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1. Introduction 

The current trend of global warming is mainly a reflection of a chronic imbalance 

between the emission and recycling of carbon-dioxide. Since the beginning of 

agricultural settlements humans have contributed to this imbalance by clearing lands 

from the natural recyclers of this principal greenhouse gas and by burning fossil fuels. 

During the last 11,000 years the world forest-cover has been reduced from about 50 

percent of the Earth’s land to about 30 percent. About three quarters of this decline 

occurred in the last 200 years — a period dominated by coal, gas and oil fueled 

mechanization of production and transportation, which facilitated an unprecedented 

growth and spread of output and population. This process has intensified after the 

Second World War with the industrialization of developing countries. Evidently, the 

background atmospheric concentration of carbon-dioxide recorded since 1958 at 

Mount Mauna Loa, Hawaii, displays an oscillating trajectory, with peaks (troughs) at 

the end (beginning) of the plants’ active season, along an upwardly inclined convex 

contour, the Keeling Curve. When contrasted with deep historical data on carbon-

dioxide concentration in bubbles trapped in Antarctic ice-cores, the Keeling Curve 

reflects unprecedented levels and rates of accumulation of carbon-dioxide. Despite the 

globally growing concerns reported by Dunlap et al. (1993), Inglehart (1995, 1997), 

Diekmann and Franzen (1999) and Franzen (2003), the humans’ aggregate carbon-

dioxide emissions increased by forty-five percents and the world forest cover 

decreased at an average rate of about 8 million hectares per annum between 1990 and 

2010.  

While the equilibrium climate sensitivity to atmospheric greenhouse gasses is 

expected to be relatively small — about three degrees Celsius — the tails of the 

probability density functions of the surface-temperature change and damage are 

argued by Weitzman (2009, 2011) to be fat due to compounded uncertainty. In which 

case, wait-and-see is a high-risk strategy. Yet, remedial actions are impeded by the 

nature of the atmosphere. The atmosphere is an indivisible open-access natural 

resource. In the absence of property rights and clear identity of the sources of the 

stock of carbon-dioxide in any particular location, formation of markets for the 

aforesaid externalities created by this stock — global warming and climate change — 

is impossible. Economic analyses of the imbalance in the atmospheric carbon-dioxide 
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cycle and remedial policies have typically focused on human emissions of this gas 

and other greenhouse gasses. Following Weitzman’s (1974) seminal approach, the 

relative efficiency of quantity and price based instruments for controlling the 

atmospheric stock of greenhouse gasses have been analyzed by Pizer (2002), Hoel 

and Karp (2002), Newell and Pizer, (2003), Fischer and Newell (2008) and many 

other researchers. The implementation of these instruments involves large costs of 

monitoring emissions. It also requires international cooperation for sharing the burden 

and attaining globally significant outcomes (Levy, 2011).  

Unlike the atmosphere, land — the main platform of humans’ and plants’ 

activities — is divisible, controlled by states, and classified by type of use. Hence, 

controlling the use of land by land-rates (rental rates in the case of state ownership 

and tax rates in the case of private ownership) can serve as an alternative method for 

controlling humans’ carbon-dioxide emissions as well as plants’ photosynthesis of 

this gas. The large monitoring costs of carbon emissions from this divisible platform 

can be avoided by setting the land-rates according to use.  

This paper considers both humans’ emissions and plants’ photosynthesis as 

endogenous determinants of the atmospheric stock of carbon-dioxide and, 

consequently, global warming and climate change. The paper analyzes theoretically 

the division of usable land between the human emitters and the natural recyclers of 

this principal greenhouse gas, who are exposed to their imbalanced-interaction-driven 

climate change. While the habitat of the natural recyclers, forest, is confined to their 

initial endowment of land, humans can expand their control over the usable land by 

renting at a flat rate that varies with the type of use. Land is taken to be essential input 

in humans’ production and, for tractability, two types of use of land by humans are 

considered. The analysis regards humans as sophisticated rational beings. They take 

into account the effect of the usable-land allocation on the accumulation of carbon-

dioxide in the atmosphere and the effects of the consequent climate change on the size 

of the usable land, on the mean and variance of production, and on the mean and 

variance of the atmospheric carbon-dioxide photosynthesized by plants. These effects 

are described in section 2. In addition to income, humans’ expected utility is affected 

by their concerns about the accumulation of carbon-dioxide in the atmosphere. As 

presented in section 3, the quantity of usable land rented is chosen to maximize their 

expected utility. The public planner controls the outcomes by setting the land-rates 
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according to use and technology. The effects of the land-rates and photosynthesis’ 

efficiency on the size of the forest are derived in section 4.    

 

2. Model specifications  

Two uncoordinated groups of human land-users are considered: rural dwellers 

(henceforth farmers) and urban dwellers (henceforth manufacturers). Each of these 

groups is assumed to be homogeneous with regard to preferences, ability and 

technology. With tS  denoting the atmospheric carbon-dioxide stock in period t, tEF  
the farmers’ carbon-dioxide emissions in period t, tEM  the manufacturers carbon-

dioxide emissions in period t, tEW  the carbon-dioxide emissions by wildlife in period 

t, tQ  the quantity of atmospheric carbon-dioxide recycled by the forest in period t, 

and 0 1< δ <  the rate of decay of atmospheric carbon-dioxide, and with the amount of 

carbon-dioxide photosynthesized on farm-land by domesticated plants assumed to be 

negligible, the change in atmospheric carbon-dioxide stock in period t is expressed as: 

t t 1 t t t t t 1S S EF EM EW Q S− −− = + + − −δ .      (1) 

Because of increasing spread and frequency of climate-based disasters (e.g., 

floods, blizzards, frosts, hurricanes, cyclones, droughts and bushfires) the size of the 

Earth’s usable land decreases from a maximum L  with the divergence of the current 

climate from the ideal climate. For simplicity, the ideal climate is taken to be the same 

for farmers, manufacturers and forests. The divergence from the ideal climate is 

driven by the deviation of the current atmospheric stock of carbon-dioxide from the 

level associated with the ideal climate, S . With a computationally convenient 

quadratic representation of this deviation and with 0µ >  indicating the usable-land-

loss coefficient, the total usable land at the beginning of period t, is 

t 1 2
t 1

LL
1 (S S)−

−

=
+µ −

.           (2) 

Some of the usable land is held by fN  identical (for simplicity) farmers, each 

renting an equal amount of land ( f ) at a flat land-rate of hr  dollars per acre, and by 

mN  identical (for simplicity) manufacturers, each renting an equal amount of land 

( m ) at a flat land-rate of mr dollars per acre. The rest of the usable land ( nL ) is 

covered by undomesticated plants; namely, forest: 
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nt t 1 f ft m mtL L N N−= − −  .         (3) 

With the quantity of carbon-dioxide emitted by each acre used by farmers and 

manufacturers assumed to be f 0α >  and m 0α > , respectively, the aggregate 

emissions of carbon-dioxide by humans at t are 

t t f f ft m m mtEF EM N N+ = α + α  .         (4) 
Farming, manufacturing and photosynthesis are not performed in fully 

controlled environments and all lands are assumed to be exposed to the same climate-

based random disturbances. A deviation from S  leads to climate deterioration and, 

thereby, decline in productivity. With fβ  indicating the average productivity of the 

land used by farmers under ideal climate and f 0θ >  the sensitivity of per acre farm-

output mean to a divergence from the ideal climate, each farmer’s output in period t 

( fty ) is: 

f
ft t ft2

f t 1

y
1 (S S)−

 β
= + ε + θ − 

          (5) 

where tε  denotes the climate-based random disturbance. This disturbance is assumed 

to be normally distributed with zero mean and a variance, 2
tσ , that increases with the 

divergence from the climate-wise ideal atmospheric carbon-dioxide stock: 
2 2 2
t t 1[1 (S S) ]−σ = σ + γ − .         (6) 

The positive scalar 2σ  indicates the random disturbance’s variance under ideal 

climate, and 0γ >   the sensitivity of the per acre farm-output variance to a divergence 

from the ideal climate.  

The activities of the other two land-occupants considered in this model are 

affected by the common random disturbance, tε , in different intensities. As 

manufacturing is performed in a better controlled environment than farming, the 

effect of the common random disturbance on manufacturing production is lower. By 

letting the relative effect on manufacturing be indicated by 0 1< ω< , the random 

disturbance in manufacturing is indicated by 2 2
t t(0, )ωε ω σN . With mβ  indicating 

the mean output per acre held by manufacturers under ideal climate and m 0θ >  the 

sensitivity of per acre manufacturing output mean to a divergence from the ideal 

climate, each manufacturer’s output in period t ( mty ) is: 
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m
mt t mt2

m t 1

y
1 (S S)−

 β
= +ωε + θ − 

 .        (7) 

 By letting the relative effect of the common disturbance on undomesticated 

plants’ activity be indicated by 0ψ > , the random disturbance in photosynthesis can 

be indicated by 2 2
t t(0, )ψε ψ σN . With 0ϕ >  indicating the per acre 

photosynthesis mean under ideal climate and 0η >  the sensitivity of per acre 

photosynthesis-mean to a divergence from the ideal climate, the quantity of 

atmospheric carbon-dioxide  photosynthesized by the forest in period t is:  

t t t 1 f f m m2
t 1

Q (L N N )
1 (S S) −

−

 ϕ
= +ψε − − + η − 

   .      (8)  

 The substitution of (4) and (8) into (1) implies 

t t 1 f f f m m m t t t 1 f f m m t 12
t 1

S S N N EZ (L N N ) S
1 (S S)− − −

−

 ϕ
− = α + α + − +ψε − + −δ + η − 

   

            .(9) 

As it is not the focus of the paper, and for simplicity, the effect of climate change on 

all other forms of wildlife is ignored and tEW  is taken to be exogenous. 

 

3. Uncoordinated land distribution with expected utility maximizing humans 

Farmers’ and manufacturers’ utilities at period t ( ftu  and mtu , respectively) increase 

with their disposable income and decrease with their concerns about a further rise at t 

in the atmospheric carbon-dioxide stock, which is already above the optimal stock S . 

With the price of the farm’s product indicated by fp , and with f 0ν >  indicating 

farmers’ constant (for simplicity) marginal willingness to pay for avoiding a rise in 

the atmospheric stock of carbon-dioxide, each farmer’s decision problem is portrayed 

as choosing the parcel of land that maximizes his expected utility from his 

willingness-to-pay deducted personal disposable income, 

ft f ft f ft f t t 1x p y r (S S )−= − −ν − . By recalling (5) and (8) and rearranging terms, 

 

t f
ft f ft2

f t 1

f f f ft m m mt t t 1 f ft m mt t 12
t 1

f ft t 1 f ft m mt f t

px r
1 (S S)

{N N EW (L N N ) S }
1 (S S)

[p (L N N ) ] .

−

− −
−

−

 β
= − + θ − 

 ϕ
−ν α + α + − − − −δ + η − 
+ − − − ψν ε



   

  

        (10) 
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It is normally distributed with mean 

ft

f f
x f ft2

f t 1

f f f ft m m mt t t 1 f ft m mt t 12
t 1

p r
1 (S S)

{N N EW (L N N ) S }
1 (S S)

−

− −
−

 β
µ = − + θ − 

 ϕ
−ν α + α + − − − −δ + η − 



   

      

(11) 

and variance 

ft

2 2 2 2
x f ft t 1 f ft m mt f t 1[p (L N N ) ] [1 (S S) ]− −σ = − − − ψν σ + γ −   .                        (12) 

Following Freund’s (1956) convenient formulation of expected utility from a 

normally distributed income, let ft f ftu 1 exp( R x )= − −  and fR 0>  represent the 

farmers’ degree of absolute risk aversion. Then, maximizing ftEu  is equivalent to 

maximizing 
ft ft

2
x f x0.5Rµ − σ , where the second term can be interpreted as the farmer’s 

costs of risk bearing. Recalling (11) and (12), each farmer’s decision on land-holding 

is reached by solving the following control problem: 

f f
f ft2

f t 1

f f f ft m m mt t t 1 f ft m mt t 12
t 1

2 2 2
f f ft t 1 f ft m mt f t 1

ft

p r
1 (S S)

N N EW (L N N ) S
1 (S S)

0.5R {[p (L N N ) ] [1 (S S) ]}

max

−

− −
−

− −

  β
−  + θ −  

  ϕ −ν α + α + − − − −δ  + η −  
 − − − − ψν σ + γ − 
  





   

  

Since 2 2 2
f t 1 f f fR [1 (S S) ][(p N ) 0−− σ + γ − + ψν < , the second-order condition for 

maximum is satisfied. From the first-order condition and equation (2), the expected 

utility maximizing land held by each farmer is 

* f
ft m mt2

f f f t 1

f f
f f f f2 2

f t 1 t 1
2 2 2

f t 1 f f f

L N
p N 1 (S S)

p r N
1 (S S) 1 (S S)

.
R [1 (S S) ](p N )

−

− −

−

  ψν
= −  + ψν +µ −   

 β ϕ
− −ν α + + θ − +η − +

σ + γ − + ψν

 

               (13) 

By symmetry, with similar assumptions about the manufacturers’ utility and objective 

and with mp  denoting the manufactured good price, the expected utility maximizing 

land held by each manufacturer is 
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* m
mt f ft2

m m m t 1

m m
m m m m2 2

m t 1 t 1
2 2 2

m t 1 m m m

L N
p N 1 (S S)

p r N
1 (S S) 1 (S S)

.
R [1 (S S) ](p N )

−

− −

−

  ψν
= −  ω+ ψν +µ −   

 β ϕ
− −ν α + + θ − +η − +

σ + γ − ω+ ψν

 

                (14) 

With accurate expectations about the counterpart’s demand for usable land 

being assumed, equations (13) and (14) imply that the expected utility maximizing 

land per farmer and manufacturer are: 

f m m

f f f m m m*
ft 2

t 1f f m m

f f f m m m

f f
f f f f2

f t 1

f f m m

f f f m m m

N1
p N p N L

1 (S S)N N1
p N p N

p r N
1 (S S) 11

N N1
p N p N

−

−

    ψν ψν
−    + ψν ω+ ψν    =   +µ −   ψν ψν −     + ψν ω+ ψν    

  β ϕ
− −ν α +  + θ − + +  

   ψν ψν −     + ψν ω+ ψν    



2
t 1

2 2 2
f t 1 f f f

f m m
m m m m m2 2

t f f m t 1 t 1
2 2 2

m t 1 m m mf f m m

f f f m m m

(S S)
R [1 (S S) ](p N )

pN r N
p N 1 (S S) 1 (S S)

R [1 (S S) ](p N )N N1
p N p N

−

−

− −

−

 
 η − 

σ + γ − + ψν

    ψν β ϕ
− −ν α +    + ψν + θ − +η −    −  σ + γ − ω+ ψν   ψν ψν −     + ψν ω+ ψν    

  .(15)
  

and 

m f f

m m m f f f*
mt 2

t 1m m f f

m m m f f f

m m
m m m m2

m t 1

m m f f

m m m f f f

N1
p N p N L

1 (S S)N N1
p N p N

p r N
1 (S S) 11

N N1
p N p N

−

−

    ψν ψν
−    ω+ ψν + ψν    =   +µ −   ψν ψν −     ω+ ψν + ψν    

  β ϕ
− −ν α +  + θ − + +  

   ψν ψν −     ω+ ψν + ψν    



2
t 1

2 2 2
m t 1 m m m

f ff m
f f f f2 2

f t 1 t 1m m m
2 2 2

f t 1 f f fm m f f

m m m f f f

(S S)
R [1 (S S) ](p N )

pN r N
1 (S S) 1 (S S)p N

R [1 (S S) ](p N )N N1
p N p N

−

−

− −

−

 
 η − 

σ + γ − ω+ ψν

     β ϕψν − −ν α +     + θ − +η −ω+ ψν    −  σ + γ − + ψν   ψν ψν −     ω+ ψν + ψν    

 .(16) 

The expressions in the large parentheses in the first terms on the right-hand 

side of equations (15) and (16) indicate positive marginal effects of usable land on the 
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expected utility maximizing land holding of individual farmers and manufacturers. 

The expressions in the large parentheses in the second terms on the right-hand side of 

these equations reveal positive effects of the ratio of the self marginal net expected 

benefit to marginal risk on the expected utility maximizing land holding of individual 

farmers and manufacturers. The expressions in large parentheses in the third terms on 

the right-hand side of the said equations indicate negative effects of the ratio of the 

counterpart’s agent marginal net expected benefit to marginal risk on the expected 

utility maximizing land holding of individual farmers and manufacturers. 

Consequently, the effects of the model parameters L , µ , fα , mα , fβ , mβ , fR , mR , 

and 2σ  are clear. Both the farmer’s and manufacturer’s expected utility maximizing 

land-parcels increase with the size of the usable land under ideal climate, with self 

output per acre, with the counterpart’s emissions per acre, with the counterpart’s 

production sensitivity to climate change, and with the counterpart’s degree of absolute 

risk aversion. Their expected utility maximizing land-parcels decrease with the 

coefficient of the land-loss engendered by climate change, with self emissions per 

acre, with the sensitivity of self production to climate change, with the random 

disturbance’s variance under ideal climate, with self degree of absolute risk aversion, 

and with the counterpart’s output per acre. 

The directions of the effects of photosynthesis’ efficiency — the mean 

recycled carbon-dioxide by an acre of forest — on the farmer’s and manufacturer’s 

demands for land are not clear. The following propositions are obtained by 

differentiating (15) and (16) with respect to this factor.    

 

Proposition 1 (photosynthesis’ efficiency effect on farm-land) 

*
ft

2
t 1

0

1 (S S)−

>

<

 
 

∂ 
 

 ϕ ∂  + η −  

=

   if 

2
f m m

t f f f f
2 2 2 2 2 2

m t 1 m m m f t 1 f f f

N
p N N .

R [1 (S S) ](p N ) R [1 (S S) ](p N )− −

>

<

 ψν ν
   + ψν ν 
   σ + γ − ω+ ψν σ + γ − + ψν  
  

=  
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Proposition 2. (photosynthesis’ efficiency effect on manufacturer-land) 

*
mt

2
t 1

0

1 (S S)−

>

<

 
 

∂ 
 

 ϕ ∂  + η −  

=

   if 

2
m f f

m m m m m
2 2 2 2 2 2

f t 1 f f f m t 1 m m m

N
p N N .

R [1 (S S) ](p N ) R [1 (S S) ](p N )− −

>

<

 ψν ν
   ω+ ψν ν 
   σ + γ − + ψν σ + γ − ω+ ψν  
  

=  

The usable land reserved by the expected utility maximizing farmers and 

manufacturers for the forests is: 
* * *
nt t 1 f ft m mtL L N N−= − −   .                    (17) 

By differentiation and collecting terms, the following proposition indicates, as can be 

intuitively expected, a positive effect of photosynthesis’ efficiency on the land left by 

humans for forest. It further displays the factors comprising this positive effect and 

suggests that the effect of photosynthesis’ efficiency on the forest-land decreases with 

the divergence from the ideal climate, with the sensitivity of the per acre farm-output 

variance to a divergence from the ideal climate, with the random disturbance’s 

variance under ideal climate, and with the farmers’ and manufacturers’ degrees of 

absolute risk aversion.   

 
Proposition 3 (the effect of photosynthesis’ efficiency on forest-land) 
 

*
nt

2
t 1

2 2f f m m
m m f f

f f f m m m
2 2 2 2 2 2

m t 1 m m m f t 1 f f f

m m f f

m m m f f f

L

1 (S S)

N NN 1 N 1
p N p N

R [1 (S S) ](p N ) R [1 (S S) ](p N ) 0
N N1

p N p N

−

− −

∂
 ϕ

∂ + η − 

    ψν ψν
ν − ν −    + ψν ω+ ψν    +

 σ + γ − ω+ ψν σ + γ − + ψν
= > 

   ψν ψν −     ω+ ψν + ψν    
 

.
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4. Policy implications for forests 

The public planner’s control instruments of the aggregate size of the forest in a world 

with uncoordinated expected utility maximizing human activities are the land-rates for 

farming and manufacturing. The objective, hence setting, of these use-based land-

rates is different from that of ad valorem rates, which fully, or partially, disregard 

negative external effects generated on sites. There may be various criteria for 

selecting these use-based land-rates. Similar to macroeconomic stabilization policy, a 

possible practical criterion is minimizing the variance of the atmospheric carbon-

dioxide stock while restricting the mean to be equal to a target level, tŜ . Using 

equation (9) and (6) to compute the atmospheric carbon-dioxide stock’s mean and 

variance, the public planner’s decision problem under this criterion is formally 

expressed as  
* * 2 2 2

t 1 f ft m mt t 1
mtft(r ,r )

min {[ (L N N )] [1 (S S) ] }− −ψ − + + γ − σ                                             (18) 

subject to  

* *
f f f m m m2 2

t 1 t 1

t t 1 t 1 t2
t 1

N N
1 (S S) 1 (S S)

ˆEZ L (1 )S S
1 (S S)

− −

− −
−

   ϕ ϕ
α + + α +   + η − +η −   

 ϕ
+ − + −δ = + η − 

 

               (19) 

where *
f  is given by (15) and *

m  by (16). This problem can be numerically solved 

with calibrated parameters of an expanded version of the model to a larger, more 

realistic, number of land usages.  

 Regardless of the land-rates’ selection criteria, the combined effect of the 

policy instruments on the forest-land can be obtained by total differentiation of 

equation (17). With inter-sectoral mobility being taken into account: 

 

* *
* * *ft mtf m
nt ft f mt m f

f f f f

* *
* *ft mtf m
ft f mt m m

m m m m

N NdL N N dr
r r r r

N NN N dr
r r r r

 ∂ ∂∂ ∂
= − + + + ∂ ∂ ∂ ∂ 

 ∂ ∂∂ ∂
− + + + ∂ ∂ ∂ ∂ 

 

 

 

 

             .(20) 

It is sensible to assume that f fN / r 0∂ ∂ < , m fN / r 0∂ ∂ > , f mN / r 0∂ ∂ >  and  

m mN / r 0∂ ∂ < , but moderated by costs of migration and adjustment. Since the total 

number of humans is fixed, f f m fN / r N / r∂ ∂ = −∂ ∂  and m m f mN / r N / r∂ ∂ = −∂ ∂ . In view 

of this property and by recalling (15) and (16) and collecting terms, 
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m m
f

m m m
2 2 2

* * *f t 1 f f f f
nt ft mt f

ff f m m

f f f m m m

f f
m

f f f

m

NN 1
p N

R [1 (S S) ](p N ) NdL ( ) dr
rN N1

p N p N

NN 1
p N

R

−

   ψν −   ω+ ψν    
 σ + γ − + ψν ∂ = − − ∂    ψν ψν  −     + ψν ω+ ψν      
  

  ψν −  + ψν   
σ

+

 

2 2
* *t 1 m m m f
ft mt m

mf f m m

f f f m m m

[1 (S S) ](p N ) N ( ) dr
rN N1

p N p N

−

 
 
 
 + γ − ω+ ψν ∂ − − ∂    ψν ψν  −     + ψν ω+ ψν      
  

 

           .(21) 

The following propositions about the effects of each of the two policy instruments 

separately are obtained from (21) straightforwardly. 

 

Proposition 4 (farmer’s land-rate effect on forest): If 

m m
f

m m m
2 2 2

* *f t 1 f f f f
ft mt

ff f m m

f f f m m m

NN 1
p N

R [1 (S S) ](p N ) N ( )
rN N1

p N p N

−
>

<

   ψν −   ω+ ψν    
   σ + γ − + ψν ∂ = −   ∂    ψν ψν    −     + ψν ω+ ψν      
  

   

then the size of the forest-land increases, does not change, decreases with the land-

rate for farmers. 

 

Proposition 5 (manufacturer’s land-rate effect on forest): If 

f f
m

f f f
2 2

* *m t 1 m m m f
ft mt

mf f m m

f f f m m m

NN 1
p N

R [1 (S S) ](p N ) N ( )
rN N1

p N p N

−
>

<

   ψν −   + ψν    
   σ + γ − ω+ ψν ∂ = −   ∂    ψν ψν    −     + ψν ω+ ψν      
  

   

then the size of the forest-land increases, does not change, decreases with the land-

rate for manufacturers. 
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5. Conclusion 

The atmosphere is the recipient of both the beneficial and harmful gaseous emissions 

of the inhabitants of Earth. In addition to emissions from parcels of land used by 

humans, photosynthesis is incorporated into the motion-equation of the atmospheric 

stock of carbon-dioxide as an endogenous variable. By doing so, the stock of 

atmospheric carbon-dioxide is linked to the division of usable land between humans 

and plants. This division and, consequently, the atmospheric stock of carbon-dioxide, 

climate change and future usable land can be controlled by setting land-rates in 

accordance with current use. As can be seen from propositions 4 and 5, the farmer-

manufacturer expected utility maximizing land-parcel differential * *
ft mt( )−   is crucial 

for evaluating the effects of the land-rates on the size of the world’s forest. As can be 

further seen from equations (15) and (16), the sign of the said land-parcel differential 

is not clear and may vary over time with as the stock of atmospheric carbon-dioxide 

evolves. Presently, the average land-parcel per farmer is greater than the 

manufacturer’s average parcel. But one may argue that with climate-change induced 

food-supply disruptions and shortages the level of this inequality and even its 

direction can change. The terms on the left-hand side of the expression in propositions 

4 and 5 are positive and f fN / r 0∂ ∂ <  and f mN / r 0∂ ∂ > . Hence, while the expected 

utility maximizing parcel of land per farmer is still larger than the manufacturer’s 

parcel (i.e., * *
mt ft 0− <  ), the higher the land-rates, the larger is the forest. These 

positive effects of the land-rates on the forest-land are moderated by the agents’ 

marginal costs of risk bearing. 
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