2013

Novel implications of Lingo-1 and its signalling partners in the Dorsolateral prefrontal cortex in schizophrenia

Jessica L. Andrews
University of Wollongong, ja393@uowmail.edu.au

Kelly A. Newell
University of Wollongong, knewell@uow.edu.au

Xu-Feng Huang
University of Wollongong, xhuang@uow.edu.au

Francesca Fernandez-Enright
University of Wollongong, fernande@uow.edu.au

Publication Details
Novel implications of Lingo-1 and its signalling partners in the Dorsolateral prefrontal cortex in schizophrenia

Keywords
dorsolateral, cortex, implications, lingo, 1, novel, its, prefrontal, signalling, schizophrenia, partners

Disciplines
Medicine and Health Sciences

Publication Details

This conference paper is available at Research Online: http://ro.uow.edu.au/ihmri/398
Novel implications of Lingo-1 and its signaling partners in the Dorsolateral Prefrontal Cortex in Schizophrenia

Jessica L. Andrews1,2,S, Kelly A. Newell1,2, Xu-Feng Huang1,2, Francesca Fernandez-Enright1,2

1Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, School of Health Sciences, University of Wollongong, Australia; 2Schizophrenia Research Institute, Sydney, Australia

Background

Myelination and neurite outgrowth both occur during brain development and their disturbance has been previously implicated in the pathophysiology of schizophrenia. Leucine-rich repeat and immunoglobulin domain-containing protein (Lingo-1), is a potent negative regulator of axonal myelination and neurite extension. Since co-factors of Lingo-1 signaling (Nogo receptor (NgR), With No Lysine (K) (WNK1) and Myelin transcription factor 1 (Myt1)) have been previously implicated in the genetics of schizophrenia, we explored for the first time the role of Lingo-1 signaling pathways in this disorder. Lingo-1 protein, together with its co-receptor and cofactor proteins NgR, TNF receptor orphan Y (TROY), p75, WNK1 and Myt1, have never been explored in the pathogenesis of schizophrenia.

Methods

We examined protein levels of Lingo-1, NgR, TROY, p75, WNK1 and Myt1 within the post-mortem dorsolateral prefrontal cortex (DLPFC), a brain region highly disrupted in schizophrenia pathophysiology; from 37 schizophrenia patients versus 37 matched controls from the NSWBrain Bank Network.

Results

Lingo-1 protein expression was found to be significantly increased by 12% (\(p=0.006\)) in the DLPFC of schizophrenia subjects. A significant 19.5% increase in Lingo-1 expression was found in schizophrenia males compared to control males (\(p<0.001\)).

In contrast to Lingo-1, NgR protein expression was significantly decreased by 16% (\(p<0.001\)). Interestingly, neither the third receptor in this trimolecular receptor complex p75, nor its homolog TROY, showed any significant difference in levels of protein expression in schizophrenia subjects compared to controls (\(p=0.146\) and \(p=0.500\) respectively). Analysis of WNK1 revealed no statistically significant difference in expression in the DLPFC between schizophrenia and control subjects (\(p=0.864\)). However a significant 11.5% increase in Myt1 expression was observed in schizophrenia compared to control groups (\(p=0.023\)).

Conclusions

This is the first study to examine the expression profile of Lingo-1 and its signaling partner proteins in schizophrenia, identifying alterations of these pathways in the DLPFC from schizophrenia patients. Further analysis will be required to characterize these interactions at a molecular and cell specific level. However, this innovative finding provides the first foundation for a new avenue in the development of future therapies for schizophrenia.