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Abstract

This paper draws attention to accepted measurement and research method standards in

empirical research on tourism. Some standards stand out because they are superior to

alternative approaches. However, many have emerged because the measurements and

methods used in prior work were assumed to be optimal (or at least valid) for solving

particular problems. Unfortunately this assumption is inaccurate. Yet the reviewing

process favors the use of such standards (often without demanding evidence) over the

introduction of novel approaches, even if these are justified.

This paper focuses on three accepted standards in empirical tourism research which

have the potential to undermine the validity of findings: the uncritical use of ordinal

multi-category answer formats, the derivation of cross-cultural comparisons that do

not consider cultural response biases resulting from response styles, and the standard

step-wise procedure used in data-driven market segmentation. This paper describes

the potential dangers of these standard approaches and makes recommendations for

researchers to consider before choosing to adopt any of the above approaches.

Key words: accepted standards; ordinal answer formats; cross-cultural studies; data-

driven market segmentation.

1 INTRODUCTION

Much research accepts the approaches and techniques used and published in the past

as established, valid procedures. The practise of citing several authors of prior studies

(the more the better) who use a certain approach or technique, instead of explaining

the reason for choosing this procedure and justifying why it is the best solution for the
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problem is a dominating logic in the research community. This insight is not new.

Thomas Kuhn (1970, p. 6) refers to this phenomenon as the ‘tradition-bound activity

of normal science’ and defines ‘scientific revolutions’ as ‘tradition-shattering

complements’ that move science forward.

The practise of uncritically following other authors’ approaches (or in a

seemingly uncritical manner) is prevalent in tourism research. While not uncommon

in other area of research, it is nevertheless undesirable, and has several effects that

contradict the fundamental principles of scientific research, by: (1) tolerating the

uncritical use of approaches and techniques; (2) not providing incentives to introduce

new approaches and techniques; and (3) discouraging the use of new approaches.

Authors who introduce new approaches must justify their deviation from the norm in

the most rigorous fashion; whereas uncritical acceptance of the current standard does

not require extensive explanation in the reviewing process.

In the increasingly competitive research market a new researcher who needs to

build their CV and rationally analyzes how the acceptance rate of their publications

can be maximized is likely to conclude that: (1) they can spend significantly less

effort to conduct a study if they follow the established standards in a field of research

because no justification will be required for the choice of method, measurement

technique, or data analytic approach; and (2) using the established standard is much

safer because the risk of rejection will be significantly lower. In sum, uncritically

following the approaches taken by authors in the past, and reviewers’ willingness to

accept citations (rather than justifications) as reasons for adopting a particular
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approach lead to stagnation, rather than development and innovation of a field of

research — in this case empirical tourism research.

This paper describes three common aspects of empirical tourism research that

lead to the development of emerging standards: the uncritical use of ordinal multi-

category answer formats in data collection, cross-cultural comparisons ignoring

response style bias, and the use of a particular step-wise procedure in data-driven

market segmentation. For each of these three aspects: (1) a review of the discussion in

the broader scientific community is presented; (2) hypotheses are formulated about

the precise nature of the respective accepted standard within tourism research; (3)

empirical evidence is provided to support or reject these hypotheses; (4) potential

dangers resulting from the uncritical use of outlined standard approaches are

discussed; and (5) a series of questions or aspects is provided, which may be helpful

to empirical tourism researchers in deciding whether or not to adopt these standard

approaches in their future studies.

2 ANSWER FORMATS

In empirical social sciences where the responses of subjects to the researcher’s

questions form the basis of theoretical (or practical) insight, the question is the

scientist’s measurement instrument. Where an atmospheric chemist uses a

thermometer or a barometer, the social scientist uses a question. An atmospheric

chemist would never consider using an uncalibrated or untested thermometer or

barometer to measure temperature or air pressure. The same should be true for an

empirical social scientist. The question asked is the main measurement instrument,
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and it has to be carefully chosen or developed to ensure that it reliably measures what

it is supposed to measure.

How to best ask questions to get valid results is therefore an issue of

interdisciplinary interest, and is of fundamental importance to any research field in

which the collection of primary data is required to investigate a research question. The

importance of question formulation has been acknowledged by social scientists in

many areas since the early 19th century. Consequently, a vast body of literature exists

in psychology, sociology, psychometrics, and marketing, which investigates the

effects of various aspects of questionnaire design on the validity of results. Some

researchers go as far as to question whether survey responses can at all be viewed as

valid measurements. Feldman and Lynch (1988, p.431), for instance, “show how

observed correlations among beliefs, attitudes, intentions and behaviours may be

affected by the process of measurements”. The underlying argument is that

respondents frequently do not have cognitions which are easily accessible to answer a

question. Instead, they compute or create them in response to questions. Such a

computation process is strongly influenced by the order, context and wording of the

question in the survey. Earlier responses will have an influence on how later questions

will be answered. Feldman and Lynch’s study demonstrates clearly that the validity of

measurement in the social sciences is by no means a given. Instead a significant

amount of effort in pre-analysis of questions for specific populations is needed to

minimize the self-validation and other detrimental effects on the validity of survey

findings.
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The present study, however, focuses on only one area of questionnaire design:

alternative response formats. The typical aim of prior studies into the effects of

alternative response formats has been to determine which response format is optimal,

where optimality is defined differently, depending on the study. The terms ‘answer

format’ and ‘response format’ are used interchangeably here, and are understood to

mean the format in which respondents are requested to answer questions. A large

number of different answer formats have been proposed in the past; most of them can,

however, be classified as nominal, binary ordinal, or metric in nature. An example of

each of those response formats is provided in Figure 1.

Figure 1 here.

Within each of the four broad categories several different response formats exist, and

these differ in subtle but very important ways. For example, a binary scale can force

people either to commit to answering either ‘yes’ or ‘no’ (full binary scale).

Alternatively, respondents might be asked only to tick the ‘yes’ box if they agree with

a statement (affirmative binary scale). An example of an affirmative binary scale case

is the question, ‘Which of the following European cities do you perceive as

expensive?’, followed by a list of European cities, where respondents are asked to tick

all cities they intend to visit. This is the typical format (referred to also as pick-any

data) that is widely used in brand image measurement, where respondents are asked to

tick how they perceive several brands (or destinations) with regard to several



7

attributes. The full binary scale allows the researcher to interpret a ‘yes’ answer as

meaning that a respondent perceives Paris as expensive, and a ‘no’ answer as meaning

the respondent does not perceive Paris as expensive. Another option, ‘I have never

heard of Paris,’ could be added to ensure that no irrelevant judgments are recorded. In

the case of the binary affirmative scale, the ‘yes’ option can be interpreted as meaning

that the respondent perceives Paris as expensive. However, if the respondent does not

tick ‘yes,’ it is unclear what they are expressing. No answer could mean ‘I have never

heard of Paris,’ a state which could again be included as an answer option in order to

exclude irrelevant answers. But it could also capture people who do not want to make

a choice, are tired at the end of a long questionnaire or cannot be bothered thinking

about another question.

Both alternatives are useful in different contexts. In the brand image measurement

context the binary affirmative scale is typically used, presumably because it is not

essential to know precisely what the respondent’s perception is, if it is not ‘Paris is

expensive.’ For other research questions, however, it is essential that the respondent

commits to one response. A recent study into alternative water sources (Dolnicar and

Schaefer, 2006) is a good example. One aim of this study was to assess the level of

knowledge the Australian population had about recycled water and desalinated water.

Given the relatively low level of knowledge, pre-tests using the affirmative binary

answer format showed that respondents who were unsure about whether, for example,

recycled water was purified sewage, simply did not respond. The result was a data set

that contained very few responses that answered the research questions regarding the

population’s knowledge level about these water sources, or which aspects the
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population was well- or ill-informed about and therefore required information

campaigns.

The selection of the kind of response formats, such as affirmative binary versus full

binary, can lead to major variations in results, among other factors. Even within one

response format option, the wording of the question can lead to dramatic variations in

results. For example, different responses can be elicited from a question worded, ‘Do

you think Paris is expensive?’ compared to ‘Do you think Paris is very expensive?’. 

This example illustrates two important effects. First, small modifications in response

format can have major impacts on the data obtained, and consequently on the results.

These effects may make it impossible to answer the very research question they were

developed to investigate, as illustrated by the alternative water sources study. Second,

there is no single best option for all problems. Each research question requires the

social scientist to investigate alternative answer formats, evaluate their advantages and

disadvantages and choose the most valid measurement instrument for the problem and

the sample under study.

The above example was based on questions requiring binary answers, arguably the

simplest possible response format. The complexity of potential response format side-

effects increases further when a multi-category ordinal response is required from

respondents.

The methodological dangers of both ordinal and binary scales have been extensively

discussed by Scharf (1991), Peterson (1997) and Kampen and Swyngedouw (2000).

Kampen and Swyngedouw (2000) classify most of the ordinal variables used in
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tourism research, such as items capturing agreement levels with statements or

satisfaction levels with service components, as ‘unstandardized discrete variables with

ordered categories,’ and state that this is the most undesirable of all ordinal options.

As opposed to categories of income or age, there is no underlying objective measure

that is simply divided using known threshold values.

On the contrary, different scale points (for example, ‘slightly agree’ or ‘quite

satisfied’) are likely to mean different things to different respondents, which makes

interpretation extremely difficult. Also, equidistance is not assured. The distances

between scale points are likely to be unequal, and could be perceived as different by

different respondents. The results will not necessarily be invalid, but they could be. If

ordinal data is used, it is safer to use data analytic methods that have been developed

for this scale level. For example, computing a mean value on a five-point ordinal

response format does not produce valuable insights, because the result cannot be

interpreted unambiguously — what exactly does an average of 3.7 mean, if 3 is

‘moderately satisfied’ and 4 is ‘very satisfied’? The widely spread treatment of data

resulting from multi-category ordinal response formats as being interval-level data is

very common. The typical justification is that Likert scale data can be assumed to be

interval scaled. This was certainly not intended by Likert (1932), who claimed metric

properties only for the summated scale, not the single items.

Billiet and McClendon (2000), McClendon (1991), and Watson (1992) draw attention

to another problem inherent in Likert scales: the susceptibility to acquiescence or yea-

saying bias, or, more generally, response styles. This aspect will be discussed in detail

in the section on cross-cultural response styles.
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A further difficulty is that multi-category ordinal scales lead to different responses

independent of the number of answer categories offered to the respondents. The

decision whether to use three, five, seven or nine points in the answer format affects

the results. The effect of the choice of answer format is clearly a methodological

artifact, and should not be interpreted as content.

The quality of ordinal scales strongly depends on the rigor of operationalization of the

construct under study, the extent to which the validity of the chosen response format

for the research question has been studied, and the calibration to mean the same to all

respondents. If the construct is not well defined, and leaves a lot of space for

interpretational differences, ordinal scales are not a very precise measurement

instrument, and results remain ambiguous. The main dangers are that ordinal answer

formats typically used in tourism research: (1) are not operationalized well (what does

it mean to a hotel manager that a tourist slightly agrees that having a swimming pool

is important? Should the hotel manager build the pool?); (2) do not offer answer

options that mean the same thing to all respondents (‘moderately satisfied’ does not

mean the same thing to all hotel guests); (3) capture both individual and cross-cultural

response styles to a higher extent than alternative answer formats, as will be discussed

in detail later; (4) do not have equal intervals between answer options (the difference

between ‘very satisfied’ and ‘moderately satisfied’ is not necessarily the same as the

difference between ‘very dissatisfied’ and ‘moderately dissatisfied’); and (5) typically

have not been tested for validity for the research problem at hand.

Despite the above insecurities involved in using multi-category ordinal scales, such

response formats (particularly specific answer formats within that group, such as the
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Likert scale (Likert, 1932)) have become the ‘industry standard’ in empirical tourism

research as well as other fields, such as marketing.

While (to the author’s knowledge) theoretical comparisons of the difficulties and

insecurities related to each of the alternative answer formats are rare (some have been

discussed above), a large number of empirical studies have been conducted in the past

comparing binary with ordinal response formats. The aim of these studies was to

determine which of the two generally is the better response format in the social

sciences. Although, as previously mentioned, the author does not hold to the notion

that a generally better scale can be found, the findings of these studies are briefly

reviewed below (based on Dolnicar, 2006), with different streams of prior work using

different criteria for ‘better’ or ‘optimal.’

Several authors define optimality as ‘reliability’ and compare results from different

scales according to how reliable they are. Interestingly, the majority of this type of

work concludes that the number of response options given to respondents does not

influence reliability (Bendig, 1954; Peabody, 1962; Komorita, 1963; Komorita and

Graham, 1965; Matell and Jacoby, 1971; Jacoby and Matell, 1971; Remington, Tyrer,

Newson-Smith, and Cicchetti, 1979; Preston and Colman, 2000). More recently,

Rungie et al. (2005) demonstrate reliability issues in the context of brand image

measurement using affirmative binary scales, and hypothesize that ordinal multi-

category measurement would lead to similar levels of unreliability. However, several

studies conclude that an association between reliability and response options exists

(Symonds, 1924; Nunnally, 1967; Oaster, 1989; Finn, 1972; Ramsay, 1973).
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A similar variety of conclusions emerges when validity is used as a criterion of

optimality of an answer format. Jacoby (1971), Jacoby and Matell (1971), Chang

(1994), and Preston and Colman (2000) conclude that response options and validity of

findings are not related. Contrarily, the results obtained by Loken, Pirie, Virnig,

Hinkle, and Salmon (1987), and Hancock and Klockars (1991) indicate that a larger

number of options (for example, using a seven-point scale instead of a five-point

scale) increases validity.

A third stream of research into the effects of response options uses factor analysis

results to compare whether different scale formats result in different interpretations,

thus using structural equivalence as the criterion for the quality of a response format.

Martin, Fruchter, and Mathis (1974), Percy (1976), Green and Rao (1970), and

Dolnicar, Grun, and Leisch (2004) chose this research approach. Green and Rao

conclude that at least six answer options should be included, whereas Martin, et al.,

Percy, and Dolnicar, et al. found no significant differences in the factor results.

Finally, a few authors have investigated the perspective of consumer friendliness of

surveys. Jones (1968) and Preston and Colman (2000) conclude that respondents

prefer to have more options, and also found that this reduced perceived speed.

Dolnicar (2003) and Dolnicar, Grun, and Leisch (2004) conclude that ordinal scales

are perceived as significantly more difficult to answer and take significantly more

time to complete.

As illustrated, prior studies comparing response formats lead to quite different

conclusions: a frequency count of recommendations across response option studies

would lead the scientific community to believe that seven-point scales are the optimal
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choice (Cox, 1980). The popularity of such multi-category ordinal response formats in

the social sciences has been noted by Peterson (1997), Van der Eijk (2001), and

Dolnicar (2002). This supports the notion that response format decisions are not able

to be generalized: depending on the research questions, the construct under study, and

the nature of the sample, different response formats will be appropriate or

inappropriate, will produce very valid, moderately valid or invalid results. However,

the acceptance of an emerged standard is potentially a very dangerous decision that

can — in the worst case — lead to invalid results or the inability to even answer the

research question.

2.1 Are we ‘following the recommendation of…’ in our choice of answer

formats?

Often we cannot assess whether an author has uncritically chosen a particular scale, or

whether they have invested considerable time and effort in their decision. Typically,

information allowing us to make this judgment is not available in manuscripts. We

cannot therefore empirically evaluate the extent to which emerged standards are

accepted uncritically, or compare the proportion of studies that are based on a

thorough analysis of the response format before fieldwork is conducted.

Consequently, testing the level of validity of conclusions drawn in published

empirical tourism research. If in doubt, we should assume that the authors have

thoroughly evaluated their response format. The empirical illustration here cannot aim

to state the proportion of uncritical use of response formats or the proportion of

findings with questionable validity. It can, however, analyze the proportion of studies

that are prone to the abovementioned problems due to the use of accepted standards
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without explanation and discuss their potential dangers, or look at how these potential

dangers have been addressed. The inability to test for critical use and validity of

findings thus limits the empirical investigation to the following three hypotheses

derived from the insights from prior research as reviewed above:

H1.1 Empirical tourism researchers predominantly (in more than 80 percent of

studies) use multi-category ordinal scales.

H1.2 The majority of empirical tourism researchers (more than 50 percent) do not

provide reasons for their choice in the manuscript.

H1.3 The majority of empirical tourism researchers (more than 50 percent) do not

point out the dangers or insecurities associated with their choice in the

manuscript.

H1.4 The majority of empirical tourism researchers (more than 50 percent) use data

analytic techniques, which are not suitable for the response format used.

The method selected to investigate the research aims of this study is a literature

review of academic tourism research published in 2005 in three of the main journals

that publish empirical social sciences1 research: the Journal of Travel Research,

Annals of Tourism Research, and Tourism Management. All articles published in

2005 were screened and classified as being either empirical or non-empirical in

1 According to the Oxford English Dictionary the social sciences encompass ‘The scientific study of
the structure and functions of society; any discipline that attempts to study human society, either as a
whole or in part, in a systematic way.’
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nature. In order to be classified as empirical for the purpose of this review,

disaggregate data had to form the basis of the investigation, and the subjects under

study had to be tourists.

Sixty-five studies published in the three outlets in 2005 were classified as empirical

and included in the review. Each study was reviewed in detail and coded with seven

variables relevant to hypotheses H1.1 to H1.4: (1) the answer format used, following

the classification illustrated in Figure 1; (2) the specific answer format, such as ‘Likert

scale,’ if mentioned; (3) whether someone else’s work was cited to justify the use of

the used response format; (4) whether an explanation was provided as to why the

chosen response format was deemed the best choice for the research question at hand;

(5) whether the dangers associated with this response format were discussed; (6)

which method was used to analyze the data; and (7) whether raw data or a summated

scale value was used for data analysis.

Coding was undertaken separately for each of the constructs investigated in each of

the published studies, and descriptive statistics were computed to test hypotheses H1

to H4.

The results are provided in Table 1. Citations of prior work were used in 17 percent of

the studies, which at first appears to indicate that researchers may not be following

emerged standards at all with regard to answer formats. However, only five percent of

the authors provided an explanation of why they chose the answer format. An even

lower proportion (three percent) discussed potential dangers of the answer formats

used.
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With respect to which answer formats were actually used, the high proportion of

studies using multi-category ordinal scales assumed in hypothesis H1.1 was actually

surpassed, with 88 percent of all studies using ordinal scales (either ordinal only or in

combination with other scales). Only two studies explicitly stated the nature of the

scale as being nominal, binary, ordinal, or metric. Mostly the authors showed scale

but did not discuss its mathematical properties and implications.

The main methods of data analysis were factor analysis (either alone or in

combination with other analytic techniques more than half of all empirical studies

used this technique), descriptive statistics, analysis of variance, and logistic

regression. Factor analysis and analysis of variance require metric data levels. More

than half of the empirical studies undertaken in tourism research do not use methods

appropriate for the answer format in the instrument.

Table 1 here

This leads to the following findings with respect to H1.1 to H1.4. Hypothesis H1.1

cannot be rejected because the vast majority of empirical tourism studies uses a multi-

category ordinal answer format, either as the sole measurement instrument or in

combination with other answer formats. Hypothesis H1.2 cannot be rejected either,

because no explanation for the use of the response format was provided in 95 percent

of the studies reviewed. Dangers associated with response styles are only discussed in

three percent of all studies. Consequently, H1.3 cannot be rejected. Finally, in more
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than half of the studies analytic techniques are used, which require higher than ordinal

data level, indicating that a significant proportion of research applies analytic

techniques unsuitable for the data properties.

The fact that hypotheses H1.1 to H1.4 could not be rejected indicates that empirical

tourism research as a field is very prone to confounding the result component of a

finding with the measurement artefact component, resulting from the use of response

formats that often appear not to have been validated and calibrated for the particular

research problem at hand.

2.2 A few things to consider when choosing a response format

This section cannot provide the magic solution to all research problems: the single

best response format. Instead it aims to list several aspects that empirical tourism

researchers may want to consider when choosing their response format. Each aspect is

discussed independently. The selection of the optimal response format, however,

requires us to account for all the following points in an integrated manner:

1. Is the speed of completing the questionnaire critical? Decreasing the time required

to complete a survey can be necessary for at least one of two reasons: (a) longer

questionnaires are more expensive, because respondents are paid more to

compensate for their time in self-administering the survey, or the expenses for

interviewer time increase; and (b) longer questionnaires are known to lead to a

reduction in data quality (Johnson, Lehmann, and Horne, 1990). Typically, high

quality data is the primary aim of an empirical social scientist. If questionnaire

length is a concern, the use of binary response formats is recommended, because
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the time saved is about 30 percent, with aggregated results showing very little

deviation from ordinal scales (Dolnicar, 2003; Dolnicar, Grün, and Leisch, 2004).

2. Is the increased detail available by using ordinal multi-category scales required to

answer the research question? Multi-category ordinal response formats enable

frequency counts of all options, which the binary answer format cannot provide.

The crucial question is: is this additional detail required? The best way to answer

this question is to determine what the research question is, and in which way the

data will be analyzed. If it is essential to know what proportion of respondents are

‘moderately satisfied,’ and if frequently counts will be computed to assess this

proportion, a multi-category ordinal or metric response format is needed. If

analyses will be based on means or analytic techniques that use the mean value as

a basis, a binary answer format may be sufficient because it has been

demonstrated in the past that at the aggregate level the mean derived from a binary

scale essentially leads to the same interpretation as the typically (incorrectly)

computed mean across a limited number of ordinal multi-category scale points

(Dolnicar, 2003; Dolnicar, Grün, and Leisch, 2004).

3. Can it be reasonably assumed that all respondents will perceive the ordinal

response options in the same way? For example, will ‘very satisfied’ mean the

same thing to all respondents? If this can be reasonably assumed, the multi-

category ordinal response format is a suitable choice. If not, then the seemingly

higher level of precision is contaminated to an extent that it is questionable

whether the responses can be interpreted beyond positive versus negative (and

thus binary) statements.
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4. Can it reasonably be assumed that the distances between the ordinal multi-

category answer alternatives are perceived as the same? For example, will the

difference between ‘satisfied’ and ‘very satisfied’ be perceived as identical to the

difference between ‘dissatisfied’ and ‘very dissatisfied’? One could argue that this

is not the case; that instead, the jump to ‘very dissatisfied’ is significantly larger

from ‘dissatisfied’ than the distance between the two positive scale points. If

equidistance can be shown in presets or can be reasonably assumed, the multi-

category ordinal scale is suitable. Otherwise, choosing an ordinal multi-category

format has the consequence that data-analytic techniques assuming metric data

have to be eliminated from the portfolio of applicable methods for such data,

because computation of distance is meaningless — even misleading. In such cases

a metric response format could be considered if a high level of detail is required in

the response, or a binary format if this is not the case.

5. Further decisions that need to be made based on the construct under study if multi-

category ordinal response formats are chosen include (a) whether the response

format should be unipolar (for example, from ‘not expensive’ to ‘very expensive’)

or bipolar (from ‘very cheap’ to ‘very expensive’); (b) how many scale points

should be used; (c) whether all response alternatives should be verbalized, or only

the endpoints; and (d) how will the response alternatives or endpoints should be

verbalized (as ‘very expensive’ or ‘strongly agree’).

6. Will the sample include respondents from different cultural backgrounds? If so,

binary response formats may be the preferable solution if there is not sufficient

time to undertake rigorous testing of various levels of equivalence before the
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fieldwork. Binary formats were recommended in this context by Cronbach (1950),

in order to reduce cross-cultural response bias. This aspect will be discussed in

more detail in the next section.

3 CROSS-CULTURAL RESPONSE STYLES

Much empirical tourism research will be confronted with individuals from different

cultural backgrounds. The more global that tourism becomes, the smaller the

proportion of demand-oriented studies that can use samples of respondents from only

one country or cultural background. Empirical research in tourism often aims to reveal

differences between cultural groups or tourists from different countries of origin.

The need to compare respondents from different countries or cultural backgrounds

exposes the discipline to several potential result contaminants: culturally biased

response norms can cause different scale usages independent of the information

passed on by completing a questionnaire; questions can be interpreted differently; and

the underlying constructs measured might not be identical. Therefore, the most

concerning potential mistake resulting from cross-cultural response styles is that

differences in group means can become uninterpretable (Chun, Campbell, and Yoo,

1974), although typically the comparison of means across countries or cultures

constitutes the central analysis in cross-cultural comparisons.

The tourism research literature has not broadly discussed the potential dangers of

interpreting empirical data derived from surveys conducted in different languages in

different places (with the exception of Kozak, Bigne, and Andreu, 2003, in the context

of satisfaction research, and Dolnicar and Grün, in press). However, psychologists,
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sociologists and market researchers have investigated cross-cultural issues in

empirical research extensively. The following overview is based on the review by

Dolnicar and Grün (in press).

The number of potential pitfalls is huge, as Sekaran (1983) discusses in detail. The

central problem is equivalence. However, equivalence has to be ensured at several

different levels. Sekaran categorizes them into the following areas: functional

equivalence, equivalence of instruments (vocabulary equivalence, idiomatic

equivalence, grammatical, and syntactical equivalence), conceptual equivalence,

transferability of concepts, data collection, sampling, scaling, data analysis, and

measurement equivalence. Functional equivalence means that the behavior to be

measured should be naturally occurring. Conceptual equivalence refers to the

requirement that the object of study should have the same meaning in all cultures

included in the study. The criterion of transferability looks at whether concepts can be

transferred to different cultures. Vocabulary, idiomatic, grammatical, and syntactical

equivalence are part of the equivalence of instruments, and relate to the translation

process of survey instruments, the use of idioms that may not be directly translatable

to another language, and the grammatical form of the questions (which is particularly

important when long or complex text components need to be translated). Data

collection could cause bias if there are different methods of data collection in different

countries. Sampling can cause bias if the samples of different countries are not all

representative of the local population or directly matched. Scaling equivalence

requires that the response format used should elicit responses in the same way from

all groups of respondents. Measurement bias could result from different cultural
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sensitivities to topics studied. Data analysis could distort findings if data from

different cultural groups are analyzed in different ways.

Kozak, Bigne, and Andreu (2003) provide a similar review specifically for the context

of cross-cultural satisfaction research in tourism, and they distinguish between

functional, conceptual, instrument, and measurement equivalence.

Measurement bias is the area most critical to the majority of cross-cultural studies

conducted in empirical tourism research. For example, a survey of visitors to Austria

is not confronted with the typical problems listed above, and sampling is based on

representatives of each country or cultural subgroup who visit Austria.

Representativity of the home country’s population, or matching of individuals across

countries of origin, is consequently not a relevant criterion. Rather, the

representativity of each country or cultural group for the visiting pattern to Austria is

of importance. Measurement equivalence, however, is relevant in all contexts and for

all constructs measured in typical empirical tourism research.

Smith and Reynolds (2002) further break down the aspect of measurement bias, and

differentiate between response sets and response styles. Response sets describe

differences in responses that are due to how respondents from different cultures would

like to be perceived. In contrast, response styles is used for differences in responses

that are systematically related to the response format. Smith and Reynolds conclude

that ‘Failure… to detect differences in cross-national response bias will… affect data

comparability, may invalidate the research results and could therefore lead to

incorrect inferences about attitudes and behaviors across national groups’ (2002, p.

450).
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This section focuses on the discussion and investigation of emerged standards in the

area of cross-cultural response styles. Several empirical studies have been conducted

that aim to detect cross-cultural response styles. Chun, Campbell, and Yoo (1974)

tested differences in extreme response styles between US and Korean students, and

concluded that a significant difference exists, and that US students were more prone

to demonstrate an extreme response style. Bachman and O’Malley (1984) investigated

differences between colored and Caucasian high school seniors in responding to

Likert questionnaire items, and found that colored students were more likely to use

extreme response options. Hui and Triandis (1989) concluded from their study that

Hispanic respondents use extreme scores more often than non-Hispanic respondents,

and this is supported by the Marin, Gamba and Marin (1992) study. Watkins and

Cheung (1992) found differences in response styles between survey participants

across countries, and also detected that the variation is higher among women. Clarke

III (2000) found that Hispanics and colored respondents exhibited higher levels of

extreme response styles than the other groups, and that the French used more extreme

responses than Australians. Van Herk, Poortinga, and Verhallen (2004) identified

response style biases in countries within the EU, with respondents from the

Mediterranean showing higher levels of both extreme and acquiescence response

styles than respondents from north-western Europe.

These findings indicate that cross-cultural response styles do exist, and that they

represent a major threat to empirical tourism research based on data collected from

respondents from different countries or cultural backgrounds.
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3.1 Are we ‘following the recommendation of…’ in conducting cross-cultural

comparisons? An empirical investigation

Based on the review of prior work and the nature of empirical tourism research, the

following hypotheses are formulated regarding the accepted standards with regard to

cross-cultural response bias, and the extent to which cross-cultural empirical tourism

research findings are endangered by response styles:

H2.1 The majority of empirical tourism studies (more than 50 percent) are based on

multicultural samples (that is, samples including respondents from more than

one cultural group or country).   

H2.2 The majority of empirical tourism studies using multicultural samples (more

than 50 percent) draw comparisons between respondents from countries and/or

cultural backgrounds.

H2.3 The majority of empirical tourism studies using multicultural samples (more

than 50 percent) use the multi-category ordinal response format.

H2.4 The majority of empirical tourism studies using multicultural samples (more

than 50 percent) do not mention potential problems resulting from cross-

cultural response styles.

H2.5 The majority of empirical tourism studies using multicultural samples (more

than 50 percent) do not assess the extent of cross-cultural response style

contamination.



25

H2.6 The majority of empirical tourism studies using contaminated multicultural

samples (more than 50 percent) do not correct for cross-cultural response style

contamination.

The same review procedure as outlined in section 2.1 was used. Answers to the

following questions were coded into a data set:

(1) Did the sample include respondents from different countries or cultural

backgrounds? For all studies for which this was the case, additional data was coded.

(2) Was a comparison across countries or cultural backgrounds undertaken?

(3) Which response format was used?

(4) Was any aspect related to problems with cross-cultural studies mentioned?

(5) Was the extent of the contamination assessed?

(6) Was data corrected for the contamination?

The frequency counts for these variables are included in Table 2.

Table 2 here

At least one-third of articles published in 2005 used samples that included

respondents from more than one country of origin or cultural background. Given that

the sample is not described sufficiently in many studies, this proportion could be as
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high as half of all studies. Of those studies that use multicultural data, 36 percent

actually draw cross-cultural conclusions. Hypotheses H2.1 and H2.2 therefore must be

rejected. The proportion of studies endangered by cross-cultural response styles

among all empirical studies published in 2005 is not more than 50 percent, based on

2005 publications between 34 and 49 percent of studies include multicultural samples.

Hypothesis H2.3 cannot be rejected, because 86 percent of respondents used the

multi-category ordinal answer format. Hypotheses H2.4 to H2.6 cannot be rejected

either, because the vast majority (91 percent) of empirical studies based on

multicultural data do not discuss the dangers associated with this approach, do not

assess the danger of response styles and do not correct for response style

contamination.

3.2 A few things to consider regarding cross-cultural response styles

Essentially there are three ways to avoid problems with cross-cultural response styles:

(1) not to conduct them (which admittedly is not much help for those who do); (2) to

choose a response format that is less susceptible to cross-cultural response styles; and

(3) to assess the existence/extent of the response bias and correct for it.

With respect to the second recommendation (to use response formats less susceptible

to response styles), there has been little empirical research undertaken to determine

which response formats would be suitable. Clarke III (2000; 2001) and Roster,

Rodgers, and Albaum (in press) found that lower numbers of response options in

multi-category ordinal scales lead to more extreme answers. This is not surprising,

given that the number of options is lower. However, neither study identified
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differences between cultural groups with respect to this shift towards extreme answer

options. This means that a certain kind of response style (extreme response style) is

more prominent the fewer the scale point. However, it does not seem to be the case

that different cultures shift to extreme answers more or less frequently. Cronbach

(1950, p. 21) recommended the use of binary format instead of multi-category ordinal

scales, as well as the following recommendation: ‘Since response sets are a nuisance,

test designers should avoid forms of items which response sets infest.’ Given the

unambiguous findings reported above regarding the way that multi-category ordinal

scales are highly prone to cross-cultural response styles, binary answer formats should

be seriously considered as an alternative if ordinal or metric level data is not essential.

Lower-level, high-quality data may be preferable to higher-level, contaminated data.

Regarding option 3 (to assess the existence/extent of the response bias and correct for

it), several authors have made suggestions how cross-cultural response styles can be

corrected for (Cheung and Rensvold, 2000; Byrne and Campbell, 1999; Greenleaf,

1992a and 1992b; Van de Vijver and Poortinga, 2002; Welkenhuysen-Gybels, Billiet,

and Cambre, 2003). Their recommendations range from very simple approaches, for

example, investigating if systematic response patterns can be detected for the same

cultural group; to modeling approaches that try to extract the extreme response and

acquiescence bias from the actual information content and then correct the data

accordingly. These approaches have one thing in common: they assume to know the

extent to which data is contaminated and then be able to correct for this

contamination. This assumption has the disadvantage that exactly which type of

contamination occurs, and its extent, are unlikely to be evident. The decision to make
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a particular correction, therefore, carries the danger of transforming the data

incorrectly, and by doing so, introducing new contaminations.

Dolnicar and Grün (under review) took a different approach, which takes precisely

this danger into consideration. They recommended identifying the subset of all

correction methods that are theoretically appropriate for a particular data set at hand,

correcting the data using all correction techniques and then computing the results for

the uncorrected and all corrected data sets. Where no deviations in findings occur, a

firm conclusion about cross-cultural differences can be drawn. If, however, the

findings differ independently of the correction method used, conclusions must be

drawn with care, and should draw the reader’s attention to the possibility that

response styles may be causing detected differences (or no differences) between

respondents from different cultures or countries.

While this article has focussed on response style effects in cross-cultural comparisons,

the equivalence dimensions discussed in the literature review should be considered

and discussed in any study that involves cross-cultural comparisons.

4 MARKET SEGMENTATION

It is now widely accepted among tourism researchers that tourists are not one

homogeneous group of people who seek the same benefits from a destination, have

the same expectations, undertake the same vacation activities and perceive the same

vacation components as attractive. Tourists are highly heterogeneous. In the optimal

case, the tourism industry should therefore cater for individuals and their specific

vacation needs. While this approach may be feasible in online interfaces (for example,
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by supporting individual people in their destination choice), it is not feasible to

modify the entire marketing mix of a tourism business or destination to suit individual

needs. The next best option to individual customization is the identification or

definition of groups of similar tourists: market segments.

Because of its benefits, the concept of market segmentation has been embraced both

by the tourism industry and tourism researchers. The aim of market segmentation

studies is to identify, construct or define market segments, and profile their

characteristics in sufficient detail to make them an actionable target market for

tourism industry. Every market could be segmented in myriad different ways, and

each of these possible segmentations of the market is not equally attractive. Ideal

segments would contain tourists with similar tourism needs and behaviors, and similar

socio-demographic profiles. These are targets who are profitable, who could be easily

reached with marketing communication messages, who match the strengths of the

tourism destination or business, and whose needs are not catered for by major

competitors. Such ideal segments would be highly attractive from the tourism industry

point of view, because they would have the most potential for profit increase through

more targeted marketing activities, with a higher effect on market demand within the

targeted segment.

Consequently, it is the tourism researcher’s aim to explore markets, and suggest

market segments to the tourism industry that are as ideal as possible. The researcher

must choose between large numbers of possible segmentation solutions; a decision

which is better made based on the structure of the data, rather than on the subjective

opinion of the tourism researcher or manager. The segmentation research approach,
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which aims to investigate data structure systematically, therefore represents the key to

successful data-driven market segmentation. Failing to explore the market (data) in

such a way as to identify or construct ideal segments can lead to an irreversible

competitive disadvantage for the tourism business or destination that uses the

segmentation as their basis for marketing action. Consequently, it is crucial to ensure

that the research approach to market segmentation is rigorous and avoids potential

misinterpretations.

This burden of responsibility is different for different kinds of segmentation studies.

In the case of a priori (Mazanec, 2000) or commonsense segmentation (Dolnicar,

2004) and extensions thereof (concepts 1, 3, 4, and 5, according to the classification

of segmentation studies proposed by Dolnicar, 2004) the crucial decision is the

selection of the segmentation criteria. For example, a destination might choose to

target young tourists using age as the commonsense criterion. On closer evaluation,

however, it might be that using the stage in the family lifecycle would have been a

better choice, because the destination’s strength lies in providing optimal services to

young families, rather than young singles or groups of young tourists. In the case of

post-hoc (Myers and Tauber, 1977), a posteriori (Mazanec, 2000) or data-driven

segmentation (Dolnicar, 2004) and extensions thereof (segmentation concepts 2, 4, 5,

and 6), this burden of responsibility rests on the research approach of the data-driven

segmentation study undertaken. Because the process of data-driven segmentation

consists of numerous components, most of them requiring the researcher’s decision, it

is more difficult to avoid potential misinterpretations or suboptimal procedural

decisions than is so for a priori segmentation studies.
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In addition to grouping segmentation studies in a priori (commonsense) and data-

driven (a posteriori, post-hoc) studies, data-driven studies can be further classified as

either response-based or step-wise. The step-wise procedure aims to group

respondents according to certain variables in the first step, and describing them in the

second. Typical descriptors, or background variables, are variables relevant to

marketing, for example, the media behavior of segments, their purchasing frequency,

and the amount of money spent on holidays per year. In the step-wise procedure the

grouping is based purely on the variables selected, for example, travel motives. The

background variables do not interfere with the determination of the segments.

Response-based segmentation uses one or more variables, which are relevant from a

marketing perspective as the dependent variable in the segmentation process, thus

confounding, for example, the travel motive segments with their media behavior. The

segments are consequently not pure travel motivation segments.

This section discusses step-wise, data-driven procedures because they dominate the

area of segmentation studies in tourism research. All stages (discussed in detail

below) are depicted in Figure 2.

Figure 2 here

The study design stage is mentioned in Figure 2 because many segmentation studies

have design requirements different from other studies. Segmentation studies aim to

identify all market segments in the market. Sometimes small niche markets are of
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particular interest because they may provide a distinct competitive advantage. It is

therefore not necessarily desirable for a segmentation study to include a representative

sample of respondents. If identification of segments is the primary aim, the sample

must be as heterogeneous as possible — it should include the widest variety of

respondents in sufficient number to enable the cluster algorithm to identify niches.

At the data collection stage, variables must be carefully developed before being

included in a questionnaire. It is not good practice either to include all items that seem

interesting without pre-testing or theoretical justification, or to include as many

redundant items as possible to achieve a high alpha value (Cronbach, 1951), if this

happens at the expense of the conceptualization of the construct of interest or

respondent fatigue, while not providing any information of additional value. Evidence

demonstrates the negative effect of only one or two variables that are unrelated to the

segmentation (Milligan, 1980; Milligan, 1996), which leads to the strong advice both

from methodological researchers (for example, Milligan) and marketing scientists

(Punj and Stewart, 1983) to exercise extreme care in selecting variables.

The approach typically used for scale development in tourism research follows

Churchill’s early recommendations (Churchill, 1979). Since then, Churchill himself

(1998, p. 30), while pleased with the improvement of measurement in the area of

marketing, expressed criticism about the way in which his paradigm was frequently

misinterpreted: ‘The bad news is that measurement seems to almost have become a

rote process, with the Paradigm article serving as backdrop for the drill, thereby

supposedly lending legitimacy to what seems to be at times thoughtless, rather than

thoughtful, efforts.’
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Two (groups of) authors have recently proposed alternatives to Churchill’s ruling

paradigm of scale development. As Finn and Kayande (2005, p. 12) expressed in a

review of the Churchill scale development procedure: ‘Step-by-step applications

overemphasize validation numbers at the expense of conceptual rigor. Numbers [are]

often misleading due to misidentification of relevant objects of measurement.’

Recommendations for improvement of the present scale development paradigm have

been proposed by Rossiter (2002), who criticizes the lack of conceptualization and

questions the need for multi-items in particular instances; and Finn and Kayande

(1997), who criticize the limitation of the scaling of characteristics of individuals,

although typically, researchers are not interested in single individuals, because, for

example, psychological measurements are.

Given that the data set is the most fundamental basis for good market segmentation,

careless selection of items to be included in the questionnaire can critically affect the

quality of results. Whenever a tourism researcher conducts a segmentation study, data

collection should be planned as an integral part of the study, to ensure that all

important pieces of information are obtained without burdening respondents with

unnecessary items. If a segmentation researcher is, however, confronted with a

secondary data set in which redundant items are included, the direct inclusion of such

items into the segmentation process should be critically questioned.

In sum, the dangers of uncritically following measurement paradigms when the

segmentation base is collected include: (1) the construct that is of central interest

could be badly conceptualized; (2) respondents could be confronted with large

numbers of questions that are highly redundant, which is likely to lead to lower data
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quality due to respondent fatigue; (3) items that are not redundant and thus measure a

different dimension of a construct (and might well be the most important items for

identifying niche markets) may be eliminated because they reduce the values of

reliability measures; and (4) by including many redundant items, the segmentation

researcher has only shifted the variable selection problem from the pre-survey to the

pre-segmentation phase. The process by which the items were derived has to be

described in detail to clarify that the construct of interest is best captured by the

selected variables, and that the variables can be expected to differentiate between

segments.

If the construct that was measured for the purpose of segmenting is used for

segmentation, the next step (the selection of variables to be used in the segmentation

process) is unnecessary. However, segmentation studies are sometimes conducted

based on data that was collected for an entirely different reason. The biggest danger

with respect to the choice of variables to be included in the segmentation process in

this case is the uncritical inclusion of as many variables as possible, in the hope that

some structure will emerge (Aldenderfer and Blashfield, 1984; Everitt, 1979). Or, as

Milligan (1996, p. 348) puts it: ‘Far too many analyses have been conducted by

including every variable available… Most researchers do not appreciate the fact that a

variable should be included only if a strong justification exists that that variable helps

to define the underlying clustering.’

The question of how many respondents are required to group them, based on a certain

number of variables, cannot be answered easily. Sample size requirements essentially

depend on two factors: the methodological approach chosen to analyze the data
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(parametric approaches require minimum sample sizes, whereas non-parametric

explorative analyses do not), and the structure of the data (if the data set is very well

structured, only a few variables may be needed to group individuals correctly; if,

however, the data set is not at all well structured, a lot of information from many

respondents is required to determine the best grouping). While the choice of method is

under the researcher’s control, the data structure is not.

The only recommendation that has been published (to the author’s knowledge) has

been Formann’s (1984), in the context of latent class analysis (a parametric

procedure). He states that a sample of at least 2k is needed to segment the respondents

based on k variables; preferably 5*2k should be available. The number 2 indicates that

Formann assumes that a binary answer format will be used. If an ordinal format is

used, the number 2 has to be exchanged by the number of ordinal scale categories

chosen. Imagine, for example, a block of 20 travel motives, which respondents are

asked either to agree or disagree (binary scale) with. If these 20 items are to be used

as a segmentation base using a parametric procedure, the required sample size is

1,048,576 respondents. If 15 items are used, ‘only’ 32,768 respondents are needed,

and with 10 items, 1,024 completed surveys are sufficient to segment the market,

based on the travel motives.

The next stage, the selection of answer format, will not be discussed in detail in this

section because it has been dealt with in detail in the section on answer formats.

However, it is worth noting here that all cluster algorithms used to segment markets

are based on distance computations, as illustrated in Figure 3, in which depicts a very

simple case of three respondents and three variables. Respondents answered on a



36

binary scale. If the match of answers is used as a measure of similarity, respondent 1

and respondent 2 reach a value of 2, because they both want excitement during their

holiday and both do not want to rest. Respondent 3 achieves a value of 1 with

respondent 1, because neither cares about security, and a value of 0 with respondent 2.

In this case (using the proposed distance measure and a hierarchical algorithm),

respondents 1 and 2 would be assigned to one market segment. If the absolute

Euclidean distance were used, the distance between respondent 1 and 2 would be |(0–

0)+(1–1)+(0–1)| = 1. For respondent 1 and 3 it would amount to 2, and for

respondents 2 and 3 it would be 3; again indicating that respondents 1 and 2 are the

least dissimilar.

Figure 3 here

Given that similarity or dissimilarity of response vectors is used in the cluster step, the

choice of distance measure is very important, especially regarding its suitability for

the answer format selected. As noted in the section on answer formats, the use of

multi-category ordinal scales is most complicated, because equidistance cannot be

assumed, and therefore, the most common distance measure, Euclidean distance, is

not an appropriate choice.

In Figure 2 the box representing pre-processing of data is depicted in light grey in

order to indicate that (while it appears that pre-processing of data has developed to

become an accepted standard in empirical tourism research) pre-processing is not an
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essential component of the step-wise, data-driven segmentation process. Aldenderfer

and Blashfield (1984) discuss the issue of data pre-processing through standardization

and other forms of transformations extensively. They review several studies which

came to different conclusions in respect to the effect of data standardization on

results. In sum, the dangers of pre-processing are that: (1) the relations of variables to

each other could be changed; (2) differences between segments could be reduced; and

(3) segments identified are done so in a space different from originally postulated

(Ketchen and Shook, 1996).

The most frequently used method of pre-processing in market segmentation is factor

analysis. While factor analysis can help eliminate variables that measure the same

construct, and by doing so prevent one construct being weighted higher in the

segmentation solution, the danger associated with this procedure is that differences

between segments that are not clearly separated from each other cannot be detected as

easily (Aldenderfer and Blashfield, 1984). However, Aldenderfer and Blashfield

found no evidence of negative impact if the data contained well-separated segments.

Arabie and Hubert (1994) take a clearer position on the use of factor analysis in the

context of clustering. They state that ‘“tandem” clustering is an outmoded and

statistically insupportable practice,’ because data is transformed, thus the nature of the

data is changed before segments are searched for. This is supported by Milligan

(1996), who, based on experimental findings that clusters in variable space are not

well represented by clusters in component space, states that the researcher has to

address in which space the segments are postulated to exist.



38

In tourism research, the typical reason stated for using factor analysis is the need to

reduce the number of variables. This argument poses two questions:

(1) Why was the number of items not reduced in the variable measurement stage to

retain a reasonable number of relevant, non-redundant questions that are expected to

discriminate between segments?

(2) If the researcher did not have any influence on the data collection, and is faced

with a data set with too many variables, why is factor analysis preferred over simpler

ways of variable selection, which avoid data transformation?

The most illustrative argument against the uncritical use of factor-cluster analysis in

tourism research is provided by Sheppard (1996). He explains the paradox that

homogeneity has to be assumed for factor analysis, whereas heterogeneity is explored

by cluster analysis. He also demonstrates in an empirical example that the results

derived from factor-cluster analysis, cluster-factor analysis and cluster analysis based

on raw data lead to totally different conclusions. In his example, the factor-cluster

approach led to results different from cluster analysis on its own, and effectively

failed to identify the true segment structure in the data. Furthermore, he demonstrated

how the exclusion of items based on low loadings with factors can undermine the aim

of the entire segmentation study if the low loading item actually represents a relevant

discriminating variable between segments. When ‘accurate and detailed’ segmentation

results are the aim of the study (the case for most tourism segmentation studies),

Sheppard recommends clustering of raw data directly. Sheppard’s study shows that

assumption (5), discussed in the section on the standard research approach, is not
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appropriate, because factor-cluster analysis not only leads to different, but inferior,

results if the aim is the identification of market segments.

In sum, there are number of problems associated with the practise of using factor

analysis in the pre-processing stage of a segmentation study to reduce variables: (1)

the data is transformed and segments are identified based on the transformed space

not the original information respondents gave, which leads to different results; (2)

with a typical explained variance of between 50 and 60 percent, up to half of the

information that was collected from respondents is discarded before segments are

identified or constructed; (3) eliminating variables that do not load highly on factors

with an Eigenvalue of more than 1 means that potentially the most important pieces of

information for the identification of niche segments are discarded, thus making it

impossible ever to identify such groups; and (4) interpretations of segments based on

the original variables are not possible — segments can only be interpreted with

respect to their factor score values.

The broad term used to subsume all algorithms used in step-wise, data-driven market

segmentation is cluster analysis. This term describes a large number of algorithms for

grouping observations based on similarity or dissimilarity.

Extensive Monte Carlo simulations have shown that most algorithms can identify the

correct segmentation solution if the data is highly structured (Buchta et al., 1997).

However, if this is not the case, the algorithm chosen does not act as a neutral tool in

the segmentation exercise; rather, it creates a segmentation solution. Also, each

algorithm has different tendencies regarding which kind of segments it creates. Or, as
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Aldenderfer and Blashfield (1984, p. 16) put it: ‘Although the strategy of clustering

may be structure-seeking, its operation is one that is structure-imposing.’

This has two consequences for the researcher aiming to segment a market: (1) it is

important to know whether the data used as a segmentation base is well structured;

and (2) the solution is likely to depend on the algorithm chosen, which makes the

selection of an appropriate segmentation algorithm a crucial step in the process.

The limitations of algorithms and the ways they influence the nature of the solution

are well known for most algorithms. For example, hierarchical procedures are not

suitable for very large data sets because the hierarchical clustering algorithm requires

the computation of all pair-wise distances at each stage of grouping, as in the example

above with three respondents. Within the group of hierarchical procedures single

linkage procedures create chain formations in the final segmentation solution (Everitt,

1993); self-organizing neural networks not only partition the data, but also render a

topological map of the segmentation solution that indicates the neighborhood relations

of segments to one another (Kohonen, 1997; Martinetz and Schulten, 1994); fuzzy

clustering approaches relax the assumption of exclusiveness (for example, Everitt,

1993); and ensemble methods use the principle of systematic repetition to arrive at

more stable solutions (for example, Leisch, 1998 and 1999; Dolnicar and Leisch, 2000

and 2003). These are just a few of the distinct properties that different techniques

have.

One example of an ensemble technique is bagged clustering, which has only recently

been introduced into tourism research (Dolnicar and Leisch, 2003). Its major

advantage is that it investigates the structure of the data while simultaneously
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producing a segmentation solution. Comparative studies (Dolnicar and Leisch, 2004)

have found bagged clustering to produce more stable and therefore more reliable

segmentation solutions.

One component of the segmentation algorithm is the measure of association used, as

mentioned above. The measure of association chosen must be suitable for the answer

format, which means that it must be able to deal with binary, ordinal or metric-level

data. Euclidean distance, the most widely used measure, is suitable for binary data and

metric data to determine a particular kind of distance. Strictly speaking it is not

suitable for ordinal data unless it has been shown that the distances between the

categories are perceived as equidistant by all respondents.

Arguably, the most critical decision in the process of step-wise, data-driven

segmentation is the decision of how many clusters to choose, a problem that remains

unsolved since the wider adoption of clustering techniques (Thorndike, 1953). Similar

to the decision about which algorithm to use, this decision depends on the nature of

the data being analyzed. If the data is very highly structured in terms of density

structure (that is, clear market segments exist), every algorithm can recommend the

correct number of clusters (Buchta et al., 1997). If, however, the data is not highly

structured (which, based on the author’s experience, is the typical case in the social

sciences), deciding on the number of clusters is very difficult. Many different

approaches and indexes have been proposed in the past (for comparative studies see

Milligan, 1981; Milligan and Cooper, 1985; Dimitriadou, Dolnicar and Weingessel,

2002; Mazanec and Strasser, 2000). 
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The issue of validity of market segmentation solutions cannot be discussed

independently of the aim of the segmentation exercise, and the aim is not independent

of the available data. The aim of detecting natural clusters that exist in the data

(Aldenderfer and Blashfield, 1984) is only suitable if the data is highly structured and

actually contains natural density clusters. This can be assessed by investigating the

stability of solutions if computed repeatedly for the same number of clusters. If the

stability results indicate that natural segments do not exist in the data — which is the

implicit assumption made by Mazanec (1997) and Wedel and Kamakura (1998) —

the aim of the market segmentation exercise is to identify the most managerially

useful segments. The most common case in market segmentation is to construct

artificial groupings, even though this aim is counterintuitive. Such solutions are

valuable because the segments constructed are more homogeneous groups of

individuals, which can be targeted with customized messages. The degree of

managerial usefulness can be evaluated by inspecting the segment profiles and

assessing the match with organizational strengths — or by assessing stability and

choosing the most stable solution. Stability is a major issue in data-driven market

segmentation as compared to the a priori approach (Myers and Tauber, 1977).

While stability is one condition of validity, if naturally occurring segments are the

focus, another aspect of validity is independent of whether natural groups are

identified or whether artificial groups are constructed. Segments should be distinctly

different from one another. Given that the clustering algorithm produces a solution

where segments are distinctly different with respect to the variables used in the

segmentation process (the segmentation base), testing for significance of difference in

the segmentation base is not a legitimate test for distinctness. However, additional
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information that is available about the respondents can be used to test whether

segments are distinctly different. Depending on the number and data scale of the

additional variables, and the number of segments, different approaches can be used to

assess the distinctness of the segments. Options include discriminant analysis,

analysis of variance, chi-square tests, and binary logistic regression.

4.1 Are we ‘following the recommendation of…’ in market segmentation? An

empirical investigation

The following hypotheses were formulated regarding emerged standards for step-

wise, data-driven market segmentation in empirical tourism research.

H3.1 In the majority of segmentation studies (more than 50 percent) data is not

specifically collected for the purpose of segmentation.

H3.2 In the majority of segmentation studies (more than 50 percent) no explanation

is provided for the measurement of variables.

H3.3 In the majority of segmentation studies (more than 50 percent) no explanation

is provided for the selection of variables.

H3.4 In the majority of segmentation studies (more than 50 percent) the sampling

strategy is not developed in view of the segmentation study.

H3.5 In the majority of segmentation studies (more than 50 percent) the

segmentation base is of multi-category ordinal nature.
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H3.6 In the majority of segmentation studies (more than 50 percent) data is pre-

processed using factor analysis.

H3.7 In the majority of segmentation studies that pre-process data (more than 50

percent) no explanation for pre-processing is provided.

H3.8 In the majority of segmentation studies (more than 50 percent) the measure of

association used is not stated.

H3.9 In the majority of segmentation studies (more than 50 percent) data structure is

not investigated.

H3.10 In the majority of segmentation studies (more than 50 percent) the choice of

the number of clusters is based — at the most — on one run per number of

clusters.

H3.11 In the majority of segmentation studies (more than 50 percent) the

segmentation solution is not validated.

Of the 65 empirical tourism studies reviewed in 2005, only eight were segmentation

studies. Table 3 includes the frequency counts of relevance to test the above

hypotheses.

Table 3 here
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The information contained in the reviewed articles is insufficient to allow testing of

H3.1. The classification of whether data was collected in view of the segmentation has

proven to be very subjective, and the two coders involved instead chose to report this

hypothesis as not testable. Both H3.2 and H3.3.cannot be rejected because 75 percent

of studied articles do not contain an explanation for the measurement of variables, or

explain why the variables used as segmentation base were chosen.

Hypothesis H3.4 generated a situation similar to that faced with H3.1: the articles in

which the study was reported do not clearly indicate whether the sampling strategy

took into account the fact that the study aim was segmentation.

Hypothesis H3.5 cannot be rejected, because 88 percent of studies use multi-category

ordinal answer formats. Hypothesis H3.6 cannot be rejected, because 63 percent of

studies use factor analysis before segmenting respondents. Hypothesis H3.7 should be

rejected, because all of the studies that pre-process data explain why they do so.

Unfortunately, the explanation is typically that the number of items has to be reduced.

As mentioned above, this problem should have been addressed earlier in the study,

and not at the analytic stage, where elimination of items comes at a high price with

regard to information loss.

Hypotheses H3.8 and H3.9 cannot be rejected, because no study mentioned the

measure of association or investigated data structure before grouping the individuals.

Strongly associated with the fact that structure is not investigated before segmenting

is the fact that all segmentation studies decided on the number of clusters by using

only one computation of each number of clusters in the appropriate range. This

indicates that it is likely that many of the findings will have a strong random
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component driving the results. Hypothesis H3.10 therefore cannot be rejected. Fifty

percent of all segmentation studies used the k-means clustering algorithm, and 25

percent used Ward’s clustering.

Hypothesis H.11 cannot be supported. Seven out of eight studies did validate the

segmentation solution, although the predominant method is the use of chi-square tests

and analysis of variance, which are not corrected for multiple testing (six studies).

While recent studies provide sufficient empirical evidence to validate the

claim that the standard research approach in data-driven market segmentation is still

prevalent in tourism, several, more general conclusions can also be drawn:

(1) There is a lack of conceptual transparency of segmentation studies

generally (do clusters actually exist in the data, or does the solution merely represent

one of many possible groupings?).

(2) The explorative and structure-imposing nature of segmentation studies

(one computation with one algorithm of a cluster analytic procedure is assumed to

deliver the true results) is generally not acknowledged.

(3) The dangers of some of the emerged standards in components of this

standard research procedure are not discussed, thus leading to potential

misinterpretations of results.

In sum, the review of recently published segmentation studies indicates that

the standard approach hypotheses above do exist. Also, there is a clear pattern of
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repeating designs that have been published before without explaining why this design

is suitable or preferable for the research problem at hand.

Prior reviews in the field support these findings. For example, Frochot and Morrison

(2000) review 14 data-driven benefit segmentation studies, and their findings support

some of the standard components this paper covers (although they explicitly state that

they do not perceive that a common standard has emerged).

(1) Items in surveys are generally not pre-tested (which leads the chosen segmentation

base to include large numbers of possibly redundant items).

(2) Data are typically of ordinal format, and use five- or seven-scale points.

(3) Nine out of 14 studies used the so-called factor-cluster approach, mostly Varimax,

and rotated the factor solution.

Baumann (2000) reviews 243 segmentation studies from the literature prior to

2000 in the broader area of business studies. Dolnicar (2002) analyzes the tourism-

focus subset. According to these reviews, two-thirds of market segmentation studies

in tourism use some kind of ordinal data scale, about one-fifth uses binary data, and

metric data is virtually not used at all for the variables selected as segmentation bases.

The majority of studies factor analyze data sets (43 percent) and use factor scores as

segmentation base instead of the original data. Only 38 percent do not pre-process

data at all, and about six percent standardize the data.

With respect to the clustering algorithms chosen, 40 percent use k-means

clustering, and another 40 percent use Ward’s clustering. The reports do not include
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reasons and procedures for selecting a particular number of segments in one-third of

the studies, more than two-thirds use heuristics and/or a subjective judgment to make

this decision, which results in one-third selecting three clusters and another third

choosing a four-cluster solution. Approximately half of the studies examine some

form of validity, in which 15 percent used discriminant analysis, nine percent

compared results with external variables and two percent investigated the match with

theories or prior findings. Furthermore, 80 percent of the studies do not mention

which similarity measure is used to group respondents, or that the number of variables

used is typically not harmonized with the available sample size. Samples sizes

(ranging from 46 to 7,996, with a median value of 461) and number of variables in the

segmentation base (ranging between three and 56) are uncorrelated.

Tourism researchers strongly adhere to the standard research approach in

step-wise, data-driven market segmentation, and empirical tourism research follows

this emerging standard procedure much more consistently than other disciplines, for

example, marketing. Therefore, the question regarding the origin of this standard

approach arises. An attempt to find the roots of the standard procedure can take two

approaches: (1) review the pioneering publications in data-driven market

segmentation in tourism published in the early 80s; and (2) study in detail articles that

are frequently cited as justification for the use of the standard approach.

The pioneering publications review leads to the conclusion that many of the standard

components have indeed been used by authors who originally introduced step-wise,

data-driven market segmentation into tourism research, and were consequently setting

the benchmark for future work. However, many of these pioneering studies did not
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provide detailed reasoning or a methodological discussion of the problems associated

with this particular approach. For example, Calantone, Schewe, and Allen (1980) use

20 importance attributes from 1,498 respondents, using a six-point response scale.

These attributes were first factor analyzed, and then cluster analyzed. The authors

referenced Haley (1968) as the methodological source for their work, who represents

the original source for benefit segmentation. Haley does not recommend the use of

factor analysis for pre-processing in his paper. He mentions that Q-sort factor analysis

could be applied as a grouping algorithm, not as a pre-processing tool, but does not

discuss many other methodological issues of data-driven segmentation.

Goodrich (1980) segmented 230 respondents based on 11 benefit attributes, which

were collected using a seven-point answer format. He pre-processed the 11 benefits

using factor analysis, and cluster analyzed the factor scores. He did not provide an

explanation or reference for adopting this procedure. Crask (1981) clustered tourists

based on factor scores (explaining 57 percent of the variance of the original ordinal

data). The stated aim was to determine underlying dimensions based on the 15

variables included in the questionnaire, which measured the importance tourists

assigned to certain vacation attributes. He did not provide an explanation of how the

15 motivational variables were derived or why they might be expected to capture the

construct adequately. The author did not cite any methodological/statistical source

supporting the chosen procedure. Mazanec (1984) used raw data to segment tourists

based on benefits. The author used a binary data format, provided a detailed

explanation why binary data was deemed preferential to ordinal data and did not

compute factor analysis before clustering the data.
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The second approach taken to investigate the roots of the standard data-driven

segmentation research approach in tourism leads to similar conclusions. At least one

author of a data-driven segmentation study in tourism cited the articles discussed

below as a justification of the methodology used. Park, Yang, Lee, Jang and

Stokowski (2001, p. 58) provides a typical example: ‘The factor-cluster combination

for segmentation used in this study is a basic type of segmentation methodology

(Dimanche et al., 1993) and is widely used in tourism.’ However, Dimanche, Havitz

and Howard (1993) do not postulate the use of the factor-cluster approach uncritically.

They segment tourists based on a particular construct (involvement), for which a scale

had been developed and which has repeatedly been shown to have a specific

underlying factor structure. The reasoning for using factor analysis before clustering

is consequently not because it has any methodological advantages or to follow an

established procedure, but because it is a natural result of the structure of the construct

as it was found to be more easily measurable. Typically this is not the case in data-

driven segmentation studies in tourism, however. Dimanche et al. provide

justifications for each step of their analysis, including the choice of the clustering

algorithm, which is atypical of most segmentation studies conducted in the last

decade. They cite Aldenderfer and Blashfield (1984) and Smith (1989) as sources for

using factor-cluster analysis. They also cite Smith (1989) as the source of classifying

market segmentation in tourism into a priori and factor-cluster, rather than proposing

this classification themselves, as indicated in the above citation. Tracing further by

following the references used by Dimanche (1983, et al.) requires the study of

Aldenderfer and Blashfield (1984) and Smith (1989), with the former representing a
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general social sciences handbook on cluster analysis and the latter a tourism-specific

analysis handbook.

Aldenderfer and Blashfield do not recommend factor-cluster analysis as a suitable tool

for pre-processing. They mention factor analysis as an alternative to cluster analysis

for the purpose of developing numerical taxonomies, as do Sokal and Sneath (1963).

They refer, however, to Q-sort factor analysis, which is based on the correlation

matrix of units (respondents), rather than characteristics (variables, questions), a

procedure that (to the author’s knowledge) so far has not been applied in tourism. It

also does not appear to be particularly suited for data analytic situations in which

large numbers of respondents answer only a few questions, as opposed to uses in

biology, where a few specimens are classified on the basis of a large number of

characteristics. Aldenderfer and Blashfield explicitly point out that there is

controversy about whether one should pre-process data at all before clustering.

Smith, however, postulates the existence of two segmentation approaches in tourism

research: a priori segmentation and factor-cluster segmentation. Factor-cluster

segmentation is a term that appears to have been coined by empirical tourism

researchers, because it does not occur in other disciplines. This classification is

misleading, because it does not mention the vast number of other existing ways to

segment respondents in an a posteriori or data-driven manner, and which has been

described in detail by numerous experts in cluster analysis and numerical taxonomy

(Sokal and Sneath, 1963; Aldenderfer and Blashfield, 1984; Everitt, 1993). Also,

Smith’s discussion of market segmentation analysis fails to cite a single publication of

methodological nature to support the claims made and the methods proposed. The
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only two references on data-driven segmentation are empirical examples of

segmentation studies using the factor-cluster approach, one of which is an internal

working paper, the other a study conducted by the author himself.

Frochot and Morrison (2000, p. 32) conclude from their review of benefit

segmentation studies that ‘it would appear that the combination of factor and cluster

analysis seems to be superior due to its effectiveness in reducing sometimes large

number of benefit statements to a smaller set of more understandable factors or

components.’ Interestingly, their conclusion contradicts their statement on page 31,

that items that might help to discriminate between segments should not be eliminated.

This is what factor analysis typically does: it integrates variables into factors, in which

case highly discriminating variables for a particular segment may only carry a low

loading value. Or, such variables may simply be dropped due to low loadings on a

factor (Nunnally, 1967, recommends a value of 0.3/0.4 for loadings to factors as a

criterion for retentions of variables), or because such items may well form their own

factor with low explained variance that is likely to be dropped following the most

commonly used Kaiser criterion, which recommends the inclusion of all factors with

an Eigenvalue above 1 (Stevens, 2002).

Cha, McCleary, and Uysal (1995) also choose the factor-cluster approach, using six

factor scores that explain only 50 percent of the original 30 motivational items (this is

50 percent of the information collected from respondents). They do not discuss the

consequences of eliminating half of the information contained in the raw data, or the

homogeneity assumption of factor analysis, which is in contradiction with the

heterogeneity assumption of segmentation. Their argument for factor analyzing raw
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data is to identify underlying motivational factors, but do not provide a

methodological justification for this approach, nor an explanation why such a large

number of motivational items (30) were originally included in the questionnaire.

Shoemaker (1994) also conducts factor analysis, but appears to use the resulting factor

scores in a more critical manner. The starting points of his analysis were 39 items.

Factor analysis resulted in 12 factors. Shoemaker used those 12 factor scores, but

included seven additional items that were not well represented by the factor analysis.

This is a sensitive approach — in line with the recommendation by Frochot and

Morrison (2000) — which makes use of factor analysis to reduce the dimensionality

of the problem. However, given that factor analysis assumes homogeneity and

recommends eliminations of variables that are not well represented by the factor

solution (but might be essential to identify market segments), he includes additional

variables of relevance. Interestingly, this informed use of factor analysis as a pre-

processing tool in market segmentation is not used by the authors citing Shoemaker as

a reference for factor-cluster analysis.

Sheppard (1996) is a particularly interesting case. His study is cited incorrectly on

numerous occasions. Authors of segmentation studies refer to his study to justify the

use of factor-cluster segmentation, although Sheppard points out the inconsistency of

this approach and states clearly (p. 57) that ‘Cluster analysis on raw item scores, as

opposed to factor scores, may produce more accurate or detailed segmentation as it

preserves a greater degree of the original data.’ Conducting factor analysis is

appropriate, according to Sheppard, if a generalizable instrument is being developed,

an instrument for the entire population, assuming homogeneity, not heterogeneity.
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In sum, the standard research procedure for exploratory data-driven market

segmentation as it is used in tourism research has developed within the field. Market

segmentation studies in other disciplines do not reflect the high level of adherence to

these standards, and methodological and statistical publications of general nature

express reservations with regard to many of the components of the standard research

approach outlined above.

4.2 A few things to consider when segmenting markets

First, data-driven segmentation is by definition an exploratory process. If it were a

confirmatory process, the definition of an expected segment structure would have to

be postulated based on theory, and it would have to be established whether the

empirical data significantly deviates from this postulated structure. While this

approach can be taken, it does not seem to be the main aim of tourism researchers,

whose primary interest is the exploration and description of market information in

view of deriving potentially useful segments. Furthermore, typical data-driven

methodology does not provide for this option. Even model-based segmentation

methods, such as finite mixture models (Wedel and Kamakura, 1998) or latent-class

analyses, do not define the structure of postulated segments ex ante. They propose

models which typically differ in the number of segments, but do not hypothesize a

certain nature of segments. Consequently, it is the responsibility of the researcher not

to draw to strong conclusions about the results.

The exploration of data leads to the conclusion that one particular segmentation

solution should be chosen. However, this is not necessarily the better, or only,
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solution. Aldenderfer and Blashfield (1984, p. 14) put it in the context of cluster

analysis: ‘it is important to recognize the fundamental simplicity of these methods. In

doing so, the user is far less likely to make the mistake of reifying the cluster

solution.’

Second, the empirical data available to tourism researchers typically does not contain

true clusters. Sometimes it does not contain any clear data structure at all. However,

any kind of cluster analysis searches for structure. If there is no structure, cluster

analysis will impose structure, for example, when clustering 1,000 respondents based

on only two variables answered on a 100-point scale. Taking this example further, the

answers of the 1,000 respondents to the two questions are not correlated, and each

respondent uses a different point on the 100-point scale to answer the questions. This

would lead to a two-dimensional plot of the data, where respondents are essentially

evenly spread across the two-dimensional plane. In this case, clusters do not exist. Yet

if we use k-means clustering, we will obtain clusters that will tend to be spherical in

nature and of roughly equal size. Whereas, if we use single-linkage hierarchical

clustering, we are likely to find chain-like clusters.

Evaluating the actual structure in the data is important. Consider whether the

segmentation aim is true clustering (when density clusters actually do exist in the

data), stable clustering (if there is data structure, but not of the density cluster type), or

constructive clustering (if no structure exists in the data, as illustrated in the above

example). Dolnicar and Leisch (2001) illustrate these options with artificial data of

different structures, and provide recommendations of how to assess data structure,

which is essentially based on replications of computations, to determine compliance
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between independently derived solutions. Constructive clustering is a perfectly

legitimate approach, because managerially, it might still be better to focus on a more

homogeneous part of the market, even if no true segments exist. Clarity about the

nature of the segmentation study undertaken is important because it has major

implications on the kind of conclusions that can be drawn, and it provides conceptual

transparency to the reader and user of such a study.

With respect to the stages outlined in Figure 2, it is important to consider the

following aspects when developing and conducting a step-wise, data-driven

segmentation study:

With respect to the measurement of variables for segmentation, the

contributions by Churchill (1998), Finn and Kayande (1997), Rossiter (2002), and

Finn and Kayande (2005) give an excellent overview of the current discussion on

scale development in the social sciences. The guiding principle all these authors

emphasize is that scale development is not a process that can be undertaken by

following a step-by-step recipe. Clear specifications about what the construct to be

measured is and what it is not are essential; item generation should be based on as

many different sources as possible in order to assure that no relevant components of

the construct are omitted; validity of measures should be assessed carefully; and

typical measures of scale quality should be used to point to possible problems with the

scale, rather than to take radical measures, possibly at the expense of the ability of the

scale to capture the actual construct. For example, Churchill (1998) mentions five

ways in which the coefficient alpha can easily be increased while reducing the validity

of the scale. Finn and Kayande (2005, p. 13) put it like this: ‘researchers need to think
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more carefully about the nature of… constructs, to work much harder up front to

generate and select items for their scales, and to design answer categories.’

In terms of answer categories, a choice of three of four answer formats are

available in the context of segmentation studies: binary, ordinal and metric, which

have different advantages and disadvantages. For binary and metric data format,

which can be obtained by asking respondents to respond with ‘yes’ or ‘no’ (binary) or

by asking them for a percentage evaluation or to make a cross at a point on a line that

best represents their response (metric), clear measures of distance exist. This is of

particular importance for segmentation that is based on distance computations. Metric

data (if a continuous underlying construct can reasonably be assumed) allows the use

of all data analytic methods, and thus does not impose certain statistical techniques on

the researcher. Binary data enables respondents to complete surveys significantly

faster (about 30 percent) than ordinal or metric surveys, which reduces fatigue and

non-response effects, thus improving data quality. Mazanec (1984, p. 18) states

explicitly that he views it as ‘preferable to economize on scale levels rather than on

the number of benefit items.’ Furthermore, ‘Measurement of benefits is easiest for the

respondent if he is asked only to evaluate a benefit item as being important or not

important.’ The main disadvantage of these answer format alternatives is that

respondents are not very familiar with them, and that they may not reflect the nature

of the underlying construct. For example, while constructs such as behavioral

intentions appear highly suited for a binary scale, attitudes may require more options

to allow respondents to express their views. Suitability of the scale for the construct

under study should be assessed in the pre-testing phase of the questionnaire.
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Thus the recommendation is to thoroughly investigate what kind of

information is actually needed. Researchers should consider making more use of

either binary or metric formats. By doing so, they would benefit from avoiding the

dangers associated with ordinal scales discussed above.

If ordinal scales emerge as the most suitable answer format for a particular

construct, one alternative to avoid measurement problems is to use the summated

scale across items if there are multiple underling dimensions, which is the procedure

Likert (1932) originally proposed for the scale named after him. By using summated

scores, normal distribution can be assumed when analyzing the data. So, if a construct

has several dimensions that are measured by subscales, the summated values over the

subscales could safely be used as the segmentation base.

The main recommendation with respect to the answer format chosen by the

researcher, however, is to use data analytic techniques that are suitable for the nature

of the data available. For many statistical techniques that are typically used, rank-

based alternative procedures exist and should be used to avoid making wrong

assumptions about the data.

Regarding the sample of respondents, segmentation researchers must ensure that the

number of variables used as segmentation base is not too high, given the number of

respondents available and the fact that it is rarely known a priori how well the data is

structured. Formann’s (1984) recommendation for binary data sets of at least 2k

respondents provides a good guideline for the minimum requirements, where ‘k’ 

stands for the number of variables if parametric procedures are used. If non-

parametric procedures are used to explore segmentation solutions, no such rule exists.
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Sample size requirements increase with decreasing data structure. The appropriateness

of the number of variables given a certain sample size can consequently only be

assessed when data structure analysis is undertaken. Formann’s rule is still a useful

guideline to evaluate reasonable sample sizes for certain numbers of variables.

For segmentation purposes — the aim of which is identification or construction of

market segments — the sample does not necessarily have to be representative, unless

it is important to be able to state the proportion of each segment within total

population. It is, however, essential to have the full range of respondents with respect

to the construct under study represented in the data. If small niche segments are

expected, it may even be recommendable to try to over-sample these respondents to

ensure that they can be detected if they do differ from other segments in the

hypothesized way.

If the number of items is too large for the available sample size and variables have to

be selected before clustering, it is advisable to pre-analyze the data (using simple

frequency counts or factor analysis) and exclude variables based on the findings,

rather than transforming the space, as is the case with using factor scores resulting

from factor analysis. For example, Gitelson and Kerstetter (1990) state that if more

than 90 percent do not rate a benefit, it should be excluded. While this might be a very

general rule that risks excluding a highly discriminating variable, as stated in Frochot

and Morrison (2000), a combination of such a frequency criterion with factor analysis

results might be preferable. If items have low agreement or disagreement levels and

load highly on a factor that includes many other items, it is likely that little

information will be lost by excluding it from cluster analysis. Of course, it would be
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preferable not to include such items with little additional information value in the

questionnaire in the first place. But if the researcher is faced with a data set of this

nature, the suggested procedure would be preferable to reduce the number of items, as

opposed to factor analyzing and using the factor scores for cluster analysis.

If factor analysis is the preferred method of pre-processing, a procedure that accounts

for heterogeneity in the data should be adopted, such as mixtures of factor analyzers,

which is discussed in McLachlan and Peel (2000).

However, generally the raw, untransformed data that was collected from respondents

should be used for segmentation purposes, because any form of pre-processing leads

to a transformation of the segmentation space in which the segments were not

postulated originally and relations between variables are changed.

Some transformations may be needed if variables are not the same in nature. For

example, if the annual income in dollars is one variable and agreement or

disagreement with the statement that ‘the natural environment of the destination is

important’ are both included in the segmentation base, variables would need to be

standardized, because the variables with the higher range of values would otherwise

have more weight in the grouping process. But this frequently does not appear to be

the case, because most tourism researchers use one block of questions to measure the

same construct for their analysis (for example, all motivation items, all vacation

activities undertaken, or all benefits sought from their vacation). Such items are

typically questioned about using the same answer options, making transformation

unnecessary.
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Another case where transformations may be needed occurs when response styles exist

in the data and contaminate the information contained. For example, respondents from

certain cultural backgrounds may tend to use extreme values, while others may prefer

the middle of the scale. Such contamination may have to be eliminated by

transforming the raw data.

If the number of variables is too high and variables need to be eliminated, it is

preferable to eliminate them and use the raw data of the remaining items for

segmentation analysis, rather than using transformations such as factor scores.

The clustering algorithm and underlying measure of association should be chosen,

while taking into consideration the nature of the data and the known properties of

different clustering algorithms.

Although there is still no single optimal solution for determining the best number of

clusters, two generic approaches can be recommended: (1) clustering can be repeated

numerous times with varying numbers of clusters, and the number that renders the

most stable results can be chosen; or (2) multiple solutions can be computed and

selection is undertaken interactively with management.

After the segmentation solution has been determined it should be validated. First, the

reliability can be assessed by testing the stability of the solution. If the same grouping

emerges when computed numerous times, the segmentation solution is reliable than if

different solutions emerge from each computation. Second, the distinctness of the

derived solution can be assessed by testing whether the segments are significantly

different with respect to information that was not used in the original segmentation
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process. For example, benefit segments of tourists would be seen as externally valid

if, for example, their expenditure patterns for different vacation activities differ

significantly as well. If segments differ in benefits and no other characteristics, the

validity and usefulness of the segments should be questioned.

5 CONCLUSIONS

This paper aimed to highlight how several standards have emerged in empirical

tourism research that have the potential to undermine the validity of results. Three

aspects of empirical tourism research were selected because they are frequently

studied, and researchers appear to strongly adhere to emerged standards.

The review of empirical studies published in 2005 in the top three tourism journals led

to the conclusions that: (1) multi-category ordinal scales dominate survey research in

tourism despite the numerous disadvantages of this answer format and the availability

of alternatives; (2) a large number of studies are based on multicultural data sets and

ignore the danger of response style effects, potentially distorting their findings; and

(3) a standard procedure for step-wise, data-driven segmentation has developed in the

field of tourism (and even given a special name: factor-cluster analysis), the major

danger of which is the elimination of about half of the information contained in the

original data set through factor analysis before segments are identified or constructed.

Further aims of the article were to: (1) increase empirical tourism researchers’

awareness that emerged standards are not necessarily the optimal solution; (2)

encourage empirical tourism researchers to reflect more critically on their choice of

measurement instruments and techniques of data analysis; (3) encourage empirical
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tourism researchers to dedicate a few sentences in their manuscript that explain why

they have chosen a particular approach, so that an ‘explain why’ culture will slowly

replace the current ‘cite why’ one; (4) encourage reviewers to request explanations

and in so doing motivate researchers to engage in (2) and (3); and (5) strengthen and

enhance the field of empirical tourism research so that it becomes more open to new

approaches which can be shown to outperform emerged standards.

The three areas that this paper covered are almost certainly not the only ones

in which standards emerge in tourism research. Rather, the selected areas reflect

topics of interest to the author. To help the field move forwards, experts in other fields

should provide similar reviews on topics they are intimately familiar with and share

their insights with the wider tourism research community, and the top tourism journals

should be open to publishing such manuscripts.
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TABLES AND FIGURES

Figure 1: Examples of answer formats

NOMINAL Which is your country of residence?
� Austria
� USA
� Australia

BINARY Do you think Paris is expensive?
� Yes
� No

ORDINAL Did you perceive public transportation in Paris as
� Very reliable
� Reliable
� Unreliable
� Very unreliable.

METRIC How many days will you spend in Paris during this trip?
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TABLE 1

ANSWER FORMATS USED IN EMPIRICAL TOURISM RESEARCH

Component of standard research
approach

Alternatives Frequency Percent

Answer format used Nominal only 5 8
Binary only 1 2
Ordinal only 49 75
Metric only 0 0
More than one of the above 9 14

Specific answer format Likert scale 43 66
Semantic differential 3 5

Cited prior work to justify use of
response format

yes
11 17

no 54 83
Explanation provided yes 3 5

no 62 95
Dangers discussed yes 2 3

no 63 97
Method of data analysis Factor analysis 13 20

Factor analysis combined with
other analyses 23 35
Descriptive statistics 9 14
Logistic regression 4 6
Cluster analysis 2 3
Discrete choice modeling 2 3
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TABLE 2

APPROACHES IN EMPIRICAL CROSS-CULTURAL TOURISM RESEARCH

Component of standard research approach Alternatives Frequency Percent
Multicultural data set used among all empirical
studies

yes 10 34

no 0 0
not clear 10 15

Comparison of countries/cultural backgrounds yes 8 36
no 14 64

Answer format used nominal 2 9
binary 0 0
ordinal 19 86
metric 1 5

Potential problems mentioned yes 2 9
no 20 91

Extent of contamination assessed yes 2 9
no 20 91

Corrected for contamination yes 2 0
no 20 91
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Figure 2: Outline of stages of a step-wise, data-driven market segmentation study

STUDY DESIGN STAGE

DATA COLLECTION STAGE

Selection of answer format

Measurement of the variables used for segmenting

Selection of respondents (sampling)

Selection of variables used for segmenting

DATA PRE-PROCESSING

CLUSTERING STAGE

VALIDATION STAGE

Selection of clustering algorithm

Selection of measure of association

Selection of the number of clusters
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Figure 3: Data set example

Want to rest Want excitement Want security
Respondent 1 0 1 0
Respondent 2 0 1 1
Respondent 3 1 0 0
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TABLE 3

APPROACHES IN DATA-DRIVEN MARKET SEGMENTATION OF TOURISTS

Component of standard research approach Alternatives Frequency Percent
Explanation for measurement of variables
provided

Yes 2 25

No 6 75
Explanation for selection of variables provided Yes 2 25

No 6 75
Answer format Ordinal 7 88

More than one 1 13
Pre-processing No 2 25

Yes _ factor analysis 5 63
Yes_other 1 13

Explanation for pre-processing if pre-processed Yes 6 100
Explanation for selection of clustering algorithm Yes 0 0

No 6 75
Cited another author 2 25

Measure of association stated Yes 0 0
No 8 100

Data structure investigated Yes 0 0
No 8 100

Number of clusters selection Based on 1 run per
number of clusters 8 100
Based on data
structure
investigation 0 0

validation Yes 7
No 1
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