
University of Wollongong
Research Online

Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials

2007

Band structures, magnetic properties, and
enhanced magnetoresistance in the high pressure
phase of Gd and Y doped two-dimensional
perovskite Sr2CoO4 compounds
Xiaolin Wang
University of Wollongong, xiaolin@uow.edu.au

E Takayama-Muromachi
National Institute for Materials, Japan

S X. Dou
University of Wollongong, shi@uow.edu.au

Zhenxiang Cheng
University of Wollongong, cheng@uow.edu.au

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Wang, X, Takayama-Muromachi, E, Dou, SX & Cheng, Z (2007), Band structures, magnetic properties, and enhanced
magnetoresistance in the high pressure phase of Gd and Y doped two-dimensional perovskite Sr2CoO4 compounds, Applied Physics
Letters, 91(6), pp. 062501-1-062501-3.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/aiimpapers
http://ro.uow.edu.au/aiim


Band structures, magnetic properties, and enhanced magnetoresistance in
the high pressure phase of Gd and Y doped two-dimensional perovskite
Sr2CoO4 compounds

Abstract
The authors present their studies on the band structures and on the magnetic and magnetotransport
properties of the high pressure phase of Sr2-xRExCoO4 [rare earth (RE)=Gd and Y, x=0.1-0.5] compounds
which were synthesized by a high pressure and high temperature technique. The authors found that as x
increases, the magnetoresistance {(PH-P0)/p0} increases up to -17% at 5 K and 7 T, which is 2.5 times higher
than that for undoped Sr2CoO4, although the ferromagnetic transition drops from 255 to 200 K for the Gd
doping with x=0.3. The saturation moments at low temperature are significantly enhanced for the Gd doped
Sr2CoO4. Observation of a close correlation between resistance and field revealed a strong spin-dependent
tunneling magnetoresistance. First-principles band structure calculations indicate that high spin polarization
is present for both undoped and doped compounds.
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The authors present their studies on the band structures and on the magnetic and magnetotransport
properties of the high pressure phase of Sr2−xRExCoO4 �rare earth �RE�=Gd and Y, x=0.1–0.5�
compounds which were synthesized by a high pressure and high temperature technique. The authors
found that as x increases, the magnetoresistance ���H−�0� /�0� increases up to −17% at 5 K and 7 T,
which is 2.5 times higher than that for undoped Sr2CoO4, although the ferromagnetic transition
drops from 255 to 200 K for the Gd doping with x=0.3. The saturation moments at low temperature
are significantly enhanced for the Gd doped Sr2CoO4. Observation of a close correlation between
resistance and field revealed a strong spin-dependent tunneling magnetoresistance. First-principles
band structure calculations indicate that high spin polarization is present for both undoped and
doped compounds. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2759273�

Finding novel ferromagnetic materials showing negative
magnetoresistance and studies of polarized spin-dependent
tunneling magnetoresistance are hot topics within
spintronics.1,2 So far, several magnetoresistance �MR� oxide
systems have been found and extensively investigated. �1�
The perovskite ferromagnetic manganites in the form of
RE1−xAxMnO3, with RE standing for a rare earth and A for a
divalent ion such as Ca, Sr, or Ba, exhibit the well known
type of colossal magnetroresistance in fields of several tesla.3

�2� Pyrochlore-type Tl2Mn2O7 shows large MR near the Cu-
rie temperature of 140 K.4 The double-perovskite ferromag-
nets, Sr2FeMoO6 and Sr2FeReO6, exhibit large low-field MR
below high Curie temperatures TC of about 400 K.5 MR is
also present in simple oxides, such as CrO2 and Fe3O4. CrO2
crystallizes in the rutile structure and exhibits giant tunneling
MR at low temperatures.6 Fe3O4 is a good candidate for
room temperature device applications7 because it has a very
high TC of 858 K. Analogous to the perovskite manganites,
giant magnetoresistance is also observed in the cobalt based
perovskite compounds RE1−xAxCoO3,8,9 as well as in oxygen
deficient LnBaCo2O5 �Ln=Eu and Gd� compounds.10 When
the dimensionality is reduced from three to two dimensions,
the MnO2 or CoO2 network is confined to the ab plane.
Spin-related property changes are also expected. Layered
perovskite manganites, defined as the Ruddlesden-Popper
family of compounds �RE,A�n+1MnnO3n+1, consist of n lay-
ers of MnO6 octohedra separated by n layers of REO2.11

Very recently, metallic ferromagnetism with a Curie tempera-
ture TC of 250–255 K has been discovered in the
K2NiF4-type two-dimensional layered perovskite Sr2CoO4 in

the form of both single crystalline films fabricated by pulsed
laser deposition12 �PLD� and bulks produced by a high pres-
sure and high temperature technique.13 A metal insulator
transition with large negative MR values was observed in the
vicinity of TC. The MR increases at low temperatures and
reaches a maximum at the coercive field Hc.

12,13 Y3+ doping
into Sr2+ made the Sr2CoO4 gradually change from a ferro-
magnetic metal to an antiferromagnetic semiconductor.13

Band structure calculations by Lee and Pickett14 revealed
that the Sr2CoO4 can be either a ferromagnetic metal for the
thin film samples or a half metal for the high pressure phase
samples. They pointed out that the newly discovered
Sr2CoO4 in the form of bulks fabricated by the high pressure
technique and thin films made by PLD introduces new tran-
sition metal oxide physics and may be useful in spin elec-
tronics devices.14 In addition, it should be mentioned that the
MR is only about −7.5% at 7 T and 5 K for the high pres-
sure phase Sr2CoO4 �Ref. 13� polycrystalline samples made
using the high pressure method. It would be interesting to see
how the physical properties such as the MR values and Curie
temperatures as well as the electronic structures of the
Sr2CoO4 can be changed or improved by doping with other
rare earth elements, in particular, with those having large
magnetic moments or no magnetic moments. In this letter,
we present our observations on the magnetic properties and
the improvement of the negative magnetoresistance, as well
as the electron band structures of the Gd or Y doped
Sr2CoO4.

Polycrystalline samples of Sr2−xRExCoO4 �RE=Y or Gd,
x=0,0.1,0.3,0.5� were prepared by a high pressure and high
temperature technique. Fine and pure powders of SrO2, Co,
and Y2O3 or Gd2O3 were well mixed in the ratio of
Sr:RE:Co=2-x :x :1. The samples were compressed at
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6 GPa in a high pressure apparatus and then heated at
1000–1350 °C for 1–3 h and quenched to room tempera-
ture, with the quenching followed by a release of pressure.13

Structure refinements were carried out by the Rietveld
method. Magnetic and magnetotransport properties were in-
vestigated using commercial Quantum Design magnetic and
physical properties measurement sytems between 2 and
330 K in fields up to 7 T.

The temperature dependence of the magnetization re-
veals that the ferromagnetic transition of Sr2CoO4 decreases
from 255 to 230 K for Gd doping with x=0.1 and to 200 K
for both Gd and Y with x=0.3, as shown in Fig. 1�b�. An
upturn at low temperatures in the Gd doped sample is be-
lieved to come from the contribution of paramagnetic Gd3+

ions. The temperature dependence of the resistivity of those
samples is shown in Fig. 1�a�. Among these samples, the
Sr2CoO4 has the lowest resistivity �0.04 � cm� over the wide
range of temperatures measured. The resistivity for samples
with x=0.1 and 0.3 for both Gd and Y doping showed a very
gradual increase in resistivity with decreasing temperature
and does not increase at low temperatures. This indicates that
the resistance is dominated by the carrier scattering at grain
boundaries, as is widely seen for polycrystalline samples.

The doping effect on the MR is clearly revealed in
Fig. 2. The MR values at 50 K increase from −5% up to
−8.5%, as the Y doping level is raised from 0.1 to 0.5. The
MR values increase to −13% and −14% for the x=0.1 and
0.3 samples at 5 K and 7 T. The Gd doping has a similar
effect on the MR to that of the Y doping. For Sr1.7Gd0.3CoO4,
the MR is −4% at 100 K and 7 T and increases to −12% at
20 K and 7 T, as shown in Fig. 3. It should be mentioned
that the MR is only about 7.5% at 7 T and 5 K for undoped
Sr2CoO4.13 The MR is much enhanced by both Y and Gd
dopings at 5 K. As shown in Fig. 3, the MR values increased
to −14% and −17% for the Sr1.7Y0.3CoO4 and
Sr1.7Gd0.3CoO4 samples, respectively. With decreasing tem-
peratures, a field-hysteretic MR corresponding to the mag-
netic hysteresis loop gradually appeared and became much

more pronounced at 5 K, as shown in Fig. 3 �lower panel�. It
can be seen that the maximum field-hysteretic MR occurred
at fields of about 2.5, 0.5, and 0.3 T for pure Sr2CoO4,
Sr1.7Y0.3CoO4, and Sr1.7Gd0.3CoO4, respectively, coinciding
with the magnetization process with domain rotation at co-
ercive fields of 2.5, 0.5, and 0.3 T, respectively.

Such a close correlation between the MR and magnetic
domain rotation can be well explained in terms of spin-
dependent tunneling MR at grain boundaries, which has been
well established for granular manganites and other MR ox-
ides. Under the application of magnetic field, the hopping of
spin-polarized electrons between grains �domains� is pre-

FIG. 1. Temperature dependence of the resistivity �a� and field-cooled mag-
netization �b� for both Gd and Y doped Sr2CoO4.

FIG. 2. Magnetoresistance vs magnetic field for Y �a� and Gd �b� doped
Sr2CoO4 at different temperatures.

FIG. 3. Magnetoresistance �upper panel� and magnetization M �lower panel�
for pure and Y or Gd doped Sr2CoO4.
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dominantly affected by the relative angle of the magnetiza-
tion direction and controlled by the external field through the
domain-rotation process. Therefore, the observed field-
hysteretic MR is ascribed to the field suppression of the spin-
dependent scattering at grain �domain� boundaries. It should
be pointed out that the enhanced MR value of −17% in
Sr1.7Gd0.3CoO4 is almost two times smaller than that for pure
a-axis oriented Sr2CoO4 single crystal thin films, but it is
two times greater than that in Sr2CoO4 polycrystalline
bulks.12,13 It is obvious that the grain boundary tunneling
between oriented grains is much greater than that between
the randomly oriented grains. Therefore, it is expected that
the MR values will be further enhanced in textured thin films
of either Sr1.7Gd0.3CoO4 or Sr1.7Gd0.3CoO4, with much re-
duced grain boundary scattering.

First-principles band structure calculations were per-
formed using a density functional theory.15 We adopted the
standard generalized gradient approximation, with the
Perdew-Burke-Ernzerhof functional. Lattice parameters and
atomic positions obtained from the Rietveld refinement for
pure and doped samples prepared under 6 GPa were used as
the structural parameters for the band structure calculations.
A 14 atom supercell of one Sr2CoO4 unit cell containing one
Y or Gd atom substituted at the Sr site was used for the
calculation. The Y or Gd concentration is thus 25 at. %. A
schematic of the crystal structure of the Sr2CoO4 is shown in
Fig. 4. A 7�7�2 k mesh was used for Brillouin sampling
with a cutoff energy of 340 eV. A calculation for pure
Sr2CoO4 was also performed as a comparison. Figure 5
shows the total density of states with majority “up” and mi-
nority “down” spins. For the undoped and doped Sr2CoO4,
both the spin up and spin down states are partially occupied
around the Fermi level, with a high spin polarization of the
conduction electrons, in good agreement with the results of
the electronic structure for Sr2CoO4 calculated by Matsuno
et al.12 and Lee and Pickett.14 Note that the densities of states
of the minority spins are about 5, 6, and 7 states/eV for pure,
Y, and Gd dopings, respectively, indicating that the enhanced
density of states could also play a role in the enhanced MR
observed for both Y and Gd doped Sr2CoO4. The spin den-
sity distribution for the pure, Y, and Gd doped Sr2CoO4 is
also shown in Fig. 4. It can be seen that the polarized spins
are contributed by the p electrons of the oxygen atoms and
the d electrons from the Co atoms for both pure and Y doped
Sr2CoO4, while both p and d electrons from the Gd atoms
also contribute significantly to the polarized spin in the Gd

doped Sr2CoO4. It can be seen that the significantly en-
hanced magnetization at 5 K in the Gd doped Sr2CoO4, as
shown in Fig. 3, mainly comes from Gd3+ as well as from the
oxygen and cobalt ions. The observation of enhanced mag-
netoresistance in the Y and Gd doped two-dimensional layer
structured Sr2CoO4 suggests their potential applications in
spintronics and in exploring novel magnetoresistance/
spintronic materials in lower dimensional structured systems.
Further enhancements in MR values and the Curie tempera-
ture are most likely present in other rare earth doped
Sr2CoO4.
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FIG. 4. �Color online� Crystal structure and distribution of spin densities
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FIG. 5. Total density of states of pure, Gd, and Y doped Sr2CoO4, with the
Fermi energy set at zero.
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