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Abstract. Abstract. This paper is concerned with dynamical systems of

the form (X, f), where X is a bounded interval and f comes from a class of

measure-preserving, piecewise linear transformations on X. If A ⊆ X is a
Borel set and x ∈ A, the Poincaré recurrence time of x relative to A is defined

to be the minimum of {n : n ∈ N and fn(x) ∈ A}, if the minimum exists,

and ∞ otherwise. The mean of the recurrence time is finite and is given by
Kac’s recurrence formula. In general, the standard deviation of the recurrence

times need not be finite but, for the systems considered here, a bound for the

standard deviation is derived.
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1. Introduction

A dynamical system is a set S together with a transformation f : S −→ S.
Letting ◦ denote the composition of functions, we use the notation that f1 = f ,
f2 = f ◦ f , f3 = f ◦ f ◦ f , and so on. We denote the set {1, 2, . . .} by N. Now if we
have a dynamical system (S, f), let A ⊆ S, let x ∈ A and assume that fn(x) ∈ A
for some n ∈ N. Then, we put

ΘA(x) = min{n : n ∈ N and fn(x) ∈ A}.

If x ∈ A it may happen that fn(x) /∈ A for all n ∈ N, in which case we put
ΘA(x) = ∞. Thus, ΘA : A −→ N ∪ {∞} and we call ΘA(x) the recurrence time
of x relative to A and (S, f), or simply the recurrence time if (S, f) and A are
understood. See Brown [3] and Petersen [11], for example, for a discussion of this
notion.
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2 MIMOON ISMAEL, RODNEY NILLSEN & GRAHAM WILLIAMS

We consider the case when S is a bounded interval X of length 1. Let B denote
the σ-algebra of Borel subsets of X, and let µ denote the usual Lebesgue measure
on B. A formulation of the Recurrence Theorem of Henri Poincaré says that if µ
preserves the measure of the Borel sets under the action of a transformation f on X,
then ΘA(x) <∞ for µ-almost all points of X. In ergodic systems, Kac [7] showed
that the average value of the recurrence time is 1/µ(A). The question arises as to
the variation, predictability and uncertainty of the recurrence times. A formula for
the moments of recurrence times in the context of stationary stochastic processes
was derived by Blum and Rosenblatt [2], and a formula for the standard deviation
of the recurrence times was derived by Kasteleyn [8]. A discussion of some of these
matters is also in Ismael [5] and Chapter 4 of [10].

2. Estimating the standard deviation for the baker’s
transformations

We now introduce some further notations. Let X be an interval in R of length
1. Let B denote the σ-algebra of Borel subsets of X, and let µ denote the usual
Lebesgue measure on B. Let I = N or let I denote an interval in N of the form
{1, 2, . . . , r} with r ≥ 2. For each j ∈ I let Xj be a subinterval of [0, 1] of positive
length such that the sets in the family (Xj)j∈I form a partition of X. That is,
Xi ∩ Xj = ∅ when i 6= j and ∪j∈IXj = X. Such a partition we call a standard
partition and may be denoted by P. Note that a standard partition has at least two
elements so, as

∑
j∈I µ(Xj) = 1, for a standard partition the set {µ(Xj) : j ∈ I}

has a maximum value and

(2.1) max{µ(Xj) : j ∈ I} < 1.

We call a transformation f : X −→ X piecewise linear if there is a standard
partition P = (Xj)j∈I such that f is linear on each interval Xj ∈ P, by which
is meant that there are aj , bj ∈ R such that f(x) = ajx + bj for all x ∈ Xj . If,
in addition, the range of f on each interval Xj is either X or X less one or two
endpoints, then f is called a (generalised) baker’s transformation relative to P. A
particular type of baker’s transformation is discussed in [12, page 77]. Note that a
baker’s transformation is a piecewise linear function which is not one-to-one, but
is one-to-one when restricted to each interval Xj . A Baker’s transformation is
Lebesgue measure preserving. Note that a piecewise linear function will be either
increasing or decreasing on each interval Xj in the associated partition.

Lemma 2.1. let f be a baker’s transformation on an interval X of length 1. Then,
f is Lebesgue measure preserving on B. That is, µ(f−1(A)) = µ(A), for all A ∈ B.

Proof. As f is linear on each interval in the standard partition associated with
f , it is easy to see that µ(f−1(A)) = µ(A) for all subintervals A of X. Let A =
{A : A ∈ B and µ(f−1(A)) = µ(A)}. Then A is a monotone class in the sense of
[1, page 6] that contains all subintervals of X. By the Monotone Class Lemma, see
[1, pages 6-7] for example, A contains the Borel sets. �

Lemma 2.2. Let X be an interval of length 1 and let f be a baker’s transforma-
tion relative to a standard partition (Xj)j∈I of X, as described above. Then, if
n1, n2, . . . , nk ∈ I, the set Xn1n2...nk

is defined by

Xn1n2...nk
=
{
x : x ∈ Xn1 , f(x) ∈ Xn2 , f

2(x) ∈ Xn3 , . . . , f
k−1(x) ∈ Xnk

}
.
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Then, Xn1n2...nk
is a subinterval of X having positive length, and the restriction of

fk to Xn1n2...nk
is a linear function whose range is either X, or X less one or two

endpoints.

Proof. When k = 1, the result is true from the definitions. So, we proceed by
induction. Let int(J) denote the interior of any interval J . Let k ∈ N and assume
that the result holds for any choice of n1, n2, . . . , nk ∈ I. Now, let n1, . . . , nk, nk+1 ∈
I and observe that

Xn1n2...nknk+1
=
{
x : x ∈ Xn1n2...nk

and fk(x) ∈ Xnk+1

}
.

It follows that Xn1n2...nknk+1
is an interval of positive length because it is assumed

that fk is linear on the interval Xn1n2...nk
of positive length and that the range of

fk on Xn1n2...nk
is X or X less one or two endpoints. It is immediate from the

definition that f : Xn1n2...nknk+1
−→ Xn2...nknk+1

, and fk is linear on Xn2...nknk+1

by the inductive assumption. Also, as f is linear on Xn1
, f is linear on the smaller

set Xn1n2...nknk+1
. So we have

f : Xn1n2...nknk+1
−→ Xn2...nknk+1

and fk : Xn2...nknk+1
−→ X,

where both f and fk are linear. Since the composition of linear functions is linear,
it follows that fk+1 = fk ◦ f is linear on Xn1n2...nknk+1

.
Now, as earlier, let int(J) denote the interior of any sub-interval J of X, and let

z ∈ int(X). By the inductive assumption, there is y belonging to int(Xn2n3...nk+1
)

such that fk(y) = z. Then, as f maps Xn1
onto either X or X less one or two

endpoints, there is x ∈ int(Xn1
) such that f(x) = y and it follows that x ∈

Xn1n2···nk+1
. Also, fk+1(x) = fk

(
f(x)

)
= fk(y) = z. We deduce that fk+1 maps

int
(
Xn1n2···nk+1

)
onto int(X). As fk+1 is linear on int

(
Xn1n2···nk+1

)
, fk+1 must

map int
(
Xn1n2···nk+1

)
onto X, or onto X less one or two endpoints. Thus, assuming

the Lemma holds for k, we have seen it also holds for k + 1, and the result follows
by induction. �

Lemma 2.3. Let X be an interval of length 1 and let f be a baker’s transformation
relative to a standard partition (Xj)j∈I of X. Let k ∈ N and let n1, n2, . . . , nk ∈ I.
Then,

µ(Xn1n2...nk
) =

k∏
j=1

µ(Xnj
).

Proof. If k = 1, the result is obviously true. So, assume that for some k, the
result holds for any choice of n1, n2, . . . , nk ∈ I. Then

µ(Xn1n2...nknk+1
) = µ

({
x : x ∈ Xn1n2...nk

and fk(x) ∈ Xnk+1

})
,

= µ(Xn1n2...nk
) · µ(Xnk+1

), by using Lemma 2.2,

= µ(Xnk+1
) ·

k∏
j=1

µ(Xnj ),

as the result is assumed true for k,

=

k+1∏
j=1

µ(Xnj ).
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Thus, if the result is true for k, it is true for k+ 1. The result follows by induction.
�

Lemma 2.4. Let X be an interval of length 1 and let f be a baker’s transformation
relative to a standard partition (Xj)j∈I of X. Let k, s ∈ N and for each j ∈
{1, 2, . . . , s}, suppose there are given nj1, nj2, . . . , njk ∈ I and put

Yj = Xnj1nj2···njk
.

Then,

µ
(
Y1 ∩ f−k(Y2) ∩ f−2k(Y3) · · · ∩ f−(s−1)k(Ys)

)
=

s∏
j=1

µ(Yj).

Proof. Observe from the definitions that

Y1 ∩ f−k(Y2) ∩ f−2k(Y3) · · · ∩ f−(s−1)k(Ys)

= Xn11···n1kn21···n2kn31···ns−1 kns1···nsk
.

Then, by Lemma 2.3,

µ(Y1 ∩ f−k(Y2) ∩ · · · ∩ f−(s−1)k(Ys))

= µ(Xn11) · · ·µ(Xn1k
) · · ·µ(Xns1) · · ·µ(Xnsk

)

=

s∏
j=1

µ(Yj).

�
Let P = (Xj)j∈I be a standard partition of an interval X of length 1. Given

k ∈ N, make the definition that

Pk =
{
Xn1n2...nk

: n1, n2, . . . , nk ∈ I
}
.

Then Pk is a partition of X in that distinct sets of Pk are disjoint and the union of
the sets in Pk is X. Lemma 2.2 shows that the sets in Pk are intervals of positive
length. In the case when I has r elements, Pk consists of rk disjoint sets. If ` > k,
each set in Pk is the union of 2`−k sets in P`, as expressed by the identity

Xn1n2...nk
=

⋃ {
Xn1n2...nknk+1nk+2...n`

: nk+1, nk+2, . . . , n` ∈ I
}
.

Lemma 2.5. Let X be an interval of length 1 and let f be a baker’s transformation
relative to a standard partition P = (Xj)j∈I of X. Let k ∈ N and let Z be a set that
is a union of some family of sets in the partition Pk of X. Then, for ` = 1, 2, . . .,

µ
(
Z ∩ f−k(Z) ∩ f−2k(Z) ∩ · · · ∩ f−(`−1)k(Z)

)
= µ(Z)`.
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Proof. First, assume that Z is a finite union of sets in Pk. Then, there are
disjoint sets Y1, Y2, . . . , Ys in Pk such that Z = ∪sj=1Yj . We have

µ
(
Z ∩ f−k(Z) ∩ f−2k(Z) ∩ · · · ∩ f−(`−1)k(Z)

)
= µ

(
(∪sj=1Yj) ∩ f−k(∪sj=1Yj) ∩ f−2k(∪sj=1Yj) ∩ · · · ∩ f−(`−1)k(∪sj=1Yj)

)
= µ

(
(∪sj=1Yj) ∩ (∪sj=1f

−k(Yj)) ∩ · · · ∩ (∪sj=1f
−(`−1)k(Yj))

)
= µ

 ⋃
j0,j1,...,j`−1∈{1,...,s}

Yj0 ∩ f−k(Yj1) ∩ · · · ∩ f−(`−1)k(Yj`−1
)


=

∑
j0,j1,...,j`−1∈{1,...,s}

µ
(
Yj0 ∩ f−k(Yj1) ∩ · · · ∩ f−(`−1)k(Yj`−1

)
)

=
∑

j0,j1,...,j`−1∈{1,...,s}

`−1∏
t=0

µ(Yjt), by Lemma 2.4,

=

 s∑
j=1

µ(Yj)

`

= µ(Z)`.(2.2)

Now, when Z is an infinite union of sets in Pk, there is an increasing sequence (Zn)
of sets, each set Zn is a finite union of sets in Pk, and Z = ∪∞n=1Zn. Using (2.2)
for the sets Zn, and the fact that µ is σ-additive on the Borel sets, if k, ` ∈ N are
given we now have

µ
(
Z ∩ f−k(Z) ∩ f−2k(Z) ∩ · · · ∩ f−(`−1)k(Z)

)
= lim
n→∞

µ
(
Zn ∩ f−k(Zn) ∩ f−2k(Zn) ∩ · · · ∩ f−(`−1)k(Zn)

)
= lim
n→∞

µ(Zn)`

= µ(Z)`.

Lemma 2.6. Let X be an interval of length 1, let P = (Xj)j∈I be a standard
partition of X and put ρ = max{µ(Xj) : j ∈ I}. Then, for each k ∈ N, Pk is a
standard partition of X, and we have

max{µ(Y ) : Y ∈ Pk} ≤ ρk and lim
k→∞

(max{µ(Y ) : Y ∈ Pk}) = 0.

Proof. This is immediate from (2.1), and Lemmas 2.2 and 2.3. �
The following argument extends an idea in [9, pages 150-151] to prove ergodicity

for the dynamical systems considered here. We use Ac to denote the complement
of a set A.

Lemma 2.7. Let X be an interval of length 1 and let f be a baker’s transformation
relative to a standard partition (Xj)j∈I of X. Then if A is a Borel subset of X
such that f−1(A) = A, then µ(A) = 0 or µ(A) = 1. That is, (X, f) is an ergodic
system.
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Proof. Let A be a Borel subset of X with f−1(A) = A and 0 ≤ µ(A) < 1. Then,
0 < µ(Ac) ≤ 1. Let ε > 0. Then, there is a closed subinterval U of X such that
µ(U) > 0 and µ(U ∩ Ac) > (1− ε/2)µ(U). Now by Lemma 2.6 there is k ∈ N and
a sequence V1, V2, . . . of disjoint sets in Pk such that

(2.3)

∞⋃
n=1

Vn ⊆ U and µ

(
U ∩

( ∞⋃
n=1

Vn

)c)
<
εµ(U)

2
.

Note that if the partition (Xj)j∈I is finite, the sequence (Vn) will terminate, but
when this is allowed for, the ensuing argument remains valid. Using (2.3) we now
have

∞∑
n=1

µ(Ac ∩ Vn) = µ

(
Ac ∩

( ∞⋃
n=1

Vn

))

= µ

(
U ∩Ac ∩

( ∞⋃
n=1

Vn

))

= µ(U ∩Ac)− µ

(
U ∩Ac ∩

( ∞⋃
n=1

Vn

)c)

≥ µ(U ∩Ac)− µ

(
U ∩

( ∞⋃
n=1

Vn

)c)

>
(

1− ε

2

)
µ(U)− ε µ(U)

2
= (1− ε)µ(U).

Hence, we have

∞∑
n=1

µ(Vn ∩Ac) > (1− ε)µ

( ∞⋃
n=1

Vn

)
= (1− ε)

∞∑
n=1

µ(Vn).

By choosing a suitable Vn, and putting W = Vn, we deduce that there is W ∈ Pk
such that

(2.4) µ(W ∩Ac) > (1− ε)µ(W ).

Now, by Lemma 2.2, fk : W −→ [0, 1] is onto except maybe for one or two end-
points. Let B = Ac except that the endpoints of X that are in Ac, if any, are
omitted. Put C = {x : x ∈W and fk(x) ∈ B}. Note that

(2.5) µ(B) = µ(Ac) and fk(C ) = B.

Also, as f−1(A) = A, f−1(Ac) = Ac and so f−k(Ac) = Ac. It follows that if x ∈ C,
fk(x) ∈ B ⊆ Ac and x ∈ f−k(Ac) = Ac. Hence, C ⊆ Ac ∩W .

Now as f is one-to-one on W and maps W onto X except perhaps for the
endpoints, if it exists we let w0 ∈W be the point in W such that fk(w0) is the left
endpoint of X and, if it exists, we let w1 ∈W be the point in W such that fk(w1)
is the right endpoint of X. Put D = ∅, {w0}, {w1} or {w0, w1}, depending on the
existence of w0, w1. Then,

(2.6) Ac ∩W ∩Dc ⊆ C ⊆ Ac ∩W.
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We now have, using (2.4), (2.5) and (2.6),

µ(Ac) = µ(B)

= µ(fk(C))

=
µ(C)

µ(W )
, as fk is linear on W,

≥ µ(Ac ∩W )

µ(W )

> 1− ε.

As this holds for all ε > 0, we see that µ(Ac) = 1, and so µ(A) = 0. Thus, (X, f)
is an ergodic system, by definition. �

Definitions. Let f be a baker’s transformation on an interval X of length 1
relative to a standard partition (Xj)j∈I of X. Let U be a subinterval of X of
positive length and let ΘU (x) denote the corresponding recurrence time for x ∈ U .
Then, the average or expectation E(ΘU ) of ΘU over U is defined as

E(ΘU ) =
1

µ(U)

∞∑
n=1

nµ ({x : ΘU (x) = n}) .

Also, the standard deviation of ΘU over U is defined as

σ(ΘU ) =

√√√√ 1

µ(U)

∞∑
n=1

|n− E(ΘU )|2 µ ({x : ΘU (x) = n}).

Theorem 2.8. Let f be a baker’s transformation on an interval X of length 1
relative to a standard partition P = (Xj)j∈I of X. Let ρ = max{µ(Xj) : j ∈ I},
as in Lemma 2.6. Let U be a subset of X that is a union of r disjoint subintervals
U1, U2, . . . , Ur of positive length, and put τ = min{µ(Uj) : 1 ≤ j ≤ r}. Then, the
following hold.

(i) The average of the recurrence function θU of U relative to f is µ(U)−1.
(ii) The standard deviation σ(θU ) of θU is finite.
(iii) Let bxc denote the integer part of x ∈ R, and put

ν(U) = 1 +

⌊
log(τ/2)

log ρ

⌋
.

Then, 2rρν(U) < µ(U) and

(2.7) σ(θU ) ≤

√
− 1

µ(U)2
+

3

µ(U)
− 2 +

2ν(U)

µ(U)

(
1

µ(U)− 2rρν(U)
− 1

)
.

Proof. (i) By Lemma 2.7, the system (X, f) is ergodic, so that the fact that
the average of ΘU over U is is 1/µ(U) is immediate from Kac’s formula [3], [7].
Alternatively, it can be deduced as a consequence of Theorem 4.15 in [10], by
applying part of the proof of that Theorem to show the assumptions in Theorem
4.11 in [10] are satisfied.

(ii) and (iii). If U = X except possibly for end points, then σ(ΘU ) = 0, so the
result is true in this case. So, we may assume that 0 < µ(U) < 1. By Lemma
2.6, there is k ∈ N and a set Y that is a non-empty union of sets in Pk such that
Y ⊆ U . Note that there may be many such k and sets Y such that this holds; we



8 MIMOON ISMAEL, RODNEY NILLSEN & GRAHAM WILLIAMS

simply choose any such pair k, Y . Put Z = Y c. Then, Z is also a union of sets in
Pk, U c ⊆ Z and 0 < µ(Z) < 1. Now, using any set Z obtained in this way we have

∞∑
n=1

µ(U c ∩ f−1(U c) ∩ · · · ∩ f−n(U c))

=

∞∑
`=1

 `k∑
n=(`−1)k+1

µ(U c ∩ f−1(U c) ∩ · · · ∩ f−n(U c))


≤
∞∑
`=1

 `k∑
n=(`−1)k+1

µ(Z ∩ f−1(Z) ∩ · · · ∩ f−n(Z))


≤
∞∑
`=1

 `k∑
n=(`−1)k+1

µ(Z ∩ f−k(Z) ∩ · · · ∩ f−(`−1)k(Z))


=

∞∑
`=1

kµ(Z)`, by Lemma 2.5,

=
kµ(Z)

1− µ(Z)

= k

(
1

µ(Y )
− 1

)
(2.8)

<∞.

By Theorem 4.15 of [10, page 275], (2.8) implies that the standard deviation σ(θU )
is finite and, what is more, it implies that formula (4.39) in [10] holds for the
standard deviation of ΘU in the present case.

To get an upper bound for σ(ΘU ), we choose k and Y in (2.8) in a particular
way, noting that k and Y are inter-related. We have from the definition of ν(U)
that 2ρν(U) < τ , so for each j = 1, 2, . . . , r we have
2ρν(U) < µ(Uj). Thus,

(2.9) 2rρν(U) <

r∑
j=1

µ(Uj) = µ(U).

Also, using Lemma 2.6, we now see that if we put Yj for the union of all the sets
in Pν(U) that are subsets of Uj , then for each j = 1, 2, . . . , r we have

0 < µ(Yj) ≤ µ(Uj) < µ(Yj) + 2ρν(U).

So, if we put Y = ∪rj=1Yj , this union is disjoint and we have

(2.10) µ(U) =

r∑
j=1

µ(Uj) <

r∑
j=1

µ(Yj) + 2rρν(U) = µ(Y ) + 2rρν(U).
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Using (2.9) and (2.10), and taking ν(U) for k in (2.8), we now have

∞∑
n=1

µ(U c ∩ f−1(U c) ∩ · · · ∩ f−n(U c))

≤ ν(U)

(
1

µ(Y )
− 1

)
≤ ν(U)

(
1

µ(U)− 2rρν(U)
− 1

)
.

It now follows from (2.8) and the formula for the standard deviation in Theorem
4.15 in [10] that the expression inside the square root sign in (2.7) is non-negative
and that (2.7) holds. �

The estimate in (2.7) can be simplified in the special case when the partition P
is finite and there is k ∈ N such that the intervals U1, U2, . . . , Ur are in Pk. This
means that U is a finite union of sets in Pk. Using the notations in the above proof
we have, by Lemma 2.6, that µ(U) =

∑r
j=1 µ(Uj) ≤ rρk. Consequently,

k ≤
log

(
µ(U)

r

)
log ρ

.

Now putting this value of k and putting U for Y in (2.8), we have

∞∑
n=1

µ(U c ∩ f−1(U c) ∩ · · · ∩ f−n(U c)) ≤
log

(
µ(U)

r

)
log ρ

(
1

µ(U)
− 1

)
,

and instead of (2.7) we have the simpler-looking estimate

σ(θU ) ≤

√√√√√
− 1

µ(U)2
+

3

µ(U)
− 2 +

2 log

(
µ(U)

r

)
µ(U) log ρ

(
1

µ(U)
− 1

)
.

Note that the estimate for σ(ΘU ) in (2.7) cannot be expected to be the best
possible. One reason is the fact that the inequality (2.8), upon which (2.7) depends,
was obtained by replacing smaller terms by larger ones. However, note that in a
general dynamical system the standard deviation of the recurrence times need not
be finite [6].
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