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1. INTRODUCTION

The socially efficient size of the broadcasting industry is a vexed theme in regulatory eco-

nomics, particularly with respect to over-the-air (OTA) terrestrial services. The public good

nature of wireless terrestrial broadcasts and their educational, cultural and political impacts as

well as the presence of barriers to entry, such as scarce bandwidth and sunk costs, lend support

to strict regulation of the broadcasting industry. Indeed, broadcasts (programs’ and advertise-

ments’ contents, production and delivery) and entry rules (including license) for prospective

OTA terrestrial broadcasters have been tightly regulated in all major OECD countries (cf.

Webbink 1973), and until the late 1970s the television broadcasting industries in these coun-

tries comprised a handful of licensed and highly protected public and commercial players.

Since the 1980s alternative transmission techniques, such as satellite and cable, have created

a more favourable environment for entry into the television broadcasting industry. In turn, this

industry has started converging to monopolistically competition with a mix of free transmis-

sions and pay TV services. Yet, incumbent OTA broadcasters’ concentration of nation-wide

audience shares have remained very high (Motta and Polo, 1997; Caves, 2006). In contrast, the

radio broadcasting industry has been less concentrated and more localized. Yet entry to this

industry has also remained tightly regulated due to sunk costs and tight spectrum constraint.

The recent adoption of digital transmission technologies has expanded the scope for pro-

gram variety in both the television and radio broadcasting industries. Digital technology is

spectral efficient and its adoption releases a significant amount of HF, VHF and UHF spaces as

analogue signals are turned off. However, the gains in spectral efficiency have not relaxed the

spectrum constraint for the television broadcasting industry. In the US, the digital dividend

was mainly auctioned off to large telecommunications carriers in order to accommodate the

future deployment of 4G mobile-phone networks. Similar allocation of the digital dividend is

expected in most other OECD countries. The situation is more complex for radio broadcasting

as only few countries have successfully adopted and rolled out digital platforms for radio trans-

missions and even fewer have clear digital switchover plans for analogue radio broadcasting.

Still, buffer zones between broadcasters’ bands have to be reduced in order to accommodate

new entrants to the OTA broadcasting industry.

The spectral efficiency of digital technologies does not resolve the scarcity of broadcasting

spectrum. Expansion of the broadcasting industry can therefore be expected to intensify the
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fundamental trade-off between the pursuit of the overall quality of programs through diversity

and reception (quality of signals). If the scope for program diversity is moderate, the entry

of additional broadcasters reduces the audience for the incumbents with little benefit to the

consumers. Moreover, as entry entails significant (sunk) infrastructure costs, the net social

benefits from entry might be negative. In contrast, if there is a scope for a significant added

program-diversity from entry, it may well be the case that the incremental consumer benefits

from the expanded set of choice exceed the negative welfare effects of entry barriers. However,

even if this were to be the case, the transmission of the additional OTA terrestrial services

might require tighter allocation of an already congested HF/VHF/UHF spectrum. As OTA

terrestrial commercial broadcasters’ income is derived from advertising, the scope for added

program-diversity relies considerably on the profitability of diversity to advertisers (cf., Steiner,

1952; Spence and Owen, 1977; Mankiw and Whinston, 1986; Anderson and Coate, 2005).

The variety-reception trade off is likely to be most prominent under a deregulatory scheme

that allows free entry and exit – open access. It has often been observed that opening the

broadcasting industry to new entrants irremediably leads to consolidation and a return to

monopolistic competition and resetting of entry barriers after an initial entry of small private

operators. The evolution of the Italian industry after the 1980s open access reforms is a case in

point (Noam 1992; Hazlet 2005). Another evidence is the high index of audience concentration

amongst traditional OTA broadcasters in the United States, Germany and Japan despite a

decade of reforms aimed at diversifying production and transmission through cable and satellite

platforms (Motta and Polo 1997).

In view of deregulatory trends and the variety-reception trade off, our theoretical analysis

explores the optimal steady-state number of OTA broadcasters and its stability under open

access. We treat spectrum as a state-owned time-invariant scarce natural resource. As in the

case of any other state-owned natural resource, governments are entitled to royalties on its use.

Hence, in addition to the direct benefits from the service provided by the broadcasting industry

there are substantial indirect benefits – the public services financed by the states’ royalties

on this natural resource. We portray a conceptual framework where the state’s royalties are

allowed to vary over time in order to maximize the stream of the discounted direct and indirect

benefits stemming from the use of the broadcasting spectrum and where users enjoy free entry

and exit. We derive the steady state of the royalties-based optimally controlled industry and
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identify conditions that allow for a stable path to the steady state along which the number

of broadcasters gradually increases rather than reverting to the observed concentration and

regulation in the aftermath of reforms.

To set the stage and motivate the royalties-based optimal control of the OTA broadcasting

industry, Section 2 presents the basic dynamics of the broadcasting industry and Section 3

computes and illustrates the industry’s open access steady state under ad hoc fixed royalties and

immediate adjustment. In constructing the optimal control model in Section 4, two opposing

effects on the consumers’ incomes are introduced: information dissemination vis-à-vis diversion

of productive time. Section 5 derives the optimal royalties that take these effects into account

and the steady-state size of the industry when these opposing effects offset one another (income

neutrality). Section 6 considers the case of a dominant positive information-dissemination effect

on aggregate income.

2. DYNAMICS OF THE OTA BROADCASTING INDUSTRY

Let n(t) denote the number of suppliers (broadcasters) of OTA transmitted programs

(broadcasts) at time t. At every instance t each supplier uses a single channel and delivers a

single program. Let the suppliers be technologically and location-wise identical and paying roy-

alties, g(t), to the government for using a band at t. Also let the width of each band (channel)

be technologically determined and fixed, ω,.and let the bands be evenly spread along a homo-

geneous spectrum available to the broadcasting industry Ŝ. Then, the buffer zones between

bands evenly diminish as the number of broadcasters increases and broadcasted programs are

equally receivable by any consumer. For tractability, let us further assume that the consumers

are located at an identical and physically unobstructed distance from the broadcasters (e.g., a

circular residential area with broadcasters located at its centre). Then all broadcast programs

are equally receivable by all. Finally, in our setting the programs’ consumers are also users of

broadcast time. Namely, they advertise their services during programs.

Broadcasters enter (exit) the industry as long as the above-normal profit (ANP ) from

broadcasting is positive (negative):

ṅ(t) = φANP (t) (1)

where φ is a positive scalar reflecting the speed of adjustment (i.e., ease of entry and exit).
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With Ŝ denoting the spectrum available to the broadcasting industry, 0 ≤ n(t) ≤ Ŝ
ω
.

From the perspective of the consumers, the overall quality of the aerially transmitted pro-

grams, Q(t), rises with variety and reception. While the variety of broadcasts rises with (and

is equal to) the number of channels, interferences intensify as the buffer zone between the

channels diminishes. Namely, reception is inversely related to the size of the unused spectrum

(S), which is given by:

S(t) = Ŝ − ωn(t) (2)

Consequently,

Q(t) = q(n(t), S(t)) (3)

where q(0, Ŝ) = 0. The direct, variety, effect of the number of channels on quality, is positive

but not increasing: qn > 0 and qnn < 0. The indirect negative effect of the number of channels

on quality, through deteriorating reception, is negative: -ωqs, where qs > 0, and (for simplicity)

unchanged qss = 0 . Up to a critical number of channels ñ < Ŝ
ω
, the positive variety effect

dominates the negative interfernce effect: (qn− ωqs) � 0 for n � ñ.

The overall demand for broadcasts increases with quality. Consequently, the broadcasting

industry’s aggregate revenue from advertisements and subscription fees at any t is R(q(t)) with

R(0) = 0, Rq > 0, and, for tractability, Rqq = 0. Assuming that the consumers do not have

favourite channels, the industry’s aggregate revenue is equally distributed. The instantaneous

operational cost of each channel is, for simplicity, time-invariant, c, and so also the (foregone)

normal profit attainable in other industries, π.

In sum, the change in the number of broadcasters (channels) is given by:

ṅ(t) = φ

[
R(q(n(t), Ŝ − ωn(t)))

n(t)
− (c+ π + g(t))

]
(4)

The royalties charged on bands reduce the above normal profit and, subsequently, the

number of broadcasters. In turn, the variety of broadcasts is reduced but the reception of each

is improved. If the former (latter) effect dominates the latter (former), the industry’s overall

revenue decreases (increases), the number of broadcasters is diminished (increased), and so

forth. As long as the broadcasting industry is not in the optimal steady state, time-invariant
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royalties are not optimal. In the ensuing sections we first demonstrate the role of fixed ad hoc

royalties in the said process and then the determination of the optimal royalties.

3. AD HOC STEADY STATE WITH FIXED ROYALTIES AND IMMEDIATE
ADJUSTMENT

In this scenario, g(t) is equal to a positive time-invariant scalar, g, and the immediate

adjustment (φ → ∞) of the number of broadcasters exhausts the broadcasting industry’s

above normal profit:

ANP (t) =
R
(
q
(
n(t), (Ŝ − ωn(t)

))

n(t)
− (c+ π + g) = 0 ∀t (5)

Recalling our assumptions, R(0) = 0, and the slope of the industry’s revenue curve is:

dR

dn
= RQ(qn − δqs) � 0 ∀n � ñ (6)

as depicted in Figure 1 by the inverted parabola. The industry cost function is linear in

n, C(t) = (c + π + g0)n(t).. The interior steady state of the industry is in the intersection

between the industry’s revenue curve and cost line, which, as displayed by the arrows along

the horizontal axis, is asymptotically stable.

For example, suppose that:

Q(t) = n(t)
[
Ŝ − ωn(t)

]
(7)

and:

R(t) = pQ(t) (8)

where p is, for simplicity, a constant and time-invariant marginal return on quality (in terms of

revenues from subscriptions fee and/or commercial advertisements). With these specifications

in mind, the industry’s revenue is:

R(t) = pŜn(t)− pωn(t)2 (9)

and the industry’s above-normal profit is:

ANP (t) = pŜ − pωn(t)− (c+ π + g) (10)
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FIG. 1 Spectrum use under immediate adjustment and fixed royalties

By setting ANP to zero:

nss =
1

ω

[
Ŝ −

c+ π + g

p

]
(11)

As indicated by the dashed cost lines, the government can increase, or reduce, the steady-state

number of spectrum users by lowering, or raising, royalties.

4. OPTIMAL CONTROL OF THE BROADCASTING INDUSTRY

Let us now analyze a socially optimal determination of royalties and adjustment of the

number of broadcasters. Although the government allows free entry and exist, it indirectly

control the number of broadcasters by choosing the trajectory of royalties {g} per band that

maximizes the consumers’ lifetime utility. The royalties received by the government from the

broadcasters are immediately directed to finance public services. Consumers (households, more

likely) are infinitely lived and have an aggregate income, Y (t), from which they pay R(q(t)) to

broadcasters for advertisements and access to programs and the remainder, Y (t)−R(q(t)), for

private goods. Broadcasts have two opposing effects on aggregate income. On the one hand,

they disseminate information that enhances knowledge and opportunities for transactions. On

the other hand, they divert time from work and active investment in human and social capitals.

These opposing effects are intensified by the quality of the broadcasts and hence:
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Y (t) = Y (Q(t)) = Y
(
q (n(t)) ,

(
Ŝ − ωn(t)

))
(12)

where Yq is positive (negative) if the former effect dominates (is dominated by) the latter.

The consumers derive instantaneous utility from the quality of the broadcasts, u1(Q(t)),

from the private goods, u2 (Y (Q(t)−R(Q(t)), and from the public services financed by the

royalties, u3 (n(t)g(t)).In recalling (3), the consumers’ overall instantaneous utility is:

u(t) = u1
(
q(n(t), Ŝ − ωn(t)

)
+u2
(
Y (q(n(t), Ŝ − ωn(t)

)
−R
(
q(n(t), Ŝ − ωn(t)

)
+u3 (n(t)g(t))

(13)

where u′i > 0 for i = 1, 2, 3 and u
′′
1 ≤ 0, u

′′
2 ≤ 0 and u

′′
3 < 0.

With an additively separable lifetime utility and time-consistent preferences represented by

a fixed positive rate of time preference, ρ, the public planner’s decision-problem is formally

displayed (with the time index omitted for compactness) as:

max
{g}

∞∫

0

e−ρt
[
u1q(n, Ŝ − ωn) + u2

(
Y (q(n, Ŝ − ωn

)
−R
(
q(n, Ŝ − ωn

)
+ u3 (ng)

]
dt (14)

subject to the broadcasters’ motion-equation (4). The Hamiltonian associated with this prob-

lem is concave in the control variable g. However, its concavity in the state variable n is not

verifiable, Qn = (qn−ωqs) � 0 asn � ñ, and Y (Q)−R(Q) can be concave, convex, or linear

in Q. In this general framework, the maximum-principle conditions might not be sufficient.

Our analysis of the optimal control of the broadcasting spectrum continues with a special

and analytically simpler case that does not entail the said problem. We adopt the explicit

specifications (7) and (9) of the industry’s quality of service and revenue used in Section 3 and

assume that:

u
1
= α(Ŝn − ωn

2) (15)

and:

u
2
= β
[
Y − p(Ŝn − ωn

2)
]

(16)

where α and β are positive scalars.
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We further assume that the consumers are not aware of the role of the spectrum-generated

royalties in financing public services and hence equate only the utility gained from an infin-

itesimal improvement in the quality of broadcasts to their loss of utility from the foregone

consumption of private goods. This privately perceived equality between the benefit and op-

portunity costs implies:

α = βp (17)

With these features in mind, the combined utility from broadcasts and private goods for

the consumers, who are both viewers and advertisers, is proportional to the broadcast-quality

influenced aggregate income:

u
1
+ u

2
= βY (Q) (18)

Consequently, the planner’s decision-problem can be now portrayed as :

max
{g}

∞∫

0

e−ρt [βY (Q) + u3 (ng)] dt subject to: ṅ = φ
[
p
(
Ŝ − ωn

)
− (c+ π + g)

]
(19)

and where Q is given by expression (9).

The present-value Hamiltonian associated with this problem is:

H = e−ρte−ρt [βY (Q) + u3 (ng)] + λφ
[
p
(
Ŝ − ωn

)
− (c+ π + g)

]
(20)

The co-state variable, λ, reflects the public planner’s shadow value (in utiles) of broadcasts

and, consequently, of unused spectrum. This present-value Hamiltonian is concave in the

control variable and, as long as YQ ≥ 0, is also concave in the state variable. In which case,

the following Pontryagin’s maximum-principle conditions are (by the Mangasarian theorem)

sufficient:

λ̇ = −e−ρt [βYQQn + u
′
3 (ng) g] + λφpω (the adjoint equation) (21)

∂H

∂g
= e−ρtu′3 (ng)n− λφ = 0 (the optimality equation) (22)
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ṅ = φ
[
p
(
Ŝ − ωn

)
− (c+ π + g)

]
(the state equation) (23)

lim
t→∞

H(t) = 0 (the transversality equation) (24)

By differentiating the optimality condition with respect to time and subsequently substi-

tuting the adjoint equation for λ̇ and the optimality condition for φλ and rearranging terms,

the following Euler equation describes the intertemporal change in royalties per band:

ġ =

[
φ
n
g − (ρ+ φpω

]
+
[
φβYQQn

u′
3
n

]

−n(
u′′
3

u′
3

)
−
ṅ

n



g +

1

n(
u′′
3

u′
3

)



 (25)

For tractability, let the consumers’ instantaneous utility from the public services financed

by the royalties on the used spectrum be isoelastic:

u
3
= (ng)γ 0 < γ < 1 (26)

and recall that Qn = Ŝ − 2ωn. Then, the band-royalties’ optimal rate of change is2 :

ġ

g
=

[
φ
n
g − (ρ+ φpω)

]
+
[
φβYQ(Ŝ−2ωn)g

1−γ

γnγ

]

1− γ
+

γ

(1− γ)

ṅ

n
(27)

This more specified Euler equation suggests that the socially optimal rate of change in royalties

is moderated by the planner’s rate of time preference and the broadcasters’ marginal return

on the quality of their programs. If YQ > 0, the rate of change in royalties rises with the

contribution of the programs to the aggregate income proportionally to the marginal utility

from consumption of private goods, to the available broadcast spectrum and to the entry-exit

speed.

While it is impossible to generally identify the steady states of the system (27) and (23), in

the two special cases stipulated in the ensuing sections they are identifiable. In both cases, YQ

2By differentiating the optimality condition with respect to time and subsequently substituting the adjoint
equation for λ̇ and the optimality condition for φλ into the resultant singular-control equation:

−

(
u′′
3

u′
3

)
nġ =

[
φ
n
g − (ρ+ φpω

]
+
(
u′′
3

u′
3

)
ṅg + ṅ

n
+
[
φβYQQn

u′
3
n

]

⇒ ġ =

[
φ
n
g−(ρ+φpω

]
+

(
u′′
3

u′
3

)
ṅg+ ṅ

n
+

[
φβYQQn

u′
3
n

]

−n(
u′′
3

u′
3

)

=

[
φ
n
g−(ρ+φpω

]
+

[
φβYQQn

u′
3
n

]

−n(
u′′
3

u′
3

)

−





g + 1

n(
u′′
3

u′
3

)





ṅ
n

As u3 = (ng)γ ,0 < γ < 1, u′3 = γ(ng)
γ−1, u′′3 = −γ(1− γ)(ng)

γ−2
−

u′′
3

u′
3

= (1−γ)
ng

By substitution and rearrangement of terms, we obtain equation (27).
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is constant. Since the direction of the net effect of the quality of broadcasts on the aggregate

income is not clear, we firstly consider the case of income neutrality.

5. STEADY STATE WITH INCOME-NEUTRALITY

With the positive information effect of broadcasts being exactly offset by the negative

time-diversion effect,YQ = 0, and consequently:

ġ

g
=

[
φ
n
g − (ρ+ φpω

]

1− γ
+

γ

(1− γ)

ṅ

n
(28)

or, equivalently:

ġ =
φg2 − n(ρ+ φp$)g

(1− γ)n
+

γ

(1− γ)

ṅ

n
g (29)

In steady state:

φg∗ − (ρ+ φpω)n∗ = 0 (30)

Recalling (23), the steady-state combination (n*,g*) should also satisfy:

[
p
(
Ŝ − ωn∗

)
− (c+ π + g) = 0

]
⇒
[
g∗ = p

(
Ŝ − ωn∗

)
− (c+ π)

]
(31)

By substituting expression (31) into expression (30) for g∗,

φ
[
p
(
Ŝ − ωn∗

)
− (c+ π)

]
− (ρ+ φpω)n∗ = 0 (32)

and the steady-state number of broadcasters is:

n∗ =
φ
[
pŜ − c− π

]

(ρ+ φpω)
(33)

In recalling equation (31), the steady-state optimal royalties on bands are:

g∗ =

[
1−

φpω

ρ+ 2φpω

](
pŜ − c− π

)
(34)

In the case of income-neutrality, the steady-state number of broadcasters increases with the

ease of entry and exit (φ), with the size of the available spectrum (Ŝ) and with the broadcasters’

marginal return on the quality of their service (p). It decreases with the planner’s rate of time
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preference, with the bandwidth, with the broadcasting operational cost and with the normal

profit in other industries. The steady-state royalties are a fraction 1−φpω
ρ+2φpω of the difference

between the potential return on the entire spectrum and the band user’s operational and

opportunity costs
[
pŜ − c− π

]
. This fraction is positively related to the public planner’s rate

of time preference and negatively to the speed of adjustment, to the bandwidth and to the

marginal return on the quality of the broadcasts. Noting that dg∗

dn∗
= −pω, the direction of the

full effect of each of the said model parameters on g∗ is opposite to its effect on n∗

In identifying the nature of the steady-state combination indicated by equations (33) and

(34) we note that the eigenvalues of the Jacobian (J*) of the system (23) and (29) in steady

state are:

µ1,2 = 0.5

[
ṅ∗n + ġ

∗
g ±

√(
ṅ∗n + ġ

∗
g

)2
− 4
(
ṅ∗nġ

∗
g − ṅ

∗
g ġ
∗
n

)]
(35)

where:

ṅ∗n = −φpω < 0 (36)

ṅ∗g = −φ < 0 (37)

ġ∗n =

[
−
φg∗

n∗
+ 2ρ+ (2 + γ)φpω

]
(
g∗

n∗

)

(1− γ)
< 0 (38)

and:

ġ∗n =


−ρ+ φpω

(1− γ)
+

(
g∗

n∗

)
γφ

(1− γ)


 < 0 (39)

Hence,

trJ∗ = −

[
1

(1− γ)

][
ρ+ (2− γ)φpω + γφ

(
g∗

n∗

)]
< 0 (40)

and:

detJ∗ = −
φ2

(1− γ)

[(
g∗

n∗

)2
+

(
ρ

φ
+ pω

)(
2
g∗

n∗
− pω

)]
� 0 (41)

as
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g∗

n∗
� −
[

ρ

φ+ pω

]
+

√(
ρ

φ+ pω

)2
+ pω

(
ρ

φ+ pω

)
(42)

Recalling (33) and (34):

g∗

n∗
=

[
pŜ − c− π

] [
1−φpω
ρ+2φpω

]

φ
(pŜ−c−π)
ρ+2φpω

=
ρ

φ+ pω
(43)

Consequently, det J∗ < 0 as 2 ρ
φ+pω >

√(
ρ

φ+pω

)2
+ pω

(
ρ

φ+pω

)
. In turn,

√
(trJ∗)2 − 4 detJ∗ >

|trJ∗| . As µ1 > 0 and µ2 < 0, the steady state (n
∗, g∗) is a saddle point.

The steady state of combination of broadcaster’ number and band royalties and its as-

ymptotic properties can be displayed in the n − g plane as follows. The isocline ṅ = 0 is

given by g = p(Ŝ − ωn) − c − π and is depicted by the downwardly sloped line in Figure 2.

As indicated by expression (37), ṅg < 0. Consequently, the horizontal arrows in the phases

above (below) the isocline ṅ = 0 are pointed leftward (rightward). By substituting equa-

tion (23) into equation. (29) for ṅ and rearranging terms, the isocline ġ = 0 is given by

g = −

[
γ(pŜ)−c−π

1−γ

]
+
[
ρ+(1+γ)φpω
φ(1−γ)n

]
and depicted by the upward sloping line. As indicated

by expression (38), ġn < 0. Hence, the vertical arrows in the phases on the right (left) hand

side of the isocline ġ = 0 are pointed downward (upward). The stable manifold is depicted

by the solid arrows and the prototype unstable courses by the dashed arrows. Along the

south-western convergent arm, which in view of the initial high level of concentration of the

industry is the more relevant one, the number of broadcasters rises, despite the increase of

royalties on bands. Along the north-eastern convergent arm the number of channels decreases,

despite the lowering of the band-royalties by the state. These counterintuitive optimal courses

of the broadcasting industry are explained by the trade-off between variety and reception in

forming the appeal of broadcasts for the viewers-advertisers and, subsequently, the industry’s

revenues and above-normal profits. Along the south-western convergent arm the positive effect

of increasing variety in a less congested spectrum is dominant, whereas along the north-eastern

convergent arm the interference effect in the highly congested spectrum is dominant.

6. STEADY STATE WITHOUT INCOME NEUTRALITY AND WITH CONSTANT
MARGINAL UTILITY

We now attempt to analyze the effect of income sensitivity to broacasts’quality (YQ 
= 0) on

the steady state of the industry’s under some simplifying assumptions. Assuming that YQQ < 0
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FIG. 2 Broadcasters-royalties phase-plane diagram under income-neutrality

and recalling equation (27), in steady state:

φ
g∗

n∗
+
φβYQ(Ŝ − 2ωn∗)g∗(1−γ)

γn∗γ
− (ρ+ φpω) = 0 (44)

By substituting equation (31) into equation (44):

φ
(
pŜ − c− π

)
+
φ

γ
βYQ(Ŝ−2ωn

∗)
[
pŜ − c− π − pωn∗

](1−γ)
n∗(1−γ)−(ρ+2φpω)n∗ = 0 (45)

Equation (45) reveals that as long as 0 < γ < 1 there are multiple steady states, which due to

the complexity involved cannot be computed or analyzed. Note, however, that in the limiting

case of the agents’ utility from the public goods financed by the royalties, γ → 1, there exists

a unique, computable steady state with:

n∗ =
φ
(
pŜ − c− π

)
+ φ

γ
βYQŜ

ρ+ 2φpω + 2ωφ
γ
βYQ

(46)

and:

g∗ =
(
pŜ − c− π

)
− pωn∗ =

(
pŜ − c− π

)
− pω



φ
(
pŜ − c− π

)
+ φ

γ
βYQŜ

ρ+ 2φpω + 2ω φ
γ
βYQ


 (47)
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Note further that the steady state computed in the previous section under income neutrality

and indicated by Eq. (33) and Eq. (34) can be also obtained by substituting YQ = 0 into

equations (46) and (47).

Clearly, in the case of income-sensitivity to the overall quality of programs, a broadcasting

industry can only prevail in steady state (i.e. n∗ > 0) if, and only if YQ > 0; namely, if, and only

if, the information dissemination effect of the broadcasted programs dominates their adverse

effect on time allocated to work (and less passive activities such as investment in human and

the social capitals). Yet the effects of a positive income-sensitivity to broadcasts’ quality on

the steady-state size of the broadcasting industry and royalties are not straight forward3 :

∂n∗

∂YQ
� 0 and

∂g∗

∂YQ
� 0 as

(
Ŝ
ω

φ

)
� 2
(
c+ π

ρ

)
(48)

Namely, if the ratio of the maximal number of broadcasters to the entry-exit speed is larger

(smaller) than twice the ratio of the operational and opportunity costs to the public planner’s

rate of time preference, then the steady-state number of broadcasters increases with the sen-

sitivity of the aggregate income to the broadcasts’ quality, whereas the steady-state royalties

decreases.

Although a phase plane diagram cannot be constructed in this case, the local stability

of the aforesaid steady-state combination of broadcasters’ number and band-royalties can be

assessed. In assessing the local stability of the said steady state note that in the present case

Eq. (27) can be expressed as:

ġ =





[
φ
n
g − (ρ+ φpω)

]
+
[
φ
γ
βYQ

(
Ŝ

n−2ω

)]

(1− γ)
+

γ

(1− γ)

ṅ

n



 g (49)

The terms of the Jacobian of the differential equation system (49) and (23) in steady state are:

ġ∗g =





[
φ
n∗
g∗ − (ρ+ φpω)

]
+
[
φ
γ
βYQ

(
Ŝ

n∗−2ω

)]

(1− γ)
zero in steady state

+
γ

(1− γ)

ṅ

n∗
=zero

+
φ+

= -φ

ṅg

(1− γ)n∗




= 0 (50)

ġ∗n = −
1

(1− γ)





[
φg∗ + φ

γ
βYQŜ

]

n∗2
+ γ

φpωn∗ + ṅ

n∗2



 =

[
φg∗ + φ

γ
βYQŜ + γφpωn∗

]

(1− γ)n∗2
< 0 (51)

3Note that:

∂n∗

∂YQ
=

φ
γ
β[ρŜ−2ωφ(c+π)]

(
ρ+2φpω+2� φ

γ
βYQ

)
2 � 0 as ρŜ � 2ωφ(c+ π) and

∂g∗

∂YQ
= −pω ∂n∗

∂YQ

15



ṅ∗g = −φ < 0 (52)

ṅ∗n = −φpω < 0 (53)

Hence, the eigenvalues of this Jacobian are:

µ1,2 = 0.5


−φpω ±

√√√√
(φpω)2 +

4φ
[
φg + φ

γ
βYQŜ + γφpωn

]

[(1− γ)n2]


 (54)

Since the discriminant is positive and larger than φpω, µ1 > 0 and µ2 < 0 and the steady state

depicted by equations. (46) and (47) is a saddle point.

7. CONCLUSION

The advent of digital transmission technologies has done little to relieve constraints on the

amount of spectrum allocated to the broadcasting industry. The fundamental, perennial trade-

off between variety and reception still prevails. This trade off is likely to be most prominent

under a deregulatory scheme that allows free entry. Since spectrum is a state-owned time-

invariant scarce natural resource, we argued that, as in the case of any other state-owned

natural resource, governments are entitled to royalties on its use. Therefore, in addition to the

direct benefits from the service provided by the broadcasting industry, the indirect benefits to

consumers from the public services financed by the royalties on this natural resource should

be taken into account in the determination of the socially optimal allocation of bands to

broadcasters.

We proposed an optimal control model that takes into account the aforesaid aspects, as

well as the possible positive and negative effects of broadcasts on aggregate income, in setting

the state’s royalties on spectrum. We found that as long as the broadcasting industry is not in

steady state, time-invariant royalties are not optimal. We demonstrated that under a privately

perceived equality between the benefits and costs of broadcasting, the rate of change of the

optimal royalties is moderated by the planner’s rate of time preference and the broadcasters’

marginal return on the quality of programs. We also found that the optimal royalties’ rate

of change rises with the contribution of the programs to the aggregate income, proportionally

to the consumers’ marginal utility from private goods, to the available broadcasting spectrum

and to the entry-exit ease.
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We then computed and analysed the steady state for two special cases. We found that,

if the net effect of the opposing aspects of broadcasts on the aggregate income is nill, the

steady-state number of broadcasters is unique and increases with the entry-exit ease, with

the size of the available spectrum and with the broadcasters’ marginal return on the quality

of programs, but decreases with the planner’s rate of time preference, with the bandwidth,

with the broadcasting operational cost and with the normal profit in other industries. We

also found that the steady-state royalties are a fraction of the difference between the potential

return on the entire spectrum and the user’s operational and opportunity costs, and that the

fraction is positively related to the public planner’s rate of time preference and negatively to

the entry-exit ease, to the bandwidth and to the broadcasters’ marginal return on the quality

of the programs. In contrast to the observed consolidation and return to concentration in the

aftermath of deregulatory reforms, at least in this special case of royalties-based optimal control

of the broadcasting industry there is a singular arm along which the number of broadcasters

gradually increases, but decelerated by rising royalties, and converges to a steady state level.

A unique, saddle-point steady state is also found when the marginal effect of the quality of

broadcasts on the aggregate income and the consumers’ marginal utility from the public goods

financed by the spectrum royalties are positive and constant. In this case, the steady-state

size of the broadcasting industry increases with the sensitivity of the aggregate income to the

broadcasts’ quality only if the ratio of the maximal number of broadcasters to the entry-exit

speed is at least twice as large as the ratio of the operational and opportunity costs to the

public planner’s rate of time preference.
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