2012

Is Seladin-1 really a selective Alzheimer's disease indicator?

Laura J. Sharpe
University of New South Wales

Jenny Wong
University of Wollongong, jwong@uow.edu.au

Brett Garner
University of Wollongong, brettg@uow.edu.au

Glenda M. Halliday
University of New South Wales

Andrew J. Brown
University of New South Wales

Publication Details
Is Seladin-1 really a selective Alzheimer's disease indicator?

Abstract
Selective Alzheimer's Disease Indicator-1 (Seladin-1) was originally identified by its down-regulation in the brains of Alzheimer's disease (AD) patients. Here, we re-examine existing data and present new gene expression data that refutes its role as a selective AD indicator. Furthermore, we caution against the use of the name “Seladin-1” and instead recommend adoption of the approved nomenclature, 3β-hydroxysterol Δ24-reductase (or DHCR24), which describes its catalytic function in cholesterol synthesis. Further work is required to determine what link, if any, exists between DHCR24 and AD.

Keywords
1, really, seladin, selective, indicator, alzheimer, disease, CMMB

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/322
Is Seladin-1 Really a Selective Alzheimer’s Disease Indicator?

Laura J. Sharpea,1, Jenny Wongb,1, Brett Garnerb, Glenda M. Hallidayc and Andrew J. Browna,*

aSchool of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
bIllawarra Health and Medical Research Institute and The School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
cNeuroscience Research Australia and University of New South Wales, Sydney, NSW, Australia

Accepted 30 January 2012

Abstract. Selective Alzheimer’s Disease Indicator-1 (Seladin-1) was originally identified by its down-regulation in the brains of Alzheimer’s disease (AD) patients. Here, we re-examine existing data and present new gene expression data that refutes its role as a selective AD indicator. Furthermore, we caution against the use of the name “Seladin-1” and instead recommend adoption of the approved nomenclature, 3\(\beta\)-hydroxyysterol \(\Delta^{24}\)-reductase (or DHCR24), which describes its catalytic function in cholesterol synthesis. Further work is required to determine what link, if any, exists between DHCR24 and AD.

Keywords: Alzheimer’s disease, brain, cholesterol, DHCR24, neuroprotective, Seladin-1

Seladin-1 is often referred to as being down-regulated in affected brain regions of Alzheimer’s disease (AD) patients. The acronym, Selective Alzheimer’s Disease Indicator-1, is a nomenclature that encourages its reputation for being differentially expressed in AD. Peri and Serio [1] suggested that “Seladin-1” may be inappropriate considering its known roles now extend far beyond the apparent down-regulation observed in AD. We critically evaluate the evidence that Seladin-1 is a selective AD indicator. This is important considering that AD treatments may be based on the reported down-regulation of Seladin-1 (e.g., [2, 3]).

Seladin-1 was identified in 2000 by Grieve et al. as a gene with differing expression levels between regions of AD brains but no difference in control brains [4]. Northern blotting showed that in three AD brains, Seladin-1 RNA levels were lower in temporal than frontal cortex. Seladin-1 protein levels reflected this pattern in two AD brains. Their single control brain showed equal Seladin-1 RNA levels in both temporal and frontal cortex. While frequently cited as establishing Seladin-1 as a selective AD indicator, these findings must be reproduced by independent groups using multiple independent cohorts of sufficient sample size, with state-of-the-art methodologies. In Grieve et al. [4], it is critical to note that a very limited sample size was investigated, and that the techniques used (e.g., Northern blotting) have since been surpassed by more accurate and quantitative methods.

Ivonen and colleagues subsequently examined Seladin-1 mRNA levels in the temporal versus occipital cortex of AD brains by semi-quantitative RT-PCR [5]. Using a larger sample size, they found only seven out of 13 AD brains had lower Seladin-1 mRNA levels in temporal compared to occipital cortex, whereas
their six non-AD brains had no difference or higher expression. As such, this data does not support the contention that Seladin-1 is a selective indicator of AD. However, the decrease in Seladin-1 gene expression was significant when considering the specific AD hallmarks of neurofibrillary tangles (NFTs) and neuritic plaques, but not when comparing those without such lesions, or with other markers such as α-synuclein or amyloid-β (Aβ) pathologies. Additionally, Seladin-1 polymorphisms are associated with AD in some [6, 7], but not all studies [8].

By contrast, larger-scale, microarray studies failed to identify Seladin-1 as differentially regulated in AD. Blalock et al. [9] examined gene expression in hippocampi from 22 AD brains and nine controls. Using microarray analysis and correlating gene expression with known AD markers, including NFTs, they found thousands of genes differentially regulated across the AD hippocampus. When comparing only control and early stage AD brains, they still identified several hundred differentially regulated genes. However, Seladin-1 was not among these (Fig. 1A). In a follow-up study, Blalock et al. [10] improved upon their initial microarray study [9] by selectively isolating grey matter from the same brain samples using laser capture microdissection (LCM). This confirmed their initial findings that Seladin-1 expression was not significantly different in AD [10].

In another microarray study, also using LCM, Dunckley and collaborators [11] selectively isolated neurons from regions with or without NFTs from the entorhinal cortex of 19 AD brains and 14 controls. Seladin-1 was not among the 225 genes consistently up- or down-regulated [Fig. 1B (NFT versus non-NFT)], though our calculations suggest borderline significance (t = 3.254, df = 8, p = 0.012, by t-test, whereas the authors used a more stringent significance cut-off of p < 0.01). In a follow-up study by the same group [12], Seladin-1 mRNA expression was confirmed not to change in pyramidal neurons isolated from the entorhinal cortex. However, Seladin-1 expression was down-regulated in AD in the hippocampus and medial temporal and posterior cingulate cortices.

Both Liang et al. [12] and Blalock et al. [10] utilized LCM to isolate brain tissue for subsequent microarray analyses and the same gene chip (Affymetrix Human Genome U133 Plus 2.0), but the selected regions differed, perhaps accounting for the contrasting findings. Furthermore, although LCM allows for selective and targeted isolation of cells from a region of interest, stringent RNase-free conditions during tissue handling are required as mRNAs are rapidly degraded by ubiquitous RNases and are sensitive to fixation protocols. In Liang et al. [12], tissue sections were fixed and stained prior to LCM; moreover, no data was presented regarding the RNA quality and integrity.

To investigate the putative Seladin-1/AD link, we used quantitative ‘real-time’ polymerase chain reaction (qRT-PCR) to determine Seladin-1 expression in control versus AD brains from four brain regions. Brain tissues from the hippocampus and cerebellum (6 AD, 5 controls, [13, 14]), and the temporal and occipital cortices (9 AD, 8 controls) were all from cases longitudinally evaluated to autopsy. Controls were age-, range, gender, and postmortem interval matched. We used total RNA isolated from fresh frozen brain tissue from each brain region for cDNA synthesis and gene expression analyses as this yields higher quality RNA and better recovery of low abundance transcripts. In addition, we used primers that target the coding region of Seladin-1 to circumvent the 3’ bias that is inherent in gene expression profiling by microarray. Seladin-1
expression was normalized using the geometric mean of three stable, low variability housekeeping genes of high, medium, or low expression as this is more effective than one single housekeeping gene in removing non-specific variation in a given sample to reveal true gene expression differences [15]. We found no difference in Seladin-1 gene expression levels between control and AD brains in any of the four brain regions examined (Fig. 2A, B). Moreover, in a paired comparison between less and more affected brain regions within the same AD cases, as in the seminal studies by Greeve et al. [4] and livonen et al. [5], Seladin-1 gene expression was not altered in more affected (hippocampus, temporal cortex) versus less affected (cerebellum, occipital cortex) brain regions (Fig. 2C, D).

Although Seladin-1 may not necessarily be down-regulated in AD, it may still play a neuroprotective role, in which case treatments that upregulate Seladin-1 may be beneficial for AD. In the original Seladin-1 report [4], overexpression of Seladin-1 protected cells from Aβ toxicity and cell death through inhibition of caspase-3 activity. Silencing Seladin-1 using siRNA increased caspase-3 activity and ultimately Aβ production [16].

Seladin-1 has been further characterized in the last decade and identified as the ultimate enzyme in cholesterol synthesis—3β-hydroxyyster A24-reductase (a.k.a 24-dehydrocholesterol reductase, or DHCR24, EC: 1.3.1.72), catalyzing the conversion of desmosterol to cholesterol [17]. Using a mouse model of AD (AβPPSLxPS1mut), Vanmierlo and colleagues [18] found that desmosterol levels were increased in AD mice, which was accompanied by a decrease in Seladin-1 mRNA. However, as Seladin-1 was upregulated at 9 months and down-regulated at 21 months, this may be secondary to AD pathology rather than causative. Accordingly, Seladin-1 expression was reduced in both cortex and cerebellum [18], but Aβ deposits occur in cortex and not cerebellum [19], again suggesting a secondary rather than causative association.

In a Seladin-1 knockout mouse model, Cramer and coworkers [20] found reduced brain cholesterol levels, and increased amyloid-β protein precursor (AβPP)
processing and Aβ accumulation. These observations were reversed when Seladin-1 was overexpressed in SH-SY5Y human neuroblastoma cells, again implicating a neuroprotective role for Seladin-1. While an association between lower Seladin-1 expression levels and AD markers in a knockout mouse model is informative, it does not directly address the issue of whether Seladin-1 gene expression levels are lowered in human AD brains.

AD patients may have lowered brain cholesterol levels [21] which increases AβPP processing and Aβ accumulation (e.g., [22]). A lowering of cholesterol levels would be expected if Seladin-1 is decreased; however, increased cholesterol levels may also increase AD risk (e.g., [23]). Clearly, the relationship between cholesterol and AD is controversial and requires further investigation (reviewed in [24]).

Given the possible link between cholesterol and AD, it is not surprising that statins, which inhibit cholesterol synthesis, have been proposed as a potential treatment [3, 25]. Additionally, statin use is associated with a decreased risk of AD [25]. However, there are caveats to consider (reviewed in [26]). For example, it is likely that only lipophilic statins can cross the blood brain barrier and decrease cholesterol synthesis [27], but the decreased risk of AD was not dependent on this ability [25]. Furthermore, non-statin cholesterol-lowering drugs do not have the same effect, suggesting that lowering of cholesterol levels itself may not influence AD risk [25].

While Seladin-1 was originally identified as being down-regulated in some AD brains, this name is a misnomer as it implies that Seladin-1 plays an important role in AD based on ambiguous data. Moreover, there are several other genes (e.g., ApoE, AβPP, Presenilin-1 and -2) that are far better correlated with AD. Therefore, we urge caution when claiming that Seladin-1 is down-regulated in AD, and suggest that the official name DHCR24 should be used for this gene. Further work is required to determine what link, if any, exists between DHCR24 and AD as the possibility remains that DHCR24 is involved in a subgroup of AD patients.

ACKNOWLEDGMENTS

We thank Eser Zerenturk for designing and optimizing the Seladin-1 primers; Dr Sarah Abbott and Kalani Ruberu for assistance in brain tissue preparation. Brain samples were from the Australian Brain Bank Network, with approval from their Scientific Advisory Board (PID085, PID132), as well as from remaining tissue held by GH for experimental work on AD. Patient data and brains were collected for research purposes as approved by Institutional Human Ethics Committees. This work was supported by the Illawarra Health and Medical Research Institute, the National Health and Medical Research Council of Australia (568884, 630434, 1008081), and the Australian Research Council (FT0991986).

Authors’ disclosures available online (http://www.j-alz.com/disclosures/view.php?id=1160).

REFERENCES

