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Growth of width-controlled nanowires MnO2 from mesoporous carbon
and investigation of their properties

Abstract
One-dimensional α-MnO2 nanowires with a controlled width of 10–20 nm have been developed by means of
ultrasonic waves from mesoporous carbon using KMnO4 as the precursor. The formation mechanism has
been proposed based on the results. A peak around 100 K was detected in the temperature-dependence of
magnetization curve, indicating the ferromagnetic state in nanocomposite mesoporous carbon-MnO2, which
is in agreement with the transition temperature found from the magnetization versus applied magnetic field
curve. The magnetization versus temperature curve of the obtained MnO2 nanowires showed a magnetic
transition at about 50 K, illustrating that a parasitic ferromagnetic component is composed on the
antiferromagnetic structure of MnO2. The advantage of the method reported here is that phase-controlled
synthesis of α-MnO2 nanowires was implemented regardless of pH, temperature, and types of ions in the
reaction system. A major advantage of this approach is the efficient, fast, and reproducible control of width
and the facile strategy to synthesize nanowires MnO2, in addition to the high purity of the resultant material.
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One-dimensional �-MnO2 nanowires with a controlled width of 10–20 nm have been
developed by means of ultrasonic waves from mesoporous carbon using KMnO4 as the
precursor. The formation mechanism has been proposed based on the results. A peak
around 100 K was detected in the temperature-dependence of magnetization curve,
indicating the ferromagnetic state in nanocomposite mesoporous carbon-MnO2, which
is in agreement with the transition temperature found from the magnetization versus
applied magnetic field curve. The magnetization versus temperature curve of the
obtained MnO2 nanowires showed a magnetic transition at about 50 K, illustrating that
a parasitic ferromagnetic component is composed on the antiferromagnetic structure of
MnO2. The advantage of the method reported here is that phase-controlled synthesis of
�-MnO2 nanowires was implemented regardless of pH, temperature, and types of ions
in the reaction system. A major advantage of this approach is the efficient, fast, and
reproducible control of width and the facile strategy to synthesize nanowires MnO2,
in addition to the high purity of the resultant material.

I. INTRODUCTION

The controlled syntheses of metal oxides, especially
those that are supposed to present some novel properties
with a particular dimensionality and size, has attracted
intensive attention.1 MnO2 has been the focus of material
scientists because of its advanced applications in molecu-
lar sieves, catalysts, and lithium batteries.2,3 Synthesis of
one-dimensional MnO2 with controlled width is of great
interest because the low-dimensional structure results in
an improved electrochemical performance, as well as in
unique nanomagnetic properties.4 Several successful
techniques have been reported in the synthesis of one-
dimensional nanostructures, such as thermal evapora-
tion,5 nanotube-based synthesis,6–8 solution-based syn-
thesis,9 microemulsion,10 vapor-liquid-solid growth,11

hydrothermal method,12 and mesoporous confine-
ment.13–17 In comparison with soft chemical processes,18

the hard-templating process is a very different approach
that has attracted considerable attention. Direct nano-
casting of mesoporous silica has been used widely for the
preparation of metal oxide nanowires, including nano-
crystallites �-MnO2.19,20 Highly ordered mesoporous
carbon (CMK-3) with its regular array of uniform meso-
pores exhibits not only thermal and mechanical stability,
but also the capability of enduring various chemical so-
lutions. Mesoporous spheres of several metal oxides have
been synthesized from mesoporous carbon21,22 via the
traditional wet impregnation method. Previously,
�-MnO2 nanowires have been prepared from SBA-15 via
the “two-solvent” method using low-oxidation-state
Mn(NO3)2 as the precursor.23 However, no article has
appeared concerning MnO2 nanowires from mesoporous
carbon. In fact, the chemical nature and dimensions of
metal oxide nanowires are affected by the characteris-
tics of the precursor, the structural parameters of the host,
and the method of bringing the salt into contact with the
host.

We believe that an investigation of the nature and
properties of manganese oxide nanowires made from
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mesoporous carbon using a high-oxidation-state KMnO4

precursor would be of considerable interest. Recently, we
described the preparation of MnO2 nanoparticles inside
channels of mesoporous carbon using a sonochemical
method.24 This suggested the possibility of obtaining
one-dimensional MnO2 from nanocomposites of MnO2

inside hexagonal mesoporous carbon (CMK-MnO2).
Herein, we report a simple approach for the preparation
of width-controlled MnO2 nanowires using CMK-3 as
the template and we propose a formation mechanism
from analysis of the results. Unsupported MnO2 nano-
wires were obtained by removal of the carbon using a
thermal treatment at 550 °C in air for 6 h. The unique
magnetic properties for CMK-MnO2 nanocomposite and
MnO2 nanowires are presented and discussed. Moreover,
the presence of carbon is reported to favor the formation
of nanowires,20 which enable CMK-3 to be an ideal host
for synthesizing width-controlled metal oxide nanowires
with potential applications in optical, electronic, and
magnetic nanodevices.

II. EXPERIMENTAL SECTION

A. Material synthesis

The synthesis of self-ordered hexagonal mesoporous
silica SBA-15 is the same as described under acid con-
ditions. The process of producing mesoporous carbon is
similar to that described by Ryoo.25,26 MnO2 incorpora-
tion into carbon CMK-3 was achieved in the following
way: 0.3 g of mesoporous carbon CMK-3 was treated
with concentrated H2SO4 at 80 °C for 3 h and was then
washed with deionized water and dried at 80 °C. Suc-
cessful surface modification was verified by Fourier-
transformed infrared (FTIR) analysis with the appear-
ance of a new band at 1716 cm−1, typical of the carbox-
ylic moiety (−COOH). Modified CMK-3 (0.1 g) was
then dispersed into a concentrated aqueous solution of
KMnO4 (0.03 M). Two hours later, the mixture was sub-
jected to ultrasound at room temperature in the form of
100 Hz ultrasonic waves at 600 W output power. During
irradiation, water flow was used to control the glass ves-
sel in the bath. After 8 h of irradiation, the precipitate was
filtered, washed thoroughly with distilled water, and
dried at 120 °C for 10 h. The samples thus prepared are
referred to as CMK-MnO2-8. Unsupported MnO2

nanowires were obtained by removal of the carbon via
combustion at 550 °C in air for 6 h (MnO2). As a com-
parison, the sample of CMK-MnO2 heat treated at
450 °C for 2 h in air is referred to C-MnO2-8. Two ad-
ditional samples prepared with 6 and 4 h of ultrasonic
treatment were donated to be CMK-MnO2-6 and CMK-
MnO2-4, respectively. Accordingly, unsupported MnO2

nanowires from CMK-MnO2-6 and CMK-MnO2-4 are
referred to MnO2-6 and MnO2-4, respectively.

B. Material characterization

Powder x-ray diffraction (XRD) patterns were re-
corded on an x-ray diffractometer system (AXS; Bruker,
Billerica, MA) with Cu K� radiation. Nitrogen adsorp-
tion measurements at 77 K were performed on an
ASAP2100 volumetric adsorption analyzer, and samples
were out-gassed for 8 h in the degas port of the adsorp-
tion apparatus. Transmission electron microscopy (TEM)
and energy-dispersive x-ray (EDX) measurements were
carried out on a 2010 microscope (JEOL, Tokyo, Japan)
and a 2100F microscope (JEOL).

III. RESULTS AND DISCUSSION

The relatively good elimination of the template is re-
vealed by elemental analysis (as the carbon content
was about 0.9%). EDX measurements with TEM show
that the resultant MnO2 consists of Mn and O with an
atomic ratio of about 1:2. This further confirms the al-
most complete removal of the carbon template from
MnO2 nanowires.

CMK-MnO2-8 together with unsupported MnO2

nanowires was characterized with XRD, demonstrated in
Fig. 1. One intense diffraction peak in small-angle XRD
patterns, which is designated as (100), is observed for
CMK-3 and CMK-MnO2-8, which is characterized by a
hexagonal structure. The loading amount of MnO2 on the
CMK-MnO2-8 was estimated to be 51 wt% from ther-
mogravimetric analysis measured in air. The 51 wt%
filling of the porosity with MnO2 may explain the inten-
sity decrease for the sample of CMK-MnO2-8 (Fig. 1) in
comparison with CMK-3. No peak can be detected for the
sample of unsupported MnO2, which suggests that nanow-
ires with an ordered mesoporous structure do not form.

From high-angle XRD patterns, the obtained MnO2

FIG. 1. Small-angle XRD patterns of CMK-3, CMK-MnO2, and
�-MnO2 nanowires.
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nanowires were proved to be mainly �-MnO2. EDX
measurements indicated an almost constant atomic Mn/O
ratio of 0.5 all over the samples. Davidson15 considered
that the morphology and chemical nature of the resultant
nanowires were affected by the precursors and the meth-
ods used, as well as by the nature of the host. Zhao10

obtained a mixture of MnO2, Mn2O3, and Mn3O4 nano-
wires from microwave-digested SBA-15. In contrast,
pure �-MnO2 was synthesized via the “two-solvent”
method by Davidson15 using the same precursor as that
of Zhao. In our case, one-dimensional �-MnO2 nano-
wires with a controlled width of 10–20 nm were pre-
pared. The factors of high-oxidation-state KMnO4 pre-
cursor, surface modification of the CMK-3 to be hydro-
philic and ultrasonic waves used made contributions to
the formation of �-MnO2.

The structure and morphology of the nanocomposites
CMK-MnO2-8 were further characterized by TEM. As
shown in Figs. 2(b) and 2(c), the nanosized particles of
MnO2 appear as dark rod-like objects before removal of
the carbon template, and are distinctly observed to be
diffusing very well inside the pores of CMK-3 [Figs. 2(b)
and 2(c)] compared with the original CMK-3 [Fig. 2(a)].
The diameter of the nanowires is about 3 nm inside the
carbon mesopores, which is consistent with the diameter of
CMK-3 (around 3.9 nm, as determined by N2 adsorption/
desorption).

The TEM images in Fig. 3(a) reveal the formation of
large number nanowires for the sample of unsupported
MnO2. From the high resolution transmission electron
microscopy (HRTEM) images, we can detect the exis-
tence of a large amount of nanowires with an average
width around 10–20 nm [Fig. 3(b)]. The high magnifi-
cation images display very well crystal nanowires, and
the lattice fringes correspond to d-spacing of 0.701 nm,
characteristic of �-MnO2 [Fig. 3(c)]. These are in agree-
ment with the d110-spacing observed in XRD patterns of
MnO2 nanowires. It is known that variety factors exist to
influence the growth of MnO2 one-dimensional nano-
structures, such as the concentration of ions, temperature,
pH, etc. In the past, people tried to control the morphol-
ogy of the final products by adding ions or adjusting pH
or temperature. Herein, phase-controlled synthesis of
�-MnO2 nanowires can be realized via an easy sono-
chemical method. As is mentioned above, the pore diam-
eter of the original CMK-3 was determined to be about
3.9 nm via nitrogen adsorption/desorption analysis. The
questions then arise: is the width of MnO2 nanowires
thus prepared larger than the pore diameter of the original
host CMK-3? Are the MnO2 nanowires formed inside
mesopores as we suggested? To find out the truth,
HRTEM images were taken as a comparison for the
sample of CMK-MnO2-8 after being heat treated in air at
450 °C for 2 h (C-MnO2-8), from which it is interesting
to find the formation of carbon nanotubes with metal

FIG. 2. TEM images of (a) the original CMK-3, (b) CMK-
MnO2 perpendicular to the pore channels, and (c) along the pore
channels.
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oxide aggregation inside the tubes. The process can be
detected and illustrated from Fig. 4.

The nanowires were produced from the original CMK-
MnO2-8 by the following process. The micropoles that
connected the mesopores of CMK-3 were first com-
busted as the temperature increased, leaving the indi-
vidual nanotube-like poles in place [Fig. 4(a)]. Mean-
while, MnO2 nanoparticles that were previously indepen-
dent aggregated along the pore channels inside the pores
and crystallized as the temperature increased [Fig. 4(a)].
Thus, nanocomposite C-MnO2-8 consists of two parts:
one part consists of the dark rod-like objects inside and
the other consists of the gray walls outside. Spectra ob-
tained from EDX verified that the dark rod-like objects
inside the tube were composed of pure MnO2 [Fig. 4(b)].
The gray part is mainly made up of carbon, with only
0.4% Si and S [Fig. 4(c)] and 0.48% of impurity Ca; no
Mn was detected. A more highly resolved TEM image
gives further evidence of the core-shell structures
from Fig. 4(d), which clearly reveals the lattices of the
nanowires inside and the layer distance of 0.34 nm for
the gray wall corresponding to the graphite structure.

As demonstrated in Fig. 4(a), the carbon wall was
reduced to 3 nm from the original 6 nm via combustion,
and the width of the MnO2 nanowires expanded accord-
ingly to 9 nm, occupying the original wall position. The
width of an entire nanowire is about 15 nm, which is
consistent with the calculated distance between two
carbon poles (pore diameter 3.9 nm + twice carbon walls
12 nm � 15.9 nm). The proportion of the MnO2 content
inside the host expands as the wall becomes thinner
and thinner. Finally, the widths of the nanowires reach
10–20 nm with perfect crystalline phase owing to the
high temperature [Fig. 3(b)]. The structures of the
nanowires thus prepared are different from those in the
report on �-MnO2 fabricated from nanocasting of SBA-
15,15 which indicated that the width of the metal nano-
wires is almost equal to the original host pore diameter.10

A different formation mechanism can explain these re-
sults. The silica framework can be dissolved using a so-
lution of HF/H2O/EtOH or NaOH. Nevertheless, carbon
cannot be removed by the conventional solution because
of its inactive properties. During the removal of carbon
template at high temperatures, the nanowires widened to

FIG. 3. HRTEM images of the �-MnO2 nanowires (a) and (b) with the diameters of 10–20 nm, and HRTEM images of �-MnO2 nanowires,
(c) and (d) spacing d � 0.701 nm.
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occupy the position of the carbon removed and thus ag-
gregated in one dimension, resulting in samples with the
diameter of the mesoporous pores plus one or two wall
thicknesses.

Xiao et al.27 have proposed that the hollandite-type
MnO2 random weave nanofibrous structure develops
from an initial nanoparticle agglomerated mass under the
reflux conditions. Here, we believe the mesostructures
of the template, ultrasonic sound, and combustion are
responsible for the formation of �-MnO2 nanowires.
The formation process can be described as follows as
described in Scheme 1: The surface modification of
CMK-3 (to become hydrophilic with –COOH) makes it
easy for KMnO4 to access the pore channels of CMK-3.
At the same time, modification changes the surface re-
activity, enabling the formation of MnO2 nanoparticles
inside the pores of CMK-3 by sonochemical reduction of
metal ions. Small particles are pushed by the jets gener-
ated by ultrasound waves, and are anchored to the inner
surface of the mesoporous carbon. MnO2 nanoparticles
inside the mesopores aggregate along the channels of the
mesopores at elevated temperatures. As the process
continues, the carbon wall is burned up in air and be-
comes thinner and thinner. The aggregation of the MnO2

nanoparticles gets wider and wider, occupying the posi-
tion of the burned carbon. Finally, one-dimensional
MnO2 nanowires are synthesized with a controlled width
of 10–20 nm.

Two additional experiments were conducted to inves-
tigate the effect of the loading amount of MnO2 on the
size of nanowires. Figure 5 shows the wide-angle XRD
patterns of nanowires MnO2 prepared from different
CMK-MnO2 with various loading amounts by varying
irradiation time. The sample of CMK-MnO2-8 has the

FIG. 4. HRTEM images of (a) nanocomposite C-MnO2 (CMK- MnO2 heat-treated at 450 °C in air for 2 h; (b) EDX measurement taken at the
position of the black rod-like objects inside the tube in (a); (c) EDX measurement taken at the gray wall in image (a). (d) HRTEM image gives
further evidence of the core-shell structures, which clearly reveals the lattices of the MnO2 nanowires inside and the layer distance of 0.34 nm
for the gray wall corresponding to the graphite structure.

SCHEME 1. The mechanism responsible for the formation of MnO2

nanowires from a mesoporous carbon template.
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highest MnO2 loading up to 51 wt%. CMK-MnO2-4 and
CMK-MnO2-6 are 30 and 43 wt%, corresponding to the
samples irradiated for 4 and 6 h, respectively (thermo-
gravimetric analysis not shown). Accordingly, the
nanowires with the carbon removed were named MnO2-4
and MnO2-6, respectively. MnO2-6 and MnO2-8 con-
tained full sites of peaks corresponding to pure crystal
nanowire �-MnO2. The relatively strong intensity in
MnO2-8 compared with MnO2-6 is attributed to the per-
fect crystallites of the formation MnO2 nanowires with a
high loading weight. Only broader and less intensive
peaks were detected in the MnO2-4 sample because of its
relatively small grain size and the many crystal defects.
Similar phenomena have been described in the synthesis
of MnO2-� nanowire microspheres.4 That is to say, the
controlling width of nanowires is related to the loading
amount of MnO2, in addition to the gradual reduction of
carbon wall size during combustion. Low loading
amounts result in small-sized nanowires with many de-
fects, owing to the limited amount of MnO2 that can be
aggregated. As the loading amount of MnO2 increased,
nanowires with perfect nanocrystallites increased.
Width-controlled nanowires were obtained only when
the proper amount of MnO2 (above 40%) was incorpo-
rated inside CMK-3. Therefore, nanowire formation is
governed by the aggregation process, starting from sta-
tistically dispersed individual nanoparticles in meso-
pores under thermal treatment. Thus, after removal of the
carbon template via combustion, samples with the diam-
eter of the mesoporous pores plus one or two carbon
wall thicknesses were prepared. Conversely, it further
confirmed that the nanowires MnO2 formed are in-
deed grown from the mesopores of carbon. It is worth
emphasizing that during this period, two kinds of tubes
formed: one with a carbon wall on two sides and the

other with a carbon wall on only one side. Another point
that should be mentioned is that a few of the nano-
wires were found to be a little larger than 16 nm, possi-
bly because of agglomeration outside the channels;
a similar phenomenon has been reported by Liu.28

Nitrogen desorption/adsorption depicted in Fig. 6 dem-
onstrates a high surface area of 87 m2 g−1 for the resultant
MnO2 nanowires.

From the analysis above, we can reach the conclusion
that samples of one-dimensional nanowires of �-MnO2

with diameters of 10–20 nm and a smooth texture can
be prepared from mesoporous carbon. The vast majority
of the nanowires could be controlled in the typical
�-structure. The advantage of our method is that we can
get �-MnO2 directly without any concerns about the
process. No additional ions are added, and high purity
can be expected.

The magnetic properties of CMK-MnO2 and MnO2

nanowire samples were studied by measuring dc and ac
magnetization and magnetic hysteresis loops using a
commercial Physical Property Measurement System
(Quantum Design, San Diego, CA). Figure 7 shows the
temperature dependence of the ZFC and FC magnetiza-
tions for CMK-MnO2.

It can be seen that an irreversibility between ZFC and
FC starts at around 75–100 K, indicating the formation of
a ferromagnetic phase below this temperature range. An
ac susceptibility measured in 1 Oe and 117 Hz is shown
as the inset in Fig. 7(a). A peak in the ac susceptibility is
observed around 100 K in agreement with the transition
temperature observed from dc magnetization measure-
ments. The peak in the ac susceptibility indicates an anti-
ferromagnetic interaction or a spin glass state coexist-
ing with the ferromagnetic state in the CMK-MnO2. The
ferromagnetic state can also be seen from magnetic hys-
teresis loops as shown in Fig. 8(a). An antiferromagnetic

FIG. 6. Nitrogen adsorption/desorption isotherms (at 77 K) of the
obtained nanowires MnO2.

FIG. 5. The wide-angle XRD patterns of nanowires MnO2 prepared
from CMK-MnO2 with various loading amounts by varying irradiation
time.
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interaction component is present, as the magnetiza-
tion tends to remain unsaturated, even in high fields of
up to 8 T. The temperature dependence of the FC mag-
netization for a sample of MnO2 nanowires is shown in
Fig. 7(b). A kink is observed at about 50 K, correspond-
ing to the Néel magnetic transition temperature, TN. The
magnetization versus temperature curve indicates a mag-
netic transition at about 50 K, which is higher than that of
MnO2 nanowires synthesized by a hydrothermal method
with a diameter of 20–50 nm (TN � 13 K). The different
grain width effect will possibly explain the difference.
This illustrates that MnO2 has an antiferromagnetic struc-
ture with a parasitic ferromagnetic component below the
Néel temperature. Figure 8(b) shows the magnetization
versus applied magnetic field for MnO2 after removing
the CMK-3 support, from which we can see that the
transition peaks are much broader and the magnetisize
value is higher for CMK-MnO2 in comparison with the
resultant MnO2 nanowires because of defects and larger
distortion for the confinement of nanoparticles MnO2

inside mesoporous carbon.3 Consistently, the M-H curve
shows a small hysteresis for the MnO2 nanowires, which
indicates that a ferromagnetic component is super-
imposed on the antiferromagnetic curve.

IV. CONCLUSION

In conclusion, one-dimensional �-MnO2 nanowires
with a controlled width of 10–20 nm were synthesized
from mesoporous carbon by means of ultrasonic waves.
During the removal of the carbon wall at elevated tem-
peratures, the nanowires inside the pores occupied the
positions of the combusted carbon and aggregated in
one-dimension along the original host channel. Magne-
tization measurements indicate an antiferromagnetic in-
teraction or a spin glass state coexisting with the ferro-
magnetic state in CMK-MnO2. A magnetic transition at
about 50 K for the sample of MnO2 nanowires illustrates
that MnO2 has an antiferromagnetic structure with a

FIG. 8. The field dependence of magnetization of (a) CMK-MnO2 and
(b) MnO2 nanowires at T � 5 K.

FIG. 7. The temperature dependence of the magnetization curves un-
der zero field cooling (ZFC) and field cooling (FC) for the (a) CMK-
MnO2 and (b) MnO2 nanowires.
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parasitic ferromagnetic component below the Néel tem-
perature. A major advantage of this approach is the easy,
efficient, and reproducible control of width from meso-
porous carbon, in addition to the relatively high purity of
the resultant. The suggested growth mechanism is in
good agreement with our experimental results and may
be a general one for the growth of other metal oxide with
special properties. This approach is expected to widen
the applications of self-ordered mesoporous carbon with
a variety of morphologies.
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