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On the growth problem for skew and symmetric conference
matrices

C. Kravvaritis *, M. Mitrouli * and Jennifer Seberry f

Abstract

C. Koukouvinos, M. Mitrouli and Jennifer Seberry, in “Growth in Gaussian elimi-
nation for weighing matrices, W(n,n — 1)”, Linear Algebra and its Appl., 306 (2000),
189-202, conjectured that the growth factor for Gaussian elimination of any completely
pivoted weighing matrix of order n and weight n—1 is n—1 and that the first and last few

n—1 n—1

pivots are (1,2,2,3 or 4,...,n — 1 or 5=, %= n — 1) for n > 14. In the present paper

we study the growth problem for skew and symmetric conference matrices.

An algorithm for extending a k x k matrix with elements 0, +1 to a skew and symmetric
conference matrix of order n is described. By using this algorithm we show the unique
W(8,7) has two pivot structures. We also prove that unique W (10,9) has three pivot
patterns.

Key Words and Phrases: Gaussian elimination, growth, complete pivoting, weighing

matrices.
AMS Subject Classification: 65F05, 65G05, 20B20.

1 Introduction

Let A-z = b, where A = [a;;] € R™*" is nonsingular. The strategy of Gaussian elimination
(GE) in order to solve this system is to reduce the full linear system to a triangular system
which can be easily solved, using elementary row operations. There are n—1 stages, beginning
with A®) = A,I_)(l) := b and finishing with the upper triangular system A™ .z = b™ . Let
Alk) = [az(-;-c)] denote the matrix obtained after the first k£ pivoting operations, so A™) is the
final upper triangular matrix. A diagonal entry of that final matrix will be called a pivot.
Matrices with the property that no exchanges are actually needed during GE with complete
pivoting are called completely pivoted (CP) or feasible.
Traditionally, backward error analysis for GE is expressed in terms of the growth factor

maz; j i |ag-c) |

n,A) =
9t 4) mai;j|ai;|

which involves all the elements al(’-c), k=1,2,...,n that occur during the elimination. For a
CP matrix A let us denote by g(n) = sup{ g(n, A)/A € R"*™ }. The problem of determining
g(n) for various values of n is called the growth problem.
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The determination of g(n) remains a mystery. Wilkinson in [8] proved that
g(n) < [n23Y2.. pl/n1]1/2

and that this bound is not attainable and can still be quite large (e.g. it is 3570 for n = 100).

Wilkinson in [9],[10] noted that there were no known examples of matrices for which g(n) > n.
In [2] Cryer conjectured that “g(n, A) < n, with equality iff A is a Hadamard matrix”. This
conjecture became one of the most famous open problems in numerical analysis and has been
investigated by many mathematicians. In 1991 Gould [6] discovered a 13 x 13 matrix for
which the growth factor is 13.0205. Thus the first part of the conjecture was shown to be
false. The second part of the conjecture concerning the growth factor of Hadamard matrices
still remains open.

An Hadamard matrix H of order n X n is an orthogonal matrix with elements +1 and
HHT = nI. If an Hadamard matrix, H, of order n can be written as H = I 4+ S where
ST = — 8 then H is called skew-Hadamard. S is also a conference matrix: we call it a skew
conference matriz.

Two matrices are said to be Hadamard equivalent or H-equivalent if one can be obtained
from the other by a sequence of operations which permute the rows and/or columns and
multiply rows and/or columns by —1.

A (0,1,—1) matrix W = W (n, k) of order n satisfying WW7T = kI,, is called a weighing
matriz of order n and weight k or simply a weighing matriz. A W(n,n), n = 0 (mod4), is a
Hadamard matrix of order n. A W = W (n, k) for which WT = —W is called a skew-weighing
matriz. A W = W(n,n — 1) satisfying W7 = W, n = 2(mod4), is called a symmetric
conference matriz. Conference matrices cannot exist unless n — 1 is the sum of two squares:
thus they cannot exist for orders 22,34, 58,70,78,94. For more details and construction of
weighing matrices the reader can consult the book of Geramita and Seberry [5].

Wilkinson’s initial conjecture seems to be connected with Hadamard matrices. Interesting
results in the size of pivots appear when GE is applied to CP weighing matrices of order n and
weight n — 1. In the present paper we study the growth problem for CP skew and symmetric
conference matrices. In these matrices, the growth is also large, and experimentally, we have
been led to believe it equals n — 1 and special structure appears for the first few and last
few pivots. We studied, by computer, the pivots and growth factors for W(n,n — 1), n =
6,10, 14,18, 26, 30, 38, 42,50,54,62,74,82,90,98 constructed by two circulant matrices and
for n = 8,12,16, 20, 28, 36,44, 52, 60, 68, 76, 84,92, 100 constructed by four circulant matrices
and obtained the results in Tables 3 and 4. These results give rise to a new conjecture that
can be posed for this category of matrices.

The growth conjecture for skew and symmetric conference matrices

Let W be a CP skew and symmetric conference matrix. Reduce W by GE. Then

(i

) g(n,W)=mn—1.

(ii) The two last pivots are equal to 2
)
)

1 ,n—1.

(iii) Every pivot before the last has magnitude at most n — 1.

(iv) The first four pivots are equal to 1, 2, 2, 3 or 4, for large enough n.



Notation. Write A for a matrix of order n whose initial pivots are derived from matrices
with CP structure. Write A(j) for the absolute value of the determinant of the j X j principal
submatrix in the upper lefthand corner of the matrix A. Throughout this paper —1 will be
denoted by —. The magnitude of the pivots appearing after the application of GE operations
on a CP matrix W is given by

pj=W(3E)/W(E-1), j=12,...,n, W(0) =1 (1)

We use W (j) similarly.

2 The first four pivots

Since pivots are strictly connected with minors we start our study with an effort of computing
principal minors of skew and symmetric conference matrices. The following lemma specifies
the possible values of determinants of small order. The results for orders 6 and 7 are new.

Lemma 1 The mazimum determinant of all n X n matrices with elements +1 or 0, where
there is at most one zero in each row and column is:

Order Mazimum Determinant Possible Determinantal Values

2 % 2 2 0,1,2

3x3 4 0,1,2,3,4

4x4 16 0,1,2,3,4,5,6,7,8,9,10,12, 16

5x%5 48 0,1,2,3,4,5,6,7,8,9,10,11,12, 13, 14, 15, 16,17, 18,
19,20,21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 36, 40, 48

6 x 6 160 160, 144, 136, 132, 130, 128, 120, 112, 108, 106, 105, 104,
102, 100, .. .

7x T 528 528, 504, 480, 468, 456, 444, 432, 420, 408, 396, 384, 372,

366, 360, 354, 348, 342, 336, 330, 324, . . .
|

Lemma 2 Let W be a CP skew and symmetric matriz, of order n > 6 then if GE is performed
on W the first two pivots are 1, and 2.

Proof. We note that in the upper lefthand corner of a CP skew and symmetric conference
matrix, of order n > 6 the following submatrices can always occur

Thus, the first two pivots, using equation (1), are

p1=1, and po=2.



Lemma 3 H-equivalence operations can be used to ensure the following submatrices always

occur in the upper lefthand corner of a W(8,7) and a W(10,9):
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Proof. We note that each of W(8,7) and W(10,9) is unique upto H-equivalence. Hence it
is sufficient to demonstrate that By, By, A; and Ay exist in each.
Consider the following W (8, 7)
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We can see Bj in the submatrix comprising the first 3 rows and columns 4, 5 and 6 of X. By
is in the submatrix comprising the first 3 rows and columns 4, 5 and 2 of X. A; appears in
the submatrix comprising rows 1, 2, 3 and 7 and columns 4, 8, 5 and 6 of X.

Ay appears in the top lefthand 4 x 4 submatrix of Y.
Now consider the following W (10, 9)
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We can see By in the submatrix comprising the first 3 rows and columns 1, 3 and 4 of Z. Bs
is in the submatrix comprising the first 3 rows and columns 1, 8 and 10 of W. A; appears in
the submatrix comprising the first four rows and columns 1, 2, 4 and 3 of Z.

Ay appears by taking columns 1, 3, 9 and the negative of column 4 and then choosing
rows 1, 2, 4 and 3.




Lemma 4 H-equivalence operations can be used to ensure the following submatrices always
occur in a skew and symmetric W (n,n — 1):

1 1 1] (1 1 1
31: 1 - 1 OI‘BQZ 1 — 0 )

11 — | 11—

and . _

1 1 1 1 11 0 —
1 - 1 — 1 - - —
Adv= ol o=y
11 — — 11 - 1

Proof. We note that, without loss of generality, the first few rows and columns of any skew
and symmetric W(n,n — 1) can be written, for large enough n (we considered n = 8 and
n = 10 separately above) as

o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 a b 1 1 1 1 1 1 1 1 - - = - = - =
1 eéa 0 ¢ 1 1 1 1 - - = - 1 1 1 1 - - =
1 e e 0 1 1 — -1 1 - -1 1 - -1 1 -
e e e
e e —e
e —e e
e —e -—e
Tableau 1
n+2

where a, b, c are +1, e = (—1) "2, and e is column of all 1s of suitable length (the length of
e may vary in this Tableau).
Clearly we can choose columns (with suitable permutation) that start

1 1 1
- 1 =
- — 1
1 - —

Bl — or Al —

[ S =
|
—

— = =

We can also choose the three columns (with suitable permutation) that start

1 1 1
e[l 1],

We now extend Y2 by a third row obtaining Z»

111 -1 1 - 1 1 - 1 1 - 1 1 0
Zo=1 — 1 - 1 1 v 1 — oo — — .0c — 0 u
1 0 1 ++¢ 1 — «ov — 1 «ov 1 — viv — 2 w
where u, z and w are 1. Suppose there are z; columns (1,1,1)”, 2o columns (1,1, )7, z3
columns (1, —,1)7, and z4 columns (1, —, —)T.
Then z1 + x2 + x3 + 4 = n — 4 (by counting), z1 + x9 — 3 — x4 = 0 (by inner product
of the first and second rows), z1 — 2 + 3 — £4 = —1 — z (by inner product of the first and



third rows), and z; — 29 — z3 + £4 = —1 — uw (by inner product of the second and third
rows). From these four equations we obtain 4z9 = n — 2 + z + uw. So, since the minumum
and maximum of +z + uw is —2 and +2 respectively, n — 4 < 4z < n. Hence zo > 1 for
n > 8. So we can choose the first two columns of Z; plus a column from the x5 columns
(1,1,—) to see that Bj always exists where

11 1
Bi=1]1 - 1
10 —

This can be rearranged to give Bo. A similar counting argument, given that n > 12
allows us to see that A; always appears. It remains to establish that A will always occur.
We discriminate two cases:

Case I: For n = 0(mod 4)

In this case the matrix is skew and thus the upper 4 x 4 block of the above Tableau I will
be:

0 1 1 1
— 0 a b
— —a 0 ¢’
— —=b — 0

Since we showed that the matrix By always occur we can set a = 1. By setting all the
possible four choices for b, ¢, we see that always, for each choice, appears in the 4 x 4 block a

column (or a equivalent one) of the form [ 1 0 — — ] . Thus we can choose the columns
of A, directly from Tableau I.

Case II: For n = 2(mod 4)

In this case the matrix is symmetric and thus the upper 4 x 4 block of the above Tableau
I will be:

1 1
0 b
a c’

=)
O O Q =

b

Since we showed that the matrix B always occur we can set a = —1. By setting all the
possible four choices for b, ¢, we see that always, for each choice, appears in the 4 x 4 block a

0

column (or a equivalent one) of the form [ 10 — — ] . Thus we can choose the columns
of Ay directly from Tableau 1. O

Lemma 5 Let W be a CP skew and symmetric conference matriz, of order n > 12 then if
GE is performed on W the third pivot is 2.

Proof. Since in the 2 x 2 upper lefthand corner of a CP skew and symmetric conference
matrix, the following submatrix will always occur:



we try to extend it to all the possible 3 x 3 matrices. It is interesting to specify all possible
3 x 3 matrices with elements +1 that contain this 2 x 2 part and also have the maximum
possible value of the determinant which for the 3 x 3 matrices is 4. Thus we extend this
matrix to the all possible 3 x 3 matrices M with elements +1 i.e.

1 1 =
M=]1 — «
ok %

where * can take the values 1 or —1 and 0 with the restriction that each row and column will
contain at most one zero.

Next, we required the determinant of the matrix to be 4 and the matrix to be normalised i.e.
the elements in the positions (3,1) and (1,3) to be 1. Under these restrictions we found six
matrices which are equivalent to the following two CP matrices:

1 1 1 1 1 1
Bl = 1 — 1 or B2 = 1 — 0
1 1 - 1 1 -

Since in Lemma 4 was shown that the matrices By and By always occur in a skew and
symmetric weighing matrix, in the upper left 3 x 3 corner of a CP skew and symmetric
W(n,n — 1) the matrix By or By will occur, and hence the third pivot, using equation (1), is

p3 = 2.

O

Proposition 1 Let W be a CP skew and symmetric conference matriz, of order n > 12 then
if GE is performed on W the fourth pivot is 3 or 4.

Proof. Since in the 3 x 3 upper lefthand corner of a CP skew and symmetric conference
matrix, the matrix B1 or B2 will always occur we try to extend it to all the possible 4 x 4
matrices. It is interesting to specify all possible 4 x 4 matrices M with elements 0, £1 that
contain these 3 x 3 matrices and also have the maximum possible values of the determinant
which for the 4 x 4 matrices are 16 and 12.

First Case
1 1 1 =%
1 — 1 =«
M= 1 — %
*ox ok ok

where * can take the values 1 or —1 and 0 with the restriction that each row and column will
contain at most one zero.

Next, we required the determinant of the matrix to be 16 and the matrix to be normalised
i.e. the elements in the positions (4,1) and (1,4) to be 1. Under these restrictions we found
one matrix which is equivalent to the following one:



11 1 1
1 - 1 -
=1, - _
11 - -
Second Case
1 1 1 «
1 — 0 =«
M= 1 - %
_* * % %

where * can take the values 1 or —1 and 0 with the restriction that each row and column will
contain at most one zero.

Next, we required the determinant of the matrix to be 12 (the closest to the maximum value
of minor since the value of 16 did not appear) and the matrix to be normalised i.e. the
elements in the positions (4,1) and (1,4) to be 1. Under these restrictions we found one
matrix which is equivalent to the following one:

1 0

- 1
1 -1

Ay =

— = =
—_

Since in Lemma 4 was shown that the matrices A; and Ay always occur in a skew and
symmetric weighing matrix, in the upper left 4 x 4 corner of a CP skew and symmetric
W(n,n — 1) the matrix A; or Ay will occur, and hence the fourth pivot for n > 12, using
equation (1), can take the value

ps =4 or 3.

O

Next, we tried to extend the 4 x 4 matrices to the all possible 5 x 5 matrices. It is
interesting to specify all possible 5 x 5 matrices M with elements 0, =+ 1 that contain the
matrices A or Ay and also have the maximum possible values of the determinant which for
the 5 x 5 matrices are given in Lemma 2. We found the following results:

Extension of matrix A;

det 18120122 (24|26 |28 30|32 36|40 | 48
matrices | 0 (30| 0 (42| 0 |42 | 0 |81 |21 |18 | 3

Table 1

Extension of matrix A,

det 141 16 |18 |20 (22|24 |26 |28 |30 (32|36 |40 |48
matrices | 48 | 108 |48 | 0 |10 |61 | 4 |18 10|12 (11| 3 | O

Table 2
For odd values of determinants there weren’t any matrices found.



3 Extention of specific matrices with elements 0, +1 to W (n,n—
1) matrices

Algorithm for extending a k£ x k matrix with elements 0,+1 to W(n,n — 1)

For a k x k matrix A = [ry,Ts,...,1r;]T the following algorithm specifies its extension, if it
exists, to a W(n,n — 1).

Algorithm Extend
Step 1
read the k x k matrix A
Step 2
complete the first row of the matrix without loss of generality: it has exactly one 0
complete the first column of the matrix without loss of generality: it has exactly one 0
Step 3
complete(almost) the second row of the matrix without loss of generality:

ro 1l =0

every row and column has exactly one zero
complete(almost) the second column of the matrix without loss of generality:

it is orthogonal to the first column

every row and column has exactly one zero
Step 4
Procedure Extend Rows
find all possible entries a3 y11,a3 k+2,---,03x:

rs-rT =0and r5-r3 =0
every row and column has exactly one zero
store the results in a new matrix Bs whose rows are all the possible entries
fori=4,...,k
for every possible extension of the rows r;, j=3,...,1 -1
find all possible entries a; k11, @; k42, -, @int
r; 1s orthogonal with all the previous rows
every row and column has exactly one zero
store the results in a new matrix B; whose rows are all the possible entries

end
end
extend the k-th row of A with the first row of By
extend the k — 1,...,2 rows of A with the corresponding rows of

the appropriate matrices B;, i =k —1,...,3
end {of Procedure Extend Rows}

Step 5
extend columns 3 to k following a similar procedure as the one used to the rows.
Step 6
fori=k+1,...,n
find all possible entries a; k11,0 k42, -, Cin:

r; is orthogonal with all the previous rows



every row and column has exactly one zero
end
complete rows k + 1 to n.
if columns k£ 4+ 1 to n are orthogonal with all the previous columns
A is extended to W(n,n — 1).

Comment: In Step 3 by writing “complete almost” we mean that the second row can be
completed in at most two ways upto permutation of columns. If the first row in the k£ x k
part of the matrix contains a zero, then we complete the second row in a unique way without
loss of generality. If the first row in the k X k part of the matrix doesn’t contain a zero, then
we complete the second row in two ways by setting the element below the 0 of the first row
to 1 or —1 respectively. The same is done with the columns.

Implementation of the Algorithm Extend
We apply the algorithm for k=5, n=10 .
Steps of the algorithm

1. We start with

1 — 0 1 1
- - 110
A=|1 1 1 1 - |;
-1 -1 1
1 — — 0

2. The first row and column is completed, without loss of generality, so that the property
of a W (10, 9) having exactly one zero in each row and column is preserved. The software
package fills with zeros the rest of the entries of the required 10 x 10 matrix;

1 - 0 1 1 1 — — 1 17
- - 1 1 0 0
11 1 1 —
-1 - 11

1 — — 0 — 0 0

A=

-0 0
0

1

1 0 - 0 |

3. As before, the algorithm completes the second row in a unique way and the second
column in two ways, because the element a beside the 0 of the first column below can
take both values +1;

10
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4. The algorithm takes as input this matrix A and finds all possible completions for rows
3-5 (columns 6-10), so that every row has exactly one zero, every column has at most
one zero and the inner product of every two distinct rows is zero. If many ways have
been found to complete rows 3-5, the algorithm keeps as a result the first solution found;

5. The algorithm finds all possible completions for columns 3-5
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(rows 6-10) in the same
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6. The algorithm tries to complete,if possible, the rows 6-10(columns 6-10) in the same

way as before;

11



7. Finally, if matrix A could be extended,

Using the above algorithm we can prove the following propositions:
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Proposition 2 W (5) = 28 for a W(8,7)
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the algorithm gives the completed matrix
W (10,9) and verifies whether the relationship AAT = 913 is valid. O

Proof. We must show that from all the matrices in Tables 1 and 2, only the ones with
determinant 28 can be extended to a W(8,7). By using Algorithm Extend for k = 5, n = 8
and by testing all 5 X 5 matrices that have been found in Tables 1 and 2, we found that only
the following matrices with determinant 28 can be extended to a W(8,7).
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The result follows obviously.
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Proposition 3 W (5) =48, 36 or 30 for a W(10,9)
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]

Proof. We applied Algorithm Extend for k£ = 5, n = 10 for all the matrices in Tables 1 and 2
and we found that only some 5 x 5 matrices with determinants 48, 36 or 30 can be extended

to a W (10,9). This means that W (5) = 48, 36 or 30 for a W (10,9).

Proposition 4 W(6) = 144 or 108 for a W (10,9)

12

O



Proof. We tried to extend the 5 x 5 matrices with determinants 48,36 and 30, which can
be extended to a W(10,9), to 6 x 6 matrices with all possible determinant values. Next, we
used Algorithm Extend for £ = 6, n = 10 and we found that only some 6 X 6 matrices with
determinants 144 or 108 can be extended to a W (10,9) This means that W (6) = 144 or 108
for a W(10,9). O

Proposition 5 W(7) = 432 or 324 for a W(10,9)

Proof. We tried to extend the 6 x 6 matrices with determinants 144 and 108, which can
be extended to a W(10,9), to 7 x 7 matrices with all possible determinant values. Next, we
used Algorithm Extend for £k = 7, n = 10 and we found that only some 7 X 7 matrices with
determinants 432 or 324 can be extended to a W (10,9) This means that W (7) = 432 or 324
for a W(10,9). O

4 Exact Calculations

We assume that row and column permutations have been carried out so we have a CP
skew and symmetric conference matrix W in the initial steps from which we can calculate
the maximum minors W(n), W(n — 1) and W(n — 2). We explore the use of a variation
of a clever proof used by combinatorialists to find the determinant of a matrix satisfying
AAT = (k— \)I + \J, where I is the v x v identity matrix, J is the v x v matrix of ones and
k, X are integers to simplify our proofs. The determinant is k + (v — 1)A(k — A)?~L.

For the conference matrix W (n,n — 1) since WW7T = (n — 1)I we have that det(W) =
(n—1)2.

Proposition 6 Let W be a CP skew and symmetric or conference matriz of order n. Then
the (n —1) x (n — 1) minors are: W(n—1) = (n— 1)z L.

Proof: Since we have that matrix W is CP let us suppose that it can written in the following
form:

110 1 1
W: 1

: B

| 1 |

n—-1 0 0 0
0 n-2 -1 -1
BBT = 0 -1 n-2 -1
0 -1 -1 n—2



Then, det BBT = (n—1)(n—2—(n—3))(n—2+1)"3 = (n—1)""2. Sodet B= (n—1)2 L.
O

Proposition 7 Let W be a CP skew and symmetric conference matriz of order n. Then the
(n —2) x (n —2) minors are W(n —2) = 2(n — 1)z 2,

Proof: Since we have that matrix W is CP let us suppose that it can be written in the
following form:

— ——
1 1] 01 1,...,0 1,...1
1 —1]+1 0 1,..,1 —1,...,-1
0 =1
1 0
W=1|1 1
1 1 C
1 -1
L1 -1 |
The (n — 2) x (n — 2) matrix CCT has the form
Ci Cy C3
cct=|ct ¢y 0
Cz3 0 Cy

where C) = diag{n — 2,n — 2}, Cy is a (%52 x 252) of the form

Cy is a (2 x 25%) matrix having 1’s in its first row and —1’s in its second row, and finally Cj
is a (2 x 252) matrix of —1’s. Set C5 = diag{C1, Cs}, Cs = [C2C3) and C7 = [CT C5]T.
Then, det CCT = det Cy-det (C5—C7Cy ' Cg) This formula after the appropriate computations

n

gives us the value 2(n — 1)> 2. O
In [7] it was proved the following:
Proposition 8 Let W be a skew and symmetric conference matriz of order n. Then the

(n —3) x (n — 3) minors are W(n —3) =0, 2(n —1)273, or 4(n — 1)273 for n = 0(mod 4)
and 2(n —1)2 7%, or 4(n — 1)2 3 for n = 2(mod 4).
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Theorem 1 When Gaussian Elimination is applied on a CP skew and symmetric conference
matriz W of order n the last two pivots are n — 1, and ”T_l

Proof. The last two pivots are given by

__Wn _Wh-1)
= Wn-1 T Wwm—2)
Since
Wm) = (m-1)3
Wn-1) =(n-1)2""
W(n-2) =2n-1)272
the values of the two last pivots are n — 1, and ”T’l respectively. O

5 Specification of pivot patterns

We proceed our study by trying to specify the pivot structure of some small Weighing matrices.
In [7] the unique pivot structure of the W (6,5) was specified. It is {1, 2, 2, g, 5, 5.} Next
we will determine the pivot structure of the W (8, 7).

Lemma 6 The pz'vot patterns of the W(8,7) are {1, 2,2, 4, I T 2, 2, 7} or
{1, 2, 2, 3, 3 2, 2,7}

Proof. From Lemma 2 and Proposition 5 we have that
pr=1, p2=2, p3=2, pp=4 or 3.

From Theorem 1 we also have that

ps=17, pr=

MI\I

Since W (4) = 16 or 12 for every W (n,n—1) and W (5) = 28 for W (8,7) we have p5 = % =
BorB = ps=Torl
det(W(8 7) 74 74

N

Alsops = = mearir 7 DTy
= P = % O
Remark 1 The following matrices have pivot patterns {1, 2, 2, 4, E, %, %, 7} and
{1, 2, 2, 3, g, 5 2, 7} respectively.
11 1 1 1 1 1 0] 11 0 - — 1 1 -1
1 - -1 1 - 0 - 1 - - - 1 1 0 1
1 -1 - - 0 1 - 1 -1 1 0 1 — —
11 - - 0 1 - - 11 - 1 — 0 — 1
1 -0 1 -1 1| ™ Jo 1111111
1 1 - 0 - 1 1 111 - 1 — — 0
o1 1 1 — — — =— i1 -1 0 - - 1 1
10 1 — 1 — — 1| (10 — 1 1 — 1 — |

15



Lemma 7 The pivot patterns of the W(10,9) are {122334,4,2,2,9} or

{1,2,2,4,3,3,2,2.92 9} or {1,2,2,3,10 18 999 91

a452521 » 41751379279

Proof. We have shown that for every W(10,9), n > 8, the first four pivots are 1,2,2,3 or 4.
From Theorem 1 we also have that

9
p1o =9, Py =3

We have
w(5) = 48 or 36 or 30 for W(10,9)

The 5 x 5 matrices with determinant 48 contain in the upper left corner the 4 x 4 matrix
Ay with determinant 16. The 5 x 5 matrices with determinant 36 contain in the upper left
corner the 4 x 4 matrix Ay with determinant 12. The 5 x 5 matrices with determinant 30
contain in the upper left corner the 4 x 4 matrix A, with determinant 12. So, the fifth pivot
of W(10,9) can be calculated using relationship (1):

_ w(5) 48 36 _ 10
P5 = ) = P5= 16 orﬁorﬁ¢p5 3or .

With the same logic, we go on to the sixth pivot: we have
w(6) = 144 or 108 for W(10,9)

The 6 x 6 matrices with determinant 144 contain in the upper left corner the 5 x 5 matrices
with determinants 36 and 48. The 6 x 6 matrices with determinant 108 contain in the upper
left corner the 5 x 5 matrices with determinants 48, 36 and 30. So, the sixth pivot of W (10, 9)
can be calculated using relationship (1):

_ w(6) _ 144 144 108 108 m 18
p6—w(5):>p6 36 Or g O g Or 5 Or = g —4or3or5.

About the seventh pivot: we have
w(7) = 432 or 324 for W(10,9)

The 7 x 7 matrices with determinant 432 contain in the upper left corner the 6 x 6 matrix
with determinant 144. The 7 X 7 matrices with determinant 324 contain in the upper left
corner the 6 x 6 matrices with determinants 144 and 108. So, the seventh pivot of W (10, 9)
can be calculated using relationship (1):

_ w(7) 432 324 34 9
P7 = w(e) = P7 = 121 OF 111 OF s = pr=3or 1.

det(W(10,9)) 95 or 95
1.2.2.3.3.4.%.%.9

\
=
Qo

Il
pole

Od

Ps = 1o 2.9.4339.9.
Hizliﬂpi 1.2.2.4.3-3-2.9.9

95
or 5.18 2.9
1.223.3.1£.3.9.9
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Remark 2 The following matrices have pivot patterns {1,2,2,3,3,4, %, %, %,9},
{1,2,2,4,3,3,2,32,2,9} and {1,2,2,3, 1, %, 3,2,2,9} respectively.

11 0 1 1 1 1 1 1 1 11 1 1 1 1 1 1 0 17
1 -1 -1 -1 - 1 0 1 - - 1 - 1 0 — -
1 - -1 0 - - 1 1 - 1 -1 - - - 0 1 - 1
11 - - -1 0 - 1 - 11 - -1 — — 1 1 0
1 - 11 - 1 1 0 — - 11 -1 - 0 - - -1
11 1 1 — -0 1y /1 --=--==011 -1 1
o -1 - -1 -1 1 1 111 0 - — 1 — 1 —
10 - - - -1 1 -1 o -1 11— — — 11
1 -0 1 1 - - 1 1 - 01 -1 — 1 1 -
111 - 1.0 — 1 — — | 101 - 1 1 - — — — |

1 — 0 1 1 1 — -1 1 17

- =110 -1 — 1 -

11 11 -1 0 1 1 —

-1 -1 1 — — 1 1 0

1 - -0 - -1 1 1 1

and _ - _ _ 1 - 9 1 -

o - -1 1 1 1 1 -

-1 -1 -1 1 — 0 1

1 0 -1 - — - - =

11 - -1 0 1 — 1 — |

O

Tables 3 and 4 give us some of the pivot patterns calculated by computer for the first
few W(n,n — 1) for both n = 2(mod 4) and n = 0(mod 4). For each value of n were tested
50000 — 1000000 H-equivalent matrices and the corresponding pivot patterns were found.
The last column shows the number of different pivot patterns that appeared.
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n | growth Pivot Pattern number

6 5 2,2,3,5.5) 1

10 9 223:;423 3)3(129}2433,2,2,2,9)@ 3

14 13 1, 2 2,3, 1% 157,3 294 3294%'4 3.8235, 4 b w2, 113 13) or 10
1,2,2,4, 32, 1.3.2941,3.9464, 38235, oL 8113 13)

18 17 1,2,2,4,3, %, 1. 53125, - 10/3, 31T or 19
1,2,2,3, 10,28 1L 45156,5, 355,17, 1, 7, 17) or

’2’158’131, . 45156 5’ 51/2’147’127’127’17)

26 | 25 1223,130,184 LB R 2B B 2 95) or 89
1,2,2,4,3, 2 18 6.8182,% 2 2 25 22—525) or
1,2,2,4,2,4,4,. .. ,6.6406, 73529, o 40 5 9125)

30 29 1,2,2,4,3, 2, 158, ..,9.0625, 252 2 2 2 2 99) o 62
1,2,2,3 0,184, 9,2.2,2,2 2,2)

38 37 1,2,2,3, 130,%,4,... 11.5625,11.1, 31, 3T 3T 37 37) or 44
1,2,2,4,3, 2 18 100909,%—2%,%,%,%,37)

42 41 1,2,2,4,3, gﬂ,ﬁ,...,%,%,%,%,%,% 41) or 43
1,2,2,3, 130,%,?;,—4, ,12.0588, 10/3,%,%,%,%,41)

50 | 49 1,2,2,4,3, 2,2, .. ,1‘;?5, T0/30 31 4190 5,49) or 36
L2238 % . DALl

54| 53 1,2,2,4,3, 2,2, % 55 58 53 55 5 53) or 34
1,2,2,3,2,38.4,...,15.5882, 10/3,%,%,%,52—3,53)

62| 61 1,2,2,4,3, 3, %, ..,%,%,%,%,%,% 61) or 33
1 2 2 3’ 130’ 158’4 ’12}5’ 18}3’%’%’%’%’61)

4 T3 1,2,2,4,3, 5, %, B B B 1B T 1.73) or 31
oy B R Yy

82| 81 1,2,2,4,3, 130, 158, %%%%82—18%—1 81) or 28
1,2,2,3,2,18 4 ... 238235, 13/3,27, a8 821,81)

9 [ 89 1,2,2,4,3, 20,8, 8 8 8 8 8 8 89)o 32
1 2 2 3’ 1E’;0’3158’4 "’142{/351’11353’%’%’%’%)’89)

98 | 97 12243,10,18,. o, 9,2 99 9L 97) o 27
FES VN R X A X XN

Table 3
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n | growth Pivot Pattern number
s ! (1’272’4’ %(; %1,7%’71)1 0r1(11’%,12’1?, %{%,%,7) 2
12 11 (1,2,2,3, ?,0?,11{?,721,1?1,171,17,11) or 3
(1a2a2a4a3a %1110—/1317 1?81, ?17 ?1,7’11) or
(172727353741 ?7?7?57a7511)
16 15 (1,2,2,3, %,%,}#,4.4418,...,4.5,%,%,%,%,15) 108
1 18 11 15 15 15 15
or (]-7 27 27 3’10?’18?’ FERAEN 740901%7 519?39?719771977 15)
20 19 (1,2,2,4, ?6?1%?33{ ..,b.2778, /3 71;)?1;71;71;19) or 309
(]., 2, 2, 3, 5?,183,3?, ey 5.2778,130—/5’9, ?19, Tlg, ?19, DR ].9) or
ERRRR [ ot S Mot
28 27 1,2,2,3, 9 18 4 2027 27 27 27 27 97 or 129
AR IT SRR 3 4 R % St
P e e RS R R A L R I 455/21 49 29 92
(1,2,2,4,3,18 34 | 7.1719,7.9412, 27 2T 2T 21 27)
36 35 1,2,2,4,3, 20 18 35735 35 '35 '35 '35 '35) or 74
( 10 %18 %5 4423%5_53_5@)&
(]‘72 2737 3’ 57 9 ’7972227 10/3’ 37 47 2’ 2 735)
44 43 (1,2,2,4,3,32,8, .., 8 8 2 2 23 23 43) or 46
10 18 34 43 43 43 43 43 43
(17272731?a?a?7"'5?7?375?57’7543)
52 51 (1,2,2,3, 22,38 4,...,51,19.1250,17, 3L, 3, 5, 51) or 42
(1,2,2,4,3, 2,18 . 2119.1250,17, 31,21 21 51)
60 59 (1,2,2,4,3, 2,38, ..., %,22.1250, %, 22 32 2 59) or 44
1,2,2,3,20 18 4 18.4375, 99 59 59 5959 59
375 10/37 37 47 27 2
68 67 1,2,2,4,3, 0 18 €7 67 87 67 €7 57 '67) or 35
EEPRTICANIY S oF 39 30 2 Sh
1S9 ey 39 By Tttty 49 49 929 400 29 20
76 75 (1,2,2,4,3, 2 38 T228.1250,25, 22, 5 D 75) 34
(1,2,2,3, 12 38 4. T2 28.1250,25, 22 B3 B 75)
10 18 83 83 83 83 83 83
84 83 (1’2’2’4’?6‘_15;?""’%’?9’ 2400 78?:83) 31
(15272331?7?347"'715W5?113377’83)
(1,2,2,3, 3, 5,4,...,23.8,26.7647, 75, 7, . %, 91)
]‘00 99 (172’274737 %’%7""%7%’%7%’9?79%’9999)99 27
(1,2,2,3, 3,54, 5,30.9375, 775, 7, 9, 5, 99)
Table 4

In the following table we present all the values appearing for the first six and last six pivots af-
ter applying Gaussian Elimination with complete pivoting on skew and symmetric conference
matrices of order n > 6.
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P1 | P2 | P3| Pa| P5 Ps Pn-5 m—4 | Pn—-3 | Pn—2 | Pn—1| Pn
8 8 n—1 n—1
4 2 8/2 8/37
n—1
8/4
3 9 9 10 n—1 n— n—1 n—1
37 373 8/319/37 9/37 3
9 n—1 n—1
4 10/3 9/4
10 n—1 n—1 n—1
122 3 10/3° 2 2 n—1
10 n—1
4 10/4
4 34 n—1 n—1
9 32/9 4
32 34 n—1 n—1
107 10° 32/10°33/10°
36 n—1
10 34/10
Table 5
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