purified S1-, S2- and S-casein at 0.20 – 0.28 mg/mL in prefiltered 10 

mM sodium phosphate buffer, pH 7.4. Reprinted with permission from [17]. Copyright (2011) Elsevier Inc. 

 

Protein -helix (%) -sheet (%) -turns (%) Disordered structure (%) 

S1-casein 14 28 22 35 

S2-casein 18 26 22 33 

Table 1. Secondary structural elements of S1- and S2-casein as determined by deconvolution of far-UV 

CD spectra [39-43]. 

2. Introduction to molecular chaperones  

2.1. The perils of protein folding 

Early experiments on the folding of ribonuclease in vitro revealed that all of the information 

required for a protein to fold into its native 3D conformation was contained within the 
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primary sequence of that protein i.e. from the characteristics of amino acids and their 

positions in the polypeptide chain [44]. However, it also became evident that the folding of 

large, multi-domain proteins was complicated by incorrect intermolecular interactions 

involving the folding of the polypeptide chain [45] which prevented a proportion of proteins 

from reaching their native state, both in vitro [46, 47] and in vivo [48]. The process of protein 

folding, especially in the case of large proteins, appears to occur via a limited number of 

pathways. These pathways involve distinct intermediately-folded states known as ‘molten 

globule’ states [49]. This term is used to refer to a partially folded but compact state of a 

protein that has substantial amounts of secondary structure, but little or no tertiary structure 

[50]. In contrast to the natively folded state which is rigid and constrained, the molten 

globule state is not a single conformation but is instead a range of multiple conformations. 

These conformations are dynamic and rapidly interconvert with one another in response to 

the external environment [51] and they are also in equilibrium with more unfolded states 

[52]. Theoretical models have predicted a major loss of hydrophobic contacts in the molten 

globule compared to the natively folded state [50]. These intermediately folded states 

transiently expose previously buried hydrophobic areas on their surfaces and it is this 

characteristic that makes them prone to intermolecular association with other partially 

folded proteins, leading to aggregation and potential precipitation into insoluble aggregates 

[53, 54].  

The currently accepted theory of protein folding is that natively folded proteins exist in 

equilibrium with less ‘ordered’ molten globule states. This ‘folding/unfolding’ pathway is 

reversible and slow, therefore it is possible for a protein that has partially unfolded but 

remains soluble to adopt a native state again provided it does not begin the process of 

aggregation. Once a molten globule state has begun to aggregate (either through 

interactions with other proteins or other molecules of the same protein), it has entered the 

fast and irreversible ‘off-folding’ pathway which ends with precipitation [55]. Within the 

cell, where proteins are present in high concentrations (e.g. 340 g/L in E. coli) and rates of 

protein production can be extremely high, folding of nascent proteins is further challenged 

by molecular crowding. Under such conditions, there are a great number of opportunities 

for inappropriate protein interactions. As the three-dimensional structure of a protein 

largely determines its function, the incorrect folding of proteins has the consequence of loss 

of function. It is not surprising therefore that abnormalities in protein folding form the basis 

of many human pathologies such as prion diseases and amyloidoses [56, 57].  

2.2. The role of molecular chaperones 

Molecular chaperones are a diverse group of proteins that act to prevent ‘improper’ 

interactions between other proteins that may result in aggregation and precipitation [58]. 

They ensure high fidelity protein folding and assembly without becoming part of the 

natively folded structure. In doing so, chaperones perform important roles in the 

stabilisation of many other proteins both intra- and extracellularly. Proteins from many 

unrelated families have been identified as possessing molecular chaperone function [59]. 

There are four key features that must be exhibited by a protein in order for it to be classified 
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as a molecular chaperone: 1) suppression of aggregation during protein folding, 2) 

suppression of aggregation during protein unfolding, 3) influence on the yield and kinetics 

of folding and 4) effects exerted at near stoichiometric levels [60]. Many molecular 

chaperones have been identified in the eukaryotic cell, particularly in the endoplasmic 

reticulum and cytosol where they ensure correct folding, transport and biological activity of 

countless proteins [61]. Some chaperones act in sequence with others, passing on 

intermediately folded proteins to continue the folding process [62, 63]. Other chaperones, 

such as the small heat-shock proteins which are explained in greater detail later in this 

chapter, specifically interact with proteins on the off-folding pathway only. These 

intermediates, more prone to aggregation, are the ones recognised by the chaperone and 

stabilised against precipitation [58, 64]. 

2.3. Molecular chaperones are also heat-shock proteins 

The expression of molecular chaperones is markedly increased (10 to 20 fold) under 

conditions of physiological stress (e.g. heat, reduction, oxidation stresses) - a feature which 

explains their other moniker as ‘heat-shock’ proteins (Hsps). It has been demonstrated that 

both the protein coding sequences [65, 66] and regulatory sequences [67] of some heat-shock 

genes have been highly conserved [68, 69].  

2.4. The sHsps and clusterin  

There are several classes of heat shock proteins, and the accepted nomenclature is based on 

their approximate molecular mass on SDS-PAGE i.e. Hsp60 and Hsp70 are 60 and 70 kDa, 

respectively. A subset of the Hsps is called the small heat-shock proteins, or sHsps, with 

molecular masses of monomers ranging from 15-30 kDa. These chaperones act in an ATP-

independent manner, which unlike Hsp60 and Hsp70 do not actively refold in the presence 

of ATP. Instead, they interact with partially unfolded or ‘stressed’ proteins, stabilising them 

in a soluble, high molecular weight complex to prevent their precipitation from solution 

[70]. They do not interact with natively folded proteins, nor with those that have already 

aggregated [71]. Rather than simply serving as a one-way ‘sink’ for denatured proteins, 

however, previous studies have shown that in addition to their ability to interact with and 

stabilise stressed proteins, some sHsps such as Hsp25 [58], -crystallin [72] and clusterin 

[73] act co-operatively with ATP-dependent chaperones (e.g. Hsp70) to refold the stressed 

protein when the stress is removed and normal cellular conditions are restored. Studies on 

-crystallin have shown that the presence of ATP causes the sHsp to undergo a 

conformational change whereby the stressed target protein is released facilitating refolding 

by chaperones such as Hsp70 [74]. Members of the sHsp family have several features in 

common, including size and amino acid sequence homology within the C-terminal domain 

[55]. There have been 10 human sHsps identified thus far, including A- and B-crystallin 

(discussed below), Hsp27 and its murine equivalent, Hsp25 [75, 76]. 

The sHsps are also able to exist as monomeric and dimeric species which associate with one 

another to form large multimeric complexes, somewhat akin to the behaviour of the casein 
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proteins both within and without the casein micelle. Our studies have shown that S-casein, 

and more specifically, S1- and S2-casein, also act as molecular chaperones and do so in a 

manner that is similar to the sHsps and an extracellular chaperone, clusterin. Clusterin is a 

secreted mammalian chaperone present in bodily fluids such as blood and semen. Like the 

sHsps, clusterin is highly conserved and is upregulated in many cell types under conditions 

of stress and in protein misfolding diseases such as Alzheimer’s disease [77]. It is a disulfide-

linked dimer which is 75 – 80 kDa in size and highly glycosylated [73, 77]. Clusterin has 

been shown to aggregate in aqueous solution and at physiological pH values is present in 

monomeric, dimeric and multimeric states [78]. Like the sHsps, clusterin is an ATP-

independent molecular chaperone capable of stabilising a wide array of target proteins [73, 

77]. Stoichiometrically, clusterin has been shown to protect stressed target proteins at levels 

consistent with the concentration range of clusterin normally found in extracellular fluids 

(50 – 370 μg/mL in human serum and 2.1 – 15.0 mg/mL in human seminal fluid). In 

addition, clusterin displays greater chaperone activity with smaller target proteins versus 

larger ones [77] indicating that it has the ability to interact differently with various target 

proteins depending on the conditions. This variability of chaperone action has also been 

demonstrated extensively in studies on sHsps such as -crystallin which have been shown 

to exhibit increased or decreased chaperone activity depending on the mode of aggregation 

of a target protein [79-81]. 

-Crystallin is a member of the small heat-shock protein family and has for some time been 

known to play a major role in stabilising other crystallin proteins in the eye lens. It was 

identified some time ago that -crystallin performed an important structural role in the lens, 

as a member of the crystallin family of proteins which also comprises - and -crystallin [82]. 

In its normal state, the lens is transparent despite the high concentrations of these proteins 

in the cell cytoplasm (33% in the human lens and 50% in rat and bovine lenses [83]). Such a 

high concentration of proteins would ordinarily cause a significant degree of light scatter, 

but these highly homologous proteins adopt a critical short-range order that allows them to 

exist in a dense glass-like liquid resulting in unimpeded transmission of light through the 

lens [84, 85]. Their structural integrity therefore is of prime importance and disruption to 

their three-dimensional arrangement as a result of chemical modification, for example, has 

been shown to result in increased light scattering manifesting as cataract [86]. Due to the 

lack of protein turnover in the lens over the lifetime of an organism, the occurrence of -

crystallin in the lens allows it to perform a second, equally important role as a molecular 

chaperone. Numerous studies have shown that under conditions of cellular stress, -

crystallin interacts with not only other crystallins but with a plethora of other proteins, 

stabilising them against precipitation. Its wide tissue distribution and localisation in various 

disease states associated with protein misfolding also provides strong evidence for the role 

of -crystallin as a molecular chaperone outside the lens. Like S-casein, -crystallin is made 

up of two distinct gene products designated A- and B-crystallin, so named because of their 

relatively acidic and basic properties. The individual subunits of -crystallin are present in a 

3:1 ratio (A:B) in the human lens, are each ~20 kDa in size and these proteins readily 

associate with one another to form dimeric and multimeric species. These multimers can be 
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up to 1.2 MDa in size and exhibit dynamic subunit exchange. As such, -crystallin, like S-

casein has been resistant to crystallisation and a precise picture of its mechanism of action is 

still to be elucidated. Almost 100 years after being identified in the lens, individual A- and 

B-crystallin subunits were found in non-lenticular tissues [87-91]. These proteins and other 

sHsps have been identified in the brain where they are associated with neurodegenerative 

diseases such as Alzheimer’s, Creutzfeldt-Jakob and Parkinson’s diseases (summarised in 

[92]). 

2.5. Putative mode of action of sHsps and clusterin 

As reviewed in [93], current theories of the chaperone action of both sHsps and clusterin 

centre around their ability to expose hydrophobic regions that interact with partially folded 

target proteins, also known as ‘disordered’ molten globules, forming soluble, high molecular 

weight complexes and preventing them from precipitation. It has been shown that sHsps do 

not interact with target proteins that are natively folded, completely denatured, or those in 

stable molten globule states [55, 94-97]. The stoichiometry of sHsp and clusterin interaction 

with target proteins suggests that one oligomer of chaperone can bind to and stabilise many 

molecules of stressed target protein, in fact, CryoEM and X-ray solution studies on stressed 

-lactalbumin and B-crystallin showed that the target protein coated the exterior surface of 

the B-crystallin oligomer upon formation of the chaperone-target protein complex [98, 99].  

The relatively hydrophobic nature of the more globular portion of the sHsp is balanced by 

the adjoining flexible, dynamic C-terminal extension which is solvent exposed and 

hydrophilic and is thought to play a major role in ensuring the solubility of the huge 

complex formed upon chaperone interaction [100, 101]. It has also been demonstrated that 

the C-terminal extension in -crystallin is critical for oligomeric assembly [79]. Altered 

‘spacing’ of chaperone molecules resulting from modification of the C-terminal sequence 

results in abnormally sized oligomers with perturbed structure, physical stability and 

chaperone function [79]. The large, oligomeric forms of sHsps are thought to exist in 

dynamic equilibrium with smaller species which rapidly interchange with the oligomer 

[102, 103]. This equilibrium of subunit exchange is believed to be key to sHsps broad target 

protein specificity [97, 103-105], and although clusterin shares many features with the sHsps 

in terms of its chaperone action, the potential importance of subunit exchange for it has not 

been described to date [106]. 

3. S-Casein as a molecular chaperone 

The casein proteins and their derivatives have been used by the food industry as important 

nutritional and stabilising proteins for many years [4]. Early studies showed that whole 

casein (i.e. S-, - and -casein) prevented heat induced aggregation of whey proteins, even 

in calcium-containing systems [107, 108]. This stabilising action of the caseins on heat-

denatured target proteins was proposed to occur through non-specific interactions and 

opened up a new avenue of uses for casein proteins in stabilising both milk and non-milk 

proteins and thereby contributing to novel properties of milk products. It was then 
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demonstrated in 1999 that individual S-casein possessed molecular chaperone activity 

[109]. Since then, - and -casein have both been shown to also act as molecular chaperones 

[18, 33, 110-112]. The presence of high numbers of phosphate groups in the casein proteins 

appears to be important for chaperone action against amorphously aggregating target 

proteins under both reduction and heat stress, with studies showing that removal of these in 

S- and -casein reduced their ability to prevent the aggregation of target proteins [113, 114]. 

Previous work on S-casein showed that it prevented the stress-induced aggregation of 

natural target proteins such as the whey proteins -lactoglobulin and bovine serum albumin, 

but also of unrelated proteins such as alcohol dehydrogenase and carbonic anhydrase [109].  In 

acting as a molecular chaperone under these conditions, S-casein was able to interact with 

partially unfolded target proteins and prevent their incorporation into insoluble aggregates 

which would then have formed precipitates. Furthermore, when added to partially aggregated 

reduction-stressed insulin, S-casein not only prevented further aggregation of insulin but 

facilitated its re-solubilisation when present at a 2:1 (w:w) ratio [109]. 

As shown in Figure 4, the putative mode of action of S-casein is based on a similar model 

proposed for sHsps [70] where a natively folded protein (N) unfolds via a number of 

intermediately folded states (I1, I2 etc.) or ‘molten globule’ states on its way to the unfolded 

state (U). This folding and unfolding is fast and reversible and involves the exposure of 

hydrophobic regions normally buried in the interior of the protein.  

 

Figure 4. Putative mechanism of action of S-casein showing its interaction with target proteins on the 

folding and off-folding pathways. See text for explanation. Reprinted with permission from [33]. 

Copyright (2009) Dairy Industry Association of Australia. 

Under conditions of cellular stress, when intermediately folded states are present for 

longer periods, self-association is promoted by the prolonged exposure of hydrophobic 
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surfaces. When self-association occurs, the intermediately folded states enter the off-

folding pathways which are slow and irreversible and may lead to either amorphous 

aggregation as shown on the right hand side of the figure or to fibril formation as shown 

on the left. Amorphous aggregates result from disordered aggregation and lead to the 

formation of insoluble protein precipitates. Conversely, the ordered amyloid pathway 

leads to highly ordered -sheet stacking giving cross -sheet fibrils. Casein micelles or 

oligomeric forms of S- or -casein are able to interact with partially folded proteins and 

stabilise them against aggregation and precipitation by forming a soluble high molecular 

weight (HMW) complex [33]. 

3.1. Assessment of molecular chaperone activity 

Assessment of molecular chaperone activity traditionally involves an in vitro assay in which 

a target protein is subjected to a form of stress similar to what would be encountered under 

physiological conditions (e.g. heat, oxidation, reduction etc.) in the presence and absence of 

different amounts of chaperone. These assays are not complicated by the aggregation of the 

chaperone itself which is stable under these conditions, and suppression of aggregation has 

been shown to be specific to the action of molecular chaperones as substitution of these with 

non-chaperones (e.g. ovalbumin) has been shown to have no effect on the extent of target 

protein precipitation [73]. For the assessment of amorphous aggregation, light scattering of 

the proteins in solution at 360 nm is monitored over time, whereas for fibril forming 

proteins, amyloid formation is monitored by increasing Thioflavin T (ThT) fluorescence. 

These values increase to a maximum over the timeframe of the experiment and are used to 

estimate % protection provided by the chaperone as per the following formula: 

  chaperone100 *  I –  I
% Protection   

I

 



 (1) 

(1) Calculation of percentage protection of a target protein by molecular chaperone. In this 

formula, ΔI and ΔIchaperone represent the change in light scattering (for amorphously 

aggregating target proteins) or in Thioflavin T (ThT) fluorescence (for amyloid forming 

target proteins) in the absence and presence of the chaperone, respectively [79].  

3.2. S-Casein stabilises proteins via formation of soluble high molecular weight 

complexes  

Consistent with the well-characterised properties of a molecular chaperone, it has been 

shown that S-casein (and -casein) form soluble, high molecular weight (HMW) complexes 

with stressed target proteins that can be identified by size-exclusion chromatography. These 

complexes, formed between S-casein and heat-stressed -lactoglobulin or apo--

lactalbumin eluted from the column at a retention time correlating to an approximate mass 

of 1.8 MDa [18]. Control experiments showed that in the absence of a chaperone, heat 

stressed -lactoglobulin also formed large, multimeric species but these were largely 

insoluble [18]. Mixtures of the individual whey proteins and S-casein that were not exposed 
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to heat stress eluted as separate peaks with elution times corresponding to the individual 

proteins i.e. there was an absence of a target protein-chaperone or HMW complex. 

Additional experiments showed that the elution time of S-casein was not altered in any 

discernible way by the addition of heat stress [18]. 

The molten globule states of a natural target protein of S-casein, -lactalbumin, have been 

well characterised [13, 55, 115-122]. Intermediately folded states of the apo- form of -

lactalbumin provide an ideal model for the investigation of protein folding and unfolding 

and therefore the action of molecular chaperones when present in solution. The molten 

globule states of apo--lactalbumin exhibit a relatively compact structure in which a 

secondary structure is largely preserved, but tertiary structure is lost [123]. A characteristic 

of these states is that they expose significant amounts of hydrophobicity to solution as a 

result of their being ‘uncovered’ from the interior of the previously natively folded protein 

and it is these exposed hydrophobic areas that appear key to their interaction with 

molecular chaperones [124, 125]. Destabilisation of -lactalbumin upon removal of its 

calcium ion by a chelating agent such as EDTA induces a conformational change that further 

exposes the disulfide bonds of the protein to reduction with DTT [122]. Under this reduction 

stress, -lactalbumin adopts a molten globule state that is structurally unstable and similar 

to that formed at pH 2.0 [13]. This state, in the absence of a molecular chaperone, such 

partially unfolded proteins will readily aggregate and precipitate. When monitored via real-

time 1H NMR spectroscopy, the formation of the molten globule state, its aggregation and 

eventual precipitation can be visualised. The aromatic protons in the region of the spectrum 

from 6-8 ppm can be attributed almost exclusively to the signals of protons in the target 

protein, which is small (14.4 kDa) and monomeric. Resonances arising from aromatic 

protons in S-casein are relatively broad by comparison, so that even in the presence of 

added chaperone, the structural alterations in the target protein are easily observed. Isolated 

resonances arising from tyrosine 3,5 ring protons at 6.8 ppm are therefore a reliable 

indicator of molten globule formation and stabilisation in -lactalbumin [18, 122, 126]. The 

well-resolved resonances visible at Time 0 are representative of the native state and are 

quickly lost with the addition of DTT. In the absence of S-casein (Figure 5A), an initial 

increase in resonance arising from the Tyr (3,5) protons can be observed from ~ 0-200 s 

following the addition of DTT. This period represents the reduction of the disulfide bonds in 

-lactalbumin by DTT, giving the molten globule state which in the absence of chaperone is 

prone to aggregation then precipitation [122] after a period of approximately 1000 s [18]. In 

the presence of a 2:1 (w:w) ratio of S-casein to apo--lactalbumin (Figure 5B) , signals 

arising from the aromatic protons are preserved, indicating that the molten globule state of 

-lactalbumin is stabilised by the interaction between the two proteins. As shown in Figure 

5C, in the absence of S-casein the rate of decay of the Tyr (3,5) resonance of apo--

lactalbumin is rapid, occurring at rate of 2.70 (± 0.11)× 10-3 s-1 whereas in the presence of S-

casein it is approximately 50% slower at 1.25 (± 0.08)× 10-3 s-1 [18]. 

Extrinsic fluorescence studies have shown that upon formation of a high-molecular weight 

complex between αS-casein and reduction stressed insulin, a conformational change in one 

or both proteins resulted in an increase in clustered, exposed hydrophobicity. The other 
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casein proteins, - and -casein also exhibited similar increases in hydrophobicity in the 

presence of reduction stressed insulin, implying that similar interactions were occurring 

during formation of the chaperone-target protein complex [18]. A mixture of the three 

caseins (S-, - and -casein) combined according to their approximate proportions in 

bovine milk (60%, 25% and 15%, respectively), exhibited considerably increased exposure of 

clustered hydrophobic areas, indicating a synergy between the various subunits during 

stabilisation of stressed insulin [18]. Intrinsic (tryptophan) fluorescence studies showed that 

the tryptophan residues in the C-terminal region of S-casein were exposed to a more non-

polar environment as a result of the interaction with the reduced insulin B-chain, and may 

indicate involvement of this region of the chaperone with the hydrophobic (bound) target 

protein [18]. 

 

 

Figure 5. Real-time 1H NMR spectroscopy of apo--lactalbumin under reduction stress at 37°C in the 

presence and absence of S-casein. Stacked plots of 1D 1H NMR spectra show molten globule formation 

by reduced apo--lactalbumin in A) the absence and B) the presence of S-casein at a 2:1 (w:w) ratio. 

First-order decay of the resonance arising from the tyrosine (3,5) ring protons at 3.5 ppm in both cases 

(C) was used to calculate rates i.e. peak height (mm) v time (s). Reprinted with permission from [18]. 

Copyright (2005) American Chemical Society. 
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3.3. Effects of temperature, pH and molecular crowding  

As shown in [18], S-casein displayed temperature dependence in preventing aggregation of 

the reduced insulin B-chain, with comparatively better chaperone ability observed at 25°C 

compared to that at 37°C. This was in keeping with previous studies that showed that S-

casein was a considerably better chaperone at lower temperatures, giving 52% protection of 

insulin aggregation at 27°C compared to almost complete protection at 18°C [109]. This ‘cold 

shock protein’ characteristic is quite different to the temperature effects of other molecular 

chaperones such as -crystallin and tubulin, which display enhanced chaperone activity at 

increased temperatures [127-129]. At temperatures above 30°C, -crystallin undergoes 

structural transitions that involve rearranging and/or increasing hydrophobic surfaces, 

enhancing hydrophobic interactions between the chaperone and the target protein [124, 

125]. Conversely, clusterin’s chaperone ability appears to be quite independent of 

temperature effects [130]. The properties of S-casein that allow it to chaperone at lower 

temperatures are reflected in the fact that greater amounts of S-casein have been identified 

in mammals inhabiting low temperature zones compared to those in more temperate 

climates [131, 132] which may indicate an important stabilising role in physiological 

adaptation to low temperatures. Both - and -casein also display chaperone activity, but in 

contrast to S-casein, the chaperone action of these proteins does not appear to be as 

dependent on temperature as S-casein [18]. In stabilising insulin, apo- and holo--

lactalbumin as target proteins, - and -casein did not provide as much protection against 

precipitation as S-casein on a w:w and molar basis, but were similar to each other in their 

efficacy [18]. This was in contrast to previous reports which described greater chaperone 

action in -casein compared to S-casein in stabilising heat stressed catalase and reduction 

stressed lysozyme [110], whereas others found that S-casein was better than -casein at 

preventing the aggregation of heat-stressed ovotransferrin [113]. This apparent disparity in 

the relative chaperone performances of the casein proteins is likely to be related to their 

broad target protein specificities. The same observations have been made in relation to the 

chaperone action of sHsps and chaperone efficiency has been shown to be dependent upon 

the size of the target protein and the rate and mode of aggregation, as previously discussed 

[79-81]. A combined form of the casein proteins (60% S-, 25% - and 15% -casein) was 

shown to possess similar chaperone activity to that of S-casein alone [18].  

In the investigation into the mechanism of chaperone action of S-casein, experiments with 

its natural target protein, -lactoglobulin, have been performed under heat stress at 70°C 

[18, 109]. Obviously this level of heat stress is not physiologically appropriate, but the ability 

of S-casein to stabilise other dairy proteins under extreme heat stress is of importance to the 

dairy industry which employs treatment processes such as pasteurisation and ultra-high 

temperature treatment [18]. In these studies, it was found that pH had a major effect on the 

chaperone’s ability to suppress the aggregation of the target protein. The ability of S-casein 

to suppress the aggregation of -lactoglobulin at a 0.25:1 (w:w) ratio decreased from 73% at 

pH 7.0 to 33% at pH 7.5 and 19% at pH 8.0 after 450 min [18]. This is likely to be related to 

the rate at which -lactoglobulin aggregates at higher pH values and may also be related to 

changes in the chaperone ability of S-casein at more alkaline pH values. At slightly alkaline 
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pH values, the histidine residues of S-casein deprotonate (S1-casein has five histidines and 

S2-casein, three) and it is feasible that this results in a loss of electrostatic contacts between 

the subunits, disrupting their ability to effectively bind the target protein [18].  

A pH dependence is also exhibited by clusterin, which is in fact a better chaperone at more 

acidic pH values [130]. This is believed to be due to the increased dissociation of clusterin 

from its larger multimeric state at acidic pH values [130]. Conversely, -crystallin is less 

effective as a chaperone at slightly acidic pH values [130, 133] but this is thought to be due 

to subtle structural changes in the protein with a change in pH rather than a change in 

aggregation state [134]. It may also be that at increased pH values S-casein is less effective 

as a chaperone against -lactoglobulin aggregation because the nature of the aggregation 

changes at more alkaline pH values. Greater intermolecular disulfide bond formation 

produces oligomers of -lactoglobulin which then polymerise to form an aggregate. It is 

likely that S-casein is similar to -crystallin in that it cannot interact with and stabilise these 

forms of aggregated proteins as effectively as those that aggregate in a nucleation-

dependent manner [135]. Other factors that have been shown to influence the nature and 

rate of target protein aggregation also have an impact on S-casein’s chaperone action. One 

of these is molecular crowding. Experiments were conducted in the presence of 10% dextran 

in order to simulate the protein-rich environment of milk and a greater rate of target protein 

(insulin, apo- and holo--lactalbumin) precipitation was observed under these conditions 

[18]. This increased rate of aggregation affects S-casein’s chaperone ability in the same way 

as described previously for -crystallin, other sHsps and clusterin, which are all poorer 

chaperones with rapidly aggregating target proteins [94, 96, 122, 136, 137]. 

3.4. S-Casein is unable to protect enzymes from loss of function due to heat 

stress 

As previously discussed, it is known that molecular chaperones such as sHsps interact with 

and bind partially unfolded target proteins in molten globule-like states, but not once they 

have begun to aggregate [71]. The chaperone behaviour of S- and -casein appears different 

in this regard, with both having been shown to re-solubilise aggregated DTT-treated insulin 

[109, 110]. According to reference [138], one of the features of a protein used to classify it as 

a molecular chaperone is that it be able to aid in the recovery of lost biological activity.  Like 

the sHsps and clusterin, however, S-casein is unable to prevent the loss of activity in 

enzymes induced by heat stress. Our experiments with catalase, GST and ADH show that 

the presence of S-casein at a 1:1 (w:w) ratio does not protect these enzymes to any 

significant extent against heat-induced loss of function (Figure 6).  

3.5. S-Casein is ATP-independent in its chaperone action 

In order to obtain further insight into the molecular mechanism of action of S-casein, the 

effect of ATP on its chaperone function was also investigated [17; Treweek, Price & Carver, 

unpublished work]. Previous studies have shown that S-casein acts in a similar manner to 

small heat shock proteins (sHsps) and clusterin [17, 18, 28, 29, 33]. A major characteristic of  
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Figure 6. Loss of enzyme activity (catalase, CAT; ADH, alcohol dehydrogenase; GST, glutathione-S-

transferase) with heat stress at 55°C and the effect of addition of S-casein at a 1:1 (w:w) ratio. Values 

represented are means of independent triplicate measurements and error bars shown are standard 

deviations of the mean which in some cases are too small to be visible. Reprinted with permission from 

[17]. Copyright (2011) Elsevier Inc. 

sHsps and clusterin is that they function in an ATP-independent manner consistent with 

their inability to refold stressed proteins [139-141]. ATP levels in milk are relatively low (5 

μM) and as such it is likely to be non-essential to s-casein’s chaperone activity, however, it 

is an important mechanistic tool. A similar study on clusterin (which is also extracellular 

and as such experiences low physiological ATP levels) provided valuable insight into the 

ATP-independent action of the chaperone in binding the stressed enzymes catalase,  

ADH and GST [73]. Subsequent refolding of bound target proteins to clusterin and sHsps 

(e.g. Hsp25 and -crystallin) is achieved via ATP-dependent chaperones such as Hsp70  

[58, 72]. The presence of physiologically relevant levels of ATP on the ability of S-casein to 

suppress aggregation of stressed target proteins (specifically catalase, ADH and insulin)  

was investigated and it was found that the chaperone action of S-casein was unaffected  

by the presence of ATP [17; Treweek, Price & Carver, unpublished work]. In addition,  

the ATPase activity of S-casein was assessed and it was found that S-casein had no 

detectable ATPase activity either on its own or during chaperone action i.e. when interacting 

with heat stressed -lactoglobulin in a chaperone complex (Figure 7) [Treweek, Price & 

Carver, unpublished work]. 
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3.6. S-Casein does not bind target proteins in a way that allows refolding by 

Hsp70 

As previously mentioned, some sHsps such as Hsp25 [58], -crystallin [72] and clusterin [73] 

act co-operatively with ATP-dependent chaperones such as Hsp70 to refold stressed 

proteins when the stress is removed and cellular conditions are restored [139]. Studies on -

crystallin have  revealed that a region in the conserved -crystallin domain of B-crystallin 

undergoes structural modification upon binding of ATP [142] and that this conformational 

change causes -crystallin to release stressed target proteins, facilitating their refolding by 

chaperones such as Hsp70 [74]. Although not a natural component of milk, Hsp70 was used 

to probe the mechanism of S-casein’s chaperone action and to allow comparisons with 

better characterised chaperones to be made.  

 

Figure 7. ATPase activity of S-casein. The ability of S-casein (a-CN) to hydrolyse 170 M ATP was 

examined in the presence and absence of heat-stressed -lactoglobulin (b-LG) at a ratio of 2:1 (w:w) in 

50 mM sodium phosphate buffer containing 0.2 M NaCl, 2.5 mM EDTA and 0.02% NaN3 at pH 7.2. 

Generation of ADP was monitored via NADH oxidation giving a decrease in absorbance at 340 nm. This 

can be seen with the addition of 21 nmol exogenous ADP at 11 min (black arrow) and the addition of 1.1 

μmol 3-phosphoglycerate to 0.76 units of 3-phosphoglycerate kinase (3-PGK) at 4 min (grey arrow). All 

experiments were performed in triplicate at 37°C. 

Recovery of enzyme activity was assessed using heat-stressed catalase and ADH [17, 73] in 

the presence and absence of 1:1 (w:w) ratios of S-casein similar to the assays shown in 

Figure 6, with the addition of Hsp70 and ATP after a recommended 30 min ‘recovery 

period’ [17, 58]. In the presence of S-casein, neither catalase nor ADH showed any 

significant recovery from heat stress at 55°C, with only 1(±5)% activity remaining 5 hours 

after the addition of Hsp70 and ATP. In contrast, control experiments showed 27(±5)% 

recovery of catalase activity over the same time period and under the same conditions, but 

with the addition of clusterin instead of S-casein [17]. This effect of clusterin has been 

shown to be specific for the chaperone, as other proteins added in its place (e.g. lysozyme, 

myoglobin) have been shown to be unable to facilitate enzyme recovery to the same extent 
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[73]. It could be concluded, therefore, that the binding of Hsp70 to its target protein to 

achieve refolding and release, coupled with ATP binding and hydrolysis, is impeded by the 

manner in which S-casein binds the destabilised target protein [17]. In stabilising the heat-

stressed enzymes, S-casein may hold its target more tightly or incorporate them into the 

complex in such a way that they are not accessible to Hsp70 to allow for the refolding that 

has been seen for target proteins stabilised by sHsps and clusterin [58, 72, 73, 139]. It is 

possible that the S-casein-target protein complex is to some extent incorporated the casein 

micellar structure and this arrangement influences the accessibility of Hsp70 [17]. CryoEM 

and X-ray solution studies on sHsps have revealed that stressed -lactalbumin molecules 

coat the exterior surface of the oligomeric form of B-crystallin when the chaperone-target 

protein complex is formed [99, 143]. Further studies with spin-labelled melittin peptides 

have shown that there is a stoichiometry of approximately 1:1 [144] in the binding of the 

peptides to each monomer of -crystallin and that these are relatively evenly spaced [145]. 

This regular arrangement of target protein binding to -crystallin may be an important 

factor in the ability of Hsp70 to subsequently refold target proteins [17]. 

3.7. S1- and S2-Casein also act as molecular chaperones  

The constituent proteins of S-casein, S1- and S2-casein (separated and purified as 

described earlier in this chapter) have been shown to exhibit chaperone action 

independently of one another. Like S-casein, the chaperone action of S1- and S2-casein has 

been described for a range of target proteins under various stress conditions [17]. Studies 

with reduced insulin as the target protein showed that at ratios of 0.25:1 and 0.5:1 (w:w 

casein: insulin) both S1- and S2-casein had comparable chaperone activity to S-casein 

(summarised in Table 2).  

 

-CN:insulin (w:w) S-CN S1-CN S2-CN 

0.1:1 66 ( 2)% 49 ( 2)% 64 ( 2)% 

0.25:1 74 ( 0.6)% 69 ( 2)% 73 ( 1)% 

0.5:1 96 ( 0.4)% 91 ( 1)% 91 ( 0.3)% 

1:1 98 ( 0.9)% 98 ( 0.1)% 97 ( 0.4)% 

Table 2. Summary of chaperone assay data with insulin under reduction stress in the presence of 

increasing amounts of S-, S1- or S2-CN. Figures shown are % protection of stressed target protein by 

the chaperone. Percentage protection is calculated as previously described. Reprinted with permission 

from [17]. Copyright (2011) Elsevier Inc. 

When assessed with catalase under heat stress, a 0.5:1 ratio of S-casein to catalase provided 

88 ( 2)% protection after 50 min. Under these conditions, S2-casein was the better 

chaperone, giving 84 ( 4)% protection at the same ratio and time point, whereas S1-casein 

provided only 64 ( 1)% at the same ratio and time point [17]. In another set of experiments 

that included 0.1 M NaCl in order to more accurately simulate the high salt conditions in 

milk, catalase aggregation occurred more rapidly and as a result, all of the -casein proteins 

tested were less effective in preventing catalase aggregation and precipitation. These results 

are summarised in Table 3 and visible spectroscopy spectra are shown in Figure 8. 
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-CN:cat 

(w:w) 
S-CN S1-CN S2-CN 

S-CN + 

salt 

S1-CN + 

salt 

S2-CN + 

salt 

0.25:1 76 ( 1)% 44 ( 9)% 77 ( 3)% 15 ( 0.1)% 3 ( 0.8)% 16 ( 2)% 

0.5:1 88 ( 2)% 64 ( 1)% 84 ( 4)% 27 ( 1)% 16 ( 2)% 26 ( 2)% 

1:1 96 ( 2)% 80 ( 3)% 85 ( 6)% 57 ( 1)% 16 ( 3)% 18 ( 2)% 

Table 3. Summary of chaperone assay data with catalase (cat) under heat stress in the presence of 

increasing amounts of S-, S1- or S2-CN and in the presence and absence of 0.1 M NaCl. Figures shown 

are % protection of stressed target protein by the chaperone. Percentage protection is calculated as 

previously described. Reprinted with permission from [17]. Copyright (2011) Elsevier Inc. 

Under conditions of added salt, the chaperone abilities of  S-, S1- and S2-casein were all 

greatly reduced, with a 0.5:1 ratio of S-casein: catalase providing only 27 ( 1)% protection, 

compared with 88 ( 2)% for the same ratio in the absence of salt. At the same ratio and time 

point S2-casein showed similar chaperone ability to S-casein (26 ( 2)% protection), with 

the most profoundly affected protein being S1-casein. Under these conditions, even a 1:1 

ratio of S1-casein: catalase provided only 16 ( 2)% protection. Analysis of the samples from 

these assays by SDS-PAGE showed that S1-casein had actually formed high molecular 

weight complexes that failed to migrate through the gel matrix to any extent, but like the 

other chaperones, remained soluble [17]. Despite remaining in solution, the data show that 

this aggregated form of S1-casein was no longer an effective chaperone. The self-association 

of S1-casein in the presence of salt most likely occurs as a result of neutralisation of charged 

residues on the protein (‘charge screening’ [146]) by the interaction with sodium and 

chloride ions i.e. the early stages of isoelectric precipitation [12]. Aromatic residues in S1-

casein are also thought to play a major role in the hydrophobic interactions between S1-

casein molecules, which at increasing ionic strengths go from monomers to dimers, 

tetramers, hexamers, octamers, then higher order aggregates [147].  

Molecular chaperones are known to stabilise amorphously aggregating proteins like those 

described above, but they also interact with and stabilise proteins destined to form fibrillar 

aggregates (refer to Figure 4). This property has been described for sHsps in suppressing 

amyloid fibril formation in -amyloid peptide [148, 149], apolipoprotein C-II [150] and in -

synuclein, the protein present in the Lewy bodies of Parkinson’s disease [151]. A form of -

casein which is destabilised as a result of being reduced and carboxymethylated (RCM--

casein) has been shown to form fibrils at 37°C in the presence of DTT and has been widely 

used as a model for investigating chaperone action against fibrillar proteins [28, 33, 79, 152]. 

Studies have shown that the presence of a ~0.6:1 w:w ratio of S-casein:RCM--casein 

reduced the Thioflavin T fluorescence (an indicator of the probe’s binding to forming fibrils) 

by 65%, and in the presence of a 2.5:1 w:w ratio of S-casein:RCM--casein, fibril formation 

was completely abrogated [17, 28]. In the presence of S1- or S2-casein at the same ratio, 

fibril formation was also completely suppressed. At lower ratios however i.e. ~0.6:1 w:w -

casein:RCM--casein, S1-casein was comparable to S-casein in that it suppressed fibril 

formation by 96%, but S2-casein was able to only provide 56% protection under the same 

conditions as shown in Figure 9 [17].  
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Figure 8. Chaperone activity of A) S-, B) S1- and C) S2-casein against amorphously aggregating 

catalase, in the presence of 0.1 M NaCl and various w:w ratios  as determined by light scattering at 360 

nm. The 0:1 ratio in each assay represents catalase aggregation in the absence of -casein i.e. no 

chaperone present. Reprinted with permission from [17]. Copyright (2011) Elsevier Inc. 

The results of the fibril-forming experiments discussed above were further confirmed by 

TEM studies (Figure 10) which showed that the presence of a 1.25:1 ratio of S1-casein 

resulted in reduced numbers of fibrils being formed by RCM--casein (Figure 10B). In 

addition, those fibrils that were formed were shorter in length than those observed for 

RCM--casein in the absence of chaperone (Figure 10A). Conversely, in the presence of the 

same ratio of S2-casein, RCM--casein fibrils were abundant and were associated with 

rounded aggregates 50–100 nm in diameter (Figure 10C) that may have contained one or 

both proteins. S2-Casein, which forms characteristic twisted fibrils, was included as a 

control at the same concentration but in the absence of chaperone [17]. 

Previous studies have shown that both - and S-casein have the ability to inhibit the 

formation of fibrils by -casein [28], and this observation has led to the conclusion that 

amyloid formation in mixtures of casein (i.e. whole casein), namely by αS2- and -casein, is 

prevented by the action of the casein chaperones, β- and αS1-casein. As S1-casein was a 

more potent inhibitor of fibril formation than S2-casein under these conditions, it would be 

reasonable to assume that a large proportion of the fibril-preventing action of S-casein is 

provided by S1-casein. As previously discussed, the chaperone activity of S1-casein 

against amorphously aggregating catalase in the presence of salt was a stark contrast, but 

provides the rationale that perhaps in milk, where salt concentrations are high, S1-casein 
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has an important role in preventing fibrillar aggregation rather than amorphous 

aggregation [17].  

 

Figure 9. Chaperone activity of A) S-, B) S1- and C) S2-casein against amyloid forming RCM--casein 

as determined by Thioflavin T (ThT) fluorescence. Ratios of chaperone:RCM--casein equivalent  

to ~0.6:1, 1.25:1 and 2.5:1 (w:w) are represented by ▼, □ and ▲, respectively. Reprinted with permission 

from [17]. Copyright (2011) Elsevier Inc. 

Investigations into the mechanism of S-casein’s chaperone action are only in their infancy, 

and the precise nature of its chaperone function remains largely an enigma. Despite this, 

comparisons with the chaperone action of sHsps have provided several important insights. 

In sHsps, binding of a stressed target protein is thought to occur primarily via hydrophobic 

interactions between exposed hydrophobic regions on the chaperone and on the partially 

unfolded protein [139]. It has been well described that under conditions of heat stress, some 

sHsps undergo a conformational change which increases the extent of exposed 

hydrophobicity and these structural changes are accompanied by functional ones i.e. 

increased chaperone action [94, 125, 127, 153, 154].  Solubility of the large sHsp aggregates is 

maintained by hydrophilic regions of the chaperone that are dynamic and solvent-exposed, 

such as the flexible C-terminal extensions in -crystallin [70, 93]. The presence of these polar 

regions is also believed to be important in maintaining the solubility of the target-protein-
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chaperone complex once interaction between the two proteins has taken place, resulting in a 

high molecular weight complex [155]. It is plausible that S-casein has a similar mode of 

action. The distribution of hydrophobic and hydrophilic residues in the caseins is not 

uniform and their lack of well-defined structure encourages self-association but also likely 

aids in chaperone action with partially unfolded target proteins. Within the predominant S-

casein subunit, S1-casein, hydrophobic residues are clustered into three distinct regions 

(residues 1-44, 90-113 and 132-199) and the hydrophilic phosphoserine residues are also 

clustered in the polar domains (residues 41-80) [5]. It is possible that the structure of S1-

casein is similar to that of the sHsps whereby it has a predominant, relatively globular 

hydrophobic domain linked to a highly polar region akin to the flexible polar C-terminal 

extension of the sHsps [155-157]. Hypothetical structures for S-casein subunits obtained 

through energy minimisation calculations are consistent with this model [15]. The most 

hydrophilic of the caseins is S2-casein (present at a ratio of 4:1 S1:S2 in bovine milk) with 

only two areas of hydrophobicity arising from residues 160-207 and 90-120 [17]. The C-

terminal region of S2-casein possesses a high net charge despite being relatively 

hydrophobic [5].  

 
 

 

Figure 10. Electron micrographs of RCM--casein incubated for 50 h at 37°C with and without S-casein 

proteins. RCM-κ-casein incubated in the absence (A) or presence of ~1.0 mol:mol ratio (3.75 mg/mL) of 

either S1-casein (B) or S2-casein (C). S2-Casein alone is also shown (D; 3.75 mg/mL). In (C), small, 

rounded aggregates are indicated by . Scale bars represent 500 nm. Reprinted with permission from 

[17]. Copyright (2011) Elsevier Inc. 
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Size-exclusion HPLC studies have shown that S-casein exists as a polydisperse aggregate 

[18] and it is likely that this heterogeneity arises from association of the two subunits. It is 

apparent from Figure 4 and from the previous discussion of the chaperone mechanism of 

sHsps that a crucial part of the process is the dynamic interaction between large, 

heterogeneous aggregates formed by S-casein and smaller oligomers, which, in the case of 

the sHsps, are believed to be the active form of the chaperone [18, 110]. As the other casein 

proteins present in milk (-, and -casein) have also been shown to possess chaperone 

activity [18, 33, 110-112] it is likely that these subunits also play an important role in 

dynamic subunit exchange and stabilisation of the casein aggregate. The ability of S-casein 

to resolubilise aggregated target protein species is especially interesting in the context of the 

mechanism shown in Figure 4. The data on insulin resolubilisation by S-casein indicates 

that an equilibrium certainly exists between intermediately folded states of target proteins 

(e.g. I2) and their amorphous aggregates, but that in addition, S-casein is capable of pushing 

this equilibrium back toward a more soluble and therefore more stable state (I1 or I2) 

following formation of the aggregate. Dynamic equilibrium between the S-casein aggregate 

and smaller, dissociated species is likely to be important in this aspect of its chaperone 

function, but this remains to be elucidated. 

4. Conclusion and future directions 

The predominant milk protein, S-casein, has been shown to possess molecular chaperone 

abilities with a range of target proteins, under different stress conditions. Like the sHsps, S-

casein is also ATP-independent in its chaperone action. As described in this chapter, S-

casein and its two constituent proteins, S1- and S2-casein are capable of interacting with 

and stabilising a range of physiological and non-physiological target proteins. This 

‘promiscous’ nature is a feature of many other chaperones. Under a variety of stress 

conditions, S-, S1- and S2-casein form high molecular weight complexes with partially 

unfolded target proteins, stabilising them against precipitation, whether this be via 

amorphous or fibrillar pathways.  

Like the sHsps and clusterin, the -casein proteins exhibit different degrees of chaperone 

activity depending on the mode of target protein aggregation (i.e. amorphous versus 

fibrillar), the rate of target protein aggregation, the size of the target protein, the conditions 

of stress applied and the presence of competing ions (e.g. salt). Unlike the sHsps 

(specifically Hsp25 and -crystallin) and clusterin, however, S-casein binds target proteins 

in a manner that does not allow subsequent interaction and reactivation by the ATP-

dependent Hsp70. 

The mechanism/s by which S-casein stabilises and prevents the precipitation of other 

proteins in milk (such as the other caseins and whey proteins such as -lactoglobulin and -

casein) is of interest to the dairy industry as it may provide an alternative method for long-

life milk treatment [18].  It has been demonstrated that S-casein, and indeed other caseins 

such as -casein, interact with ‘molten globule’ states or folding intermediates of proteins. 

As suggested by others, processing treatments in dairy foods have the potential to transform 
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previously native structures into denatured or partially denatured states and that the 

presence of these states may either present a problem or offer opportunities for novel foods 

to be developed [123]. This is where the action of molecular chaperones may play an 

important role. Thus, a better understanding of the aggregation processes in milk and how 

these can be modified opens up potential avenues for new milk based products with novel 

textures and other organoleptic properties to be developed. 
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