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Abstract

In this thesis, we will be presenting a slew of mathematical finance scenarios where the

Mellin transform and its associated techniques are incorporated to solve either a direct or

inverse problem. Specifically, we will be investigating options pricing problems in both

the European and American sense whereby the underlying asset is modelled by a jump-

diffusion process. We exploit the elegant properties of the Mellin transform to elicit a re-

sult for the option valuation under a jump-diffusion model. Additionally, one of the main

breakthroughs in this work is isolating and determining an expression for the jump term

that is general and to our knowledge, has not been ascertained elsewhere. As an adden-

dum to American options, we extend our Mellin transform framework to obtain a pricing

formula for the American put in jump-diffusion dynamics. Furthermore, an approximate

integro-differential equation for the optimal free boundary in the same aforementioned

dynamics is also derived and we test the accuracy of this against the numerical finite dif-

ference method. The final area we investigated was the valuation of European compound

options and particularly how to reformulate the pricing formulas by incorporating Mellin

transform techniques and the put-call parity relationship that exists for vanilla European

options.
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Chapter 1

Introduction

1.1 Options

In mathematical finance, an option is a contract between two parties (known as the holder

and the writer) that gives the holder the right, but not the obligation, to buy/sell an un-

derlying asset from/to the writer at a mutually agreed price (known as the exercise or

strike price) on or before a specified future date (known as the expiry date). On or before

the expiry date, the holder may “exercise” the option. The right to buy is called a call

option whereas the right to sell is called a put option. Furthermore, a European option

can only be exercised at expiry whereas an American option can be exercised before or

on the expiry date. As elementary examples, one can take options on foreign currencies,

commodities, or common stock on a firm. An option is known as a financial derivative

because it derives its intrinsic value from another entity – in this case, the underlying as-

set. This underlying asset’s value is often modelled by a stochastic differential equation

(SDE) to add a layer of uncertainty.

A well-known result for determining the option value is known as the Black-Scholes

equation [8]. The Black-Scholes formula is in fact a partial differential equation (PDE)

that is also paired with a terminal condition governed by a payoff function. The payoff

function merely states what the option’s value will be at the expiry date. Typically, this

is normally a piecewise linear function of the strike price and the underlying asset (at

least in terms of a call and put). One of the most classical methods to solve the Black-

1



CHAPTER 1. INTRODUCTION 2

Scholes PDE system is to invoke a transformation of variables (further details of this in

addition to [8] can be found in [115]) that effectively eliminates a few terms and reduces

the PDE system to the archetypal heat equation commonly seen in thermodynamics [17].

The motivation for this step is because the heat equation has been studied endlessly in

literature and the solution to the PDE system is ascertainable [31]. The original details

of [8] can also be complemented with [115] for further details and discussion about this

derivation. The crux of option valuation is to determine a fair price for the holder to pay

the writer to enter into their specified contract. This price is commonly known as the

option premium (or simply, the premium) that actually signifies the value of the option at

time-zero (i.e., starting today).

For European options, the closed-form analytical solutions are known, but their Amer-

ican option counterparts pose a far greater challenge when attempting to reconcile an ex-

act solution. Due to the flexibility of being able to exercise an American option up to

and including the expiry date, there may come a situation where it is in the holder’s best

interest to exercise this option early once the underlying asset reaches a critical value

known as the optimal exercise price. The collection of all of these optimal exercise prices

for the entire duration of the option’s lifetime is denoted the optimal exercise boundary.

If the holder were to possess these optimal exercise prices, they would have knowledge

of when to exercise the contract. However, the optimal exercise boundary is unknown a

priori and this is what colours it differently to the European option pricing valuation prob-

lem. Both the option value and the related optimal exercise boundary are unknown and

this consequently introduces complications that require more sophisticated mathematical

techniques to solve.

Financially, American option contracts are more ideal to trade because one can ex-

ercise the option at any time up until and including the expiry date. Perhaps the earli-

est mathematical formulation for the American option pricing problem was proposed by

McKean [82] where it was proved that there is an equivalence between the optimal stop-

ping problem describing the framework of the American option valuation problem and

a free boundary problem. McKean was then able to derive a homogeneous PDE on a



CHAPTER 1. INTRODUCTION 3

restricted domain, but this was solved using an incomplete Fourier transform and an an-

alytical result was obtained. Geske [105] then employed a discrete time approach using

a financial derivative called compound options (this will be discussed later in subsection

1.2). The basic idea Geske employed was to first discretize the time domain then price

an American put option as the discounted expected value of all future cash flows. The

justification for these cash flows is because the put option can be exercised at any discrete

interval in time for the duration of the option’s lifespan. Another perspective to this is de-

composing the American option into a finite quantity of European style options. It is then

illustrated that this construction is valid due to it being a solution of the Black-Scholes

PDE subject to the free boundary condition imposed by the presence of the optimal exer-

cise boundary.

Although this clever investment strategy of emulating an American put option using

cash flows is financially instructive, it does not provide any insight into the properties of

the optimal exercise boundary. It was not until the work of Kim [72] that not only provided

a continuous time solution to the work in [105], but also contained a representation of the

American call option as a sum of the European call option plus an additional component

that exemplifies the gains one would make from potential early exercise. This term is

known as the early exercise premium. Moreover, this early exercise premium is expressed

in terms of an integral which encapsulates the optimal exercise boundary. If paired with

the appropriate boundary conditions with the PDE, one arrives at an integral equation

(depending on which type of option is chosen) for the optimal exercise boundary which

can then be solved using numerical procedures that involve both a root-finding scheme

like Newton-Raphson and numerical integration like a standard quadrature scheme (e.g.,

Trapezoidal). The aforementioned boundary conditions for the option to determine this

integral equation for the free boundary are also known as the smooth pasting conditions

or matching conditions, and it is meant to mathematically ensure the optimality of the

free boundary. The consequent intuitive outcomes by Kim later become coined “Kim’s

equations” or “Kim’s integral equations”. Solving the integral equation related to the op-

timal free boundary is ideal because if that is completed, then the early exercise premium
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is also computable and thus, one would be able to obtain the time-zero American option

value. As a response to this, several authors have devoted time to investigate and devise

algorithms that would solve this integral equation for the exercise premium (in particular,

see [62, 95, 103] just to list a few examples).

An altered reformulation of the American pricing problem was then later outlined by

Jamshidian [64]. The analysis resulted in an inhomogeneous PDE in lieu of the homo-

geneous PDE. The rationale behind this was to extend the restricted domain to an unre-

stricted domain. Similar to McKean [82], Jamshidian also implemented a Fourier trans-

form methodology to solve this new transformed PDE system and ultimately deduced an

integral equation system that identically emulates Kim’s integral equations in [72].

In regards to the numerical valuation of American options, the literature is quite rich.

We will highlight a few of the more prominent articles and references that have gained

popularity for either their simplicity and/or novelty. Cox et al. [37] developed one of the

earliest numerical implementations to price both European and American options called

the binomial method. The method involved creating a lattice that is able to track the

evolution of the asset’s price in a discrete time manner. Each node of the lattice represents

a possible price for the underlying asset at a given point in the time domain. The path the

underlying asset draws is determined by multiplicative factors that are calcuated using the

volatility of the underlying asset. Under the risk-neutral assumption, the option price can

be expressed in terms of a discounted expectation of the payoff at expiry. With this, the

binomial method starts at the terminal time and invokes the payoff for each possible asset

price node. It then marches backwards to inevitably produce the time-zero option price. It

is one of the most straightforward algorithms to understand and incorporate into practice.

Monte Carlo simulations have also been another source of numerical promise in rela-

tion to American options. Their versatility is in their ability to accommodate for multiple

sources of uncertainty in the model. The first venture to incorporate Monte Carlo for the

purposes of pricing American-type contingents was by Tilley [107], who used a dynamic

programming approach to establish a scheme that solves for the American option pricing

problem backwards in time.
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Another class of methods to price American-type derivatives are analytical approxi-

mations that account for both the derivative value itself and any embedded features (e.g.,

American options and the early exercise premium). The most notable technique was pro-

posed by Barone-Adesi and Whaley [6] where they developed a quadratic approximation

method that replaces the early exercise premium with a term that is quadratic in the under-

lying asset (with all attached quantities to be either known or able to be determined using

known values). Undoubtedly, this would prove beneficial in terms of minimising compu-

tational effort and their simulation results prove that the accuracy is also comparable to

the finite difference method (FDM) and the compound option approach of Geske.

1.2 Compound options

A compound option is an option on an option. That is, the underlying product is not

an asset but another option whose underlying is an asset. For standard vanilla European

options, there are four cases: call-on-a-call, call-on-a-put, put-on-a-call, and put-on-a-

put.

Geske [106] developed the seminal theory for compound option models. The moti-

vation was to be able to accurately price a firm’s common stock (also known as ordinary

share) – a security that grants the holder corporate equity ownership. Black and Sc-

holes [8] argued that common stock can be interpreted as an option on the firm. This is

because when a firm defaults, the holders of the common stock maintain the right but not

necessarily the obligation to sell the entire firm to the bondholders (who possess claims

to the firm’s future cash flows as a result of its financial liabilities) for a strike equal to

the face value of the bond [76]. Thus an option on a portion of the common stock can be

viewed as a compound option since the underlying received upon exercising the option is

technically another option on the value of the firm. Consequently, Geske [106] derived

analytical formulas for compound options when the firm value follows a geometric Brow-

nian motion. This work was then extended to price compound options on various types

of bonds (e.g., risky coupon bonds [52], retractable and extendible bonds [13, 2, 80]).

A distinct link between compound options and the pricing of American options was
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introduced by Roll [101]. The technique consisted of constructing a portfolio of three

European call options: two standard European call options and one European compound

call option operating on one of the standard call options. By constructing this replicating

portfolio, it is possible to mimic the behaviour of an unprotected American call whose

underlying is an asset yielding one known dividend. Roll [101] was successfully able

to devise an analytical valuation formula for this portfolio by implementing the results

from [106]. Geske [53] simplified the results in [101] and provided a solution which

could be readily accommodated for multiple dividends. Whaley [113] provided some

corrections to the models presented in [101] and [106] by noting a misspecification in one

of the replicating portfolio terms. This extension is also known as the Roll-Geske-Whaley

method for pricing American options.

For non-compound options, a recent extension was provided by Bos and Wander-

mark [9] that splits the multiple dividends into two categories: “near” (dividend pay-

ments about to occur) and “far” (dividend payments close to expiry). The rationale used

was to subtract the “near” dividends from the underlying’s value and add “far” dividends

to the strike price. This was an attempt to reconcile methods by Hull [63, pp. 298] and

Musiela and Rutkowsky [87, pp. 53–54]. The former simply subtracted the total value of

all dividends in the option’s lifetime from the current underlying asset’s price. Once this

adjustment is made, the option price can be determined. The latter method accumulates

the total value of all dividends paid during the lifetime of the option and appends this

as a scaling factor to the value of the underlying asset at expiry. From there, one works

backwards in time to calculate the option’s value. The latter method also assumed the

dynamics of the underlying asset to be governed by the Cox-Ross-Rubinstein model [37].

Veiga and Wystup [111] notably developed a closed form option pricing formula for assets

paying discrete dividends. The formula is expressed in terms of the standard European

call option plus a truncated series involving the dividend and derivatives of the afore-

mentioned call (which are obtained by using a Taylor series approximation). The cited

works [101], [106], [9], and [111] formulated the stochastic differential equation (SDE)

that models the underlying asset to account for the dividend payment(s) as a term which
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signifies a cash dividend of a fixed size. This total value of the dividend is not contingent

on the value of the underlying asset post-dividend payment date. This distinction between

a yield and a cash payment is crucial when constructing the mathematical model to price

the underlying asset.

Further attention has been dedicated ever since to valuing American options via the

compounds options approach (see [105], [89], [16], [12], [61], [21], and [117]). These

cited works assumed that the underlying asset followed a standard diffusion process. Con-

sequently, some analysis has also been conducted in the circumstance where the underly-

ing follows a jump-diffusion process (see [57] and [78]).

1.3 Jump-diffusion models

It was verified by Merton [84] that one of the fundamental assumptions of the Black-

Scholes model is that the asset price follows a continuous-time, diffusion process with a

continuous sample path. This prompted Merton in [85] to consider a “jump” stochastic

process for the asset price that allows for the probability for it to change at large magni-

tudes irrespective of the time interval between successive observations. The jumps in the

asset price can be accommodated by appending an additional source of uncertainty into

the asset price dynamics that models the discontinuity. Moreover, subsequent empirical

studies (e.g., Rosenfeld [102], Jarrow & Rosenfeld [65], Ball & Torous [5], and Brown

& Dybvig [15]) asserted that the asset price process is best modelled by a stochastic pro-

cess with a discontinuous sample path. This phenomenon suggests that the asset price

dynamics follow a jump-diffusion model.

Merton [85] derived a partial integro-differential equation (or PIDE) to represent a

modified Black-Scholes system that accounts for the inclusion of jumps. A solution was

also given, which can be viewed as an explicit European option pricing formula in terms

of an infinite series of Black-Scholes prices multiplied by a factor that encapsulates the

behaviour of the jump. Essentially, the Merton model adds the Poisson process to the

Wiener process that governs the asset price. The result is a continuous-time, stochastic

process with stationary increments independent of one another, known as a Lévy process
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[93].

The importance of developing such a system extends beyond attempting to capture

the options market’s behaviour at any given point. The need lies within being able to de-

liver fundamental explanations to why certain phenomena occur. For example, when one

wishes to estimate the implied volatility surfaces to calibrate the standard Black-Scholes

option values to actual market quotes, the Black-Scholes model where the underlying as-

set follows a standard diffusion process assumes the implied volatility surface to be flat.

That is, a constant value during the option’s lifetime and for varying values of the strike

price (options are commonly listed as a function of their strike price). But empirical

observations have shown that these implied volatility surfaces are heavily dependent on

both the strike price and the expiry date (in particular, refer to Heynen [58], Dumas et

al. [42], Rebonato [97], and Cont & Fonseca [33, 34]). As a result, these surfaces actually

form either a “smile” or “skew” depending on the values of the strike and time to expiry.

Dupire [43] developed a technique for computing the local implied volatility surfaces and

he showed that the standard Black-Scholes model with an asset under diffusion dynamics

can embody all the distinguishing features of this “smile problem”. However, it only gives

us a tool needed to ensure we recover the required option values. It does not explain why

these smiles and skews occur. A jump-diffusion model, however, is able to encapsulate

both a justification for these smiles and skews, their increased occurrences after the 1987

crash (see Andersen and Andreasen [3]), and how the jumps in the asset price reflect the

”jump fear” in market participants [35].

In terms of option valuation in jump-diffusion models, the literature is quite rich (e.g.,

see Amin [4], Kou [74], Kou & Wang [75], Hilliard & Schwartz [60], Carr & Mayo [18],

Feng & Linetsky [46], Cheang & Chiarella [23], and Frontczak [49]) with many resource-

ful texts (e.g., see Rogers [100], Kijima [70], Cont & Tankov [35], and Vercer [110]).

Amin [4] developed one of the earliest numerical schemes for pricing options in a

jump-diffusion framework by adapting the binomial model proposed by Cox et al. [37].

The extension is achieved by allowing multiple movements in the asset price at every

discrete time step to simulate the discontinuous jumps, whereas the standard binomial
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model allows for only one discrete movement in the asset price at every discrete point in

time. This discrete approach is then compared numerically against the closed-form solu-

tion provided by Merton [85], with the resultant options values having little differences

between one another.

Pham [92] was one of the first to consider pricing American derivatives in a jump-

diffusion model. Recall from the introductory subsection about options that the American

option pricing problem inherently contains another unknown called the free boundary or

optimal exercise boundary. Via a probabilistic approach that utilizes a convexity property

of the American option value and a maximum principle, Pham was able to translate the

American put option valuation problem to a parabolic integro-differential free-boundary

problem. The final result was a decomposition of the American put value as the sum of its

European value counterpart and early exercise premium similar in form to the expression

found in [72].

In contrast to the probabilistic avenue that was employed in [92], Gukhal [56] pre-

sented analytical formulas for American options under jump-diffusion dynamics through

a discrete time method that incorporates compound options similar to what was illustrated

in [106]. These results account for the underlying asset paying continuous proportional

dividends. The rationale Gukhal followed was to construct a American call option by an

equivalent portfolio. This portfolio comprised of a European call subjected to the same

jump-diffusion process plus the present value of expected dividends in the exercise region,

then subtracting the present value of total interest paid on the strike price in the exercise

region and a term labelled the “rebalancing cost” due to the occurrence of jumps from

the exercise region transitioning into the continuation region. Then the time domain is

discretized into uniform increments and under the assumption that the American option

can only be exercised at a finite number of points in time, an induction argument is pro-

posed to derive a general formula for an American call that is exercisable at an arbitrary

value of time instants. Then a limit is taken as the time increment approaches zero and

an integral expression for the American call with jumps is ascertained. The study places

particular emphasis on the clarity of the analytical results and how they aid in character-
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ising the components of value that contribute towards an American option and how the

accommodation for jumps impacts the aforementioned sources. Gukhal then proceeds to

analyse specifications of the distribution for the jump amplitude including lognormally

distributed jumps and bivariate jumps.

Further empirical investigations by Kou [74] led to the proposal of a double exponen-

tial jump-diffusion model where the jump intensities are double exponentially distributed.

The author’s empirical studies contradicted the previous assumptions that the underlying

asset’s jump-diffusion model was lognormal. Specifically, the findings showed that the

return distribution of the asset possessed features uncharacteristic of a normal distribution

(i.e., higher peak and heavier asymmetric tails than that of a normal distribution), and the

“volatility smile” observed in the option markets. Despite the normal distribution being

a central mechanism in simulating the asset price process, Kou provided in-depth expla-

nations for the aforementioned empirical analysis and introduced an updated model. This

model assumed the jumps in the asset price follow a double exponential distribution. An-

alytical solutions for pricing of European call/put options and path-dependent options in

a double exponential jump-diffusion model were derived in [75] co-authored with Wang.

However, limitations of the model were noted by Kou [74] in regards to hedging difficul-

ties and assumed dependence of the jump increments.

One key drawback in the Gukhal [56] formulation was the restriction on the type of

payoff function allowed due to the compound option methodology. This was addressed

by Chiarella and Ziogas [27] where they applied Fourier transform techniques in a di-

rect manner to solve the PIDE for an American call and its related free boundary for a

jump-diffusion model. This approach mimics that of McKean [82] and Jamshidian [64],

as was discussed earlier, for American options in a standard diffusion setting. Chiarella

and Ziogas provide both an incomplete Fourier transform McKean approach to solve a

homogeneous PIDE on a restricted domain, and a standard Fourier transform Jamshidian

scheme that solves an equivalent inhomogeneous PIDE on an unrestricted domain. The

authors are also able to reconcile the findings from both methods and provide insightful

relations to Gukhal’s detailed study in [56]. The integral equations derived for an Ameri-
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can call in jump-diffusion dynamics and the free boundary turn out to be interdependent.

Numerical simulations are also provided where they also developed a novel extension to

the quadrature scheme introduced in [69] to accommodate for the presence of jumps in

the model.

In terms of other numerical implementations, Andersen and Andreasen [3] proposed

a finite difference method (FDM) to solve the PIDE from Merton [85]. They first subject

the PIDE to a number of logarithmic transformations then apply simple FDM discretiza-

tions to all the derivative terms present in this new PIDE. The discretized equation is then

rearranged in a way that resembles the θ -scheme (see Section 12.4.3 in [35]). However,

Andersen and Andreasen choose to incorporate an alternating direction implicit (ADI)

scheme to ensure that their consequent system of difference equations remains a tridiago-

nal matrix, which will ultimately be more computationally efficient.

With a similar regard to the FDM implementation for jump-diffusion characteristics,

d’Halluin et al. [41] developed an implicit discretization method for pricing American

options in a jump-diffusion model. They instigated a penalty method similar to [47] to en-

force an American option style of constraint on the pricing formula except with the added

condition of the underlying asset ascribe to a jump-diffusion process rather than a standard

diffusion process. This type of approach was initially thought to lead to ill-conditionally

algebraic problems, but it was demonstrated to be false in [47]. The process involved

discretizing the PIDE but imposing conditions that may change the expression for the dis-

cretization (i.e., depending on certain parameter values, the choice of discretization can

be either forward, backward, or central). Numerical examples are provided for both the

American put and American butterfly options under lognormally distributed jumps.

Hilliard and Schwartz [60] introduced a bivariate tree approach for pricing both Eu-

ropean and American derivatives with jumps, where one factor represents a discrete-time

version of the standard continuous asset price path whilst the second factor models a

discrete-time version of the jumps arriving as a Poisson process. Feng and Linetsky [46]

also provided a computational alternative to pricing options with jumps by introducing

a high-order time discretisation scheme to solve the PIDE in Merton’s article [85]. The
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authors demonstrated that their method provides rapid convergence to the solution in com-

parison to standard implicit-explicit time discretisation methods, using Kou’s model as a

comparative example.

Carr and Mayo [18] also reported a novel numerical implementation for calculating

option prices when the asset is subjected to jump-diffusion dynamics. The authors devised

a method that involves converting the integral term in the PIDE derived by Merton [85]

to a correlation integral. They stated that in many instances this correlation integral is a

solution to an ordinary differential equation (ODE) or PDE. Carr and Mayo also argued

that solving these associated ODEs and PDEs substantially reduces computational effort

since it effectively bypasses numerical evaluation of the aforementioned integral. They

illustrated their concept by examining both Merton’s lognormal model and Kou’s double

exponential model.

Briefly returning to the analytical side, Cheang and Chiarella [23] advocated for

amendments to be made to Merton’s original jump-diffusion model. They argued that

the Merton model makes assumptions that lead to the jump-risk [54] being unpriced and

force the distribution of the Poisson jumps to remain unchanged under a change of mea-

sure. The authors stressed the significance of this since a realistic market which contains

assets with jumps is incomplete. Additionally, when the market price of the jump-risk is

accounted for, there exist many equivalent martingale measures that ultimately produce

different prices for options. Hence, they introduced a Radon-Nikodým derivative process

which translates the market measure to an equivalent martingale measure (EMM) for op-

tion valuation. However, the EMM is non-unique in the presence of jumps; one must

choose the parameters in the Radon-Nikodým derivative to establish an EMM to price

options. Furthermore, Cheang and Chiarella derived a PIDE and thus a general pricing

formula which reduces to Merton’s solution [85] as a special case.

Frontczak [49] adopted a method of solving the PIDE seen in [85] using Mellin trans-

forms. He proceeded to re-derive Merton’s solution for a European put option via direct

inversion. Frontczak’s approach of directly evaluating the inverse Mellin integral (i.e., a

complex integral) is where the approach could be improved. Moreover, this process needs



CHAPTER 1. INTRODUCTION 13

to be repeated for different payoffs, making this procedure computationally expensive and

tedious.

1.4 Implied volatility

In the Black-Scholes option pricing model, most of the associated parameters (e.g., the

option price, interest rate) are observable. The only quantity that cannot be observed is

the variable σ : the volatility. Mathematically, it is significant as its role is to emulate a

level of uncertainty in the underlying asset. In practice, its importance is further signified

because prior knowledge of σ would enable a financial practitioner to accurately price

other derivatives that also incorporate the same underlying asset they are interested in. For

estimating the volatility σ in the standard diffusion model (2.1), there exist two primary

methods. The first scheme involves estimating σ from previous asset price movements.

That is, suppose a model for the behaviour of the asset involving σ is known and the

asset prices for all times up until the present are accessible. Then σ can be fitted to this

observed data. This method is dubbed historical volatility as σ is approximated using data

of previous asset prices. The second is to calibrate all the known parameters, then treat

the option value as a function of σ (the option price is one of the known parameter values)

and solve for σ . This approach determines σ implicitly from the Black-Scholes formula

using the option price and the observed parameters, and is referred to as implied volatility.

Aside from option pricing in a jump-diffusion framework, another aim of this article is to

present a novel implied volatility scheme using Mellin transforms. For the scope of this

thesis, we will be limiting the discussions of implied volatility to options where the vega

(i.e., a measure of sensitivity of options prices to changes in volatility [112]) has only one

sign. This assumption of a single-signed vega includes European calls and puts.

One of the earliest methods for implied volatility estimation was proposed by La-

tané and Rendleman [77], where σ is computed using a technique called weighted im-

plied standard deviation (WISD). Their idea consisted of obtaining a set of option prices,

approximating the implied volatility using the Black-Scholes formula and calculating a

WISD using a “weight” against the Black-Scholes-derived implied volatility. The crux
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of the method was to reduce any sampling error. Latané and Rendleman concluded the

WISD approach was superior in comparison to corresponding historical volatility esti-

mations. Furthermore, the weighting scheme selected provided more weight to options

at-the-money and possessing a longer time to expiry.

Cox and Rubinstein [38] further analysed the weighting scheme proposed by La-

tané and Rendleman and stressed the importance of employing data from at-the-money

options. Their justification was because at-the-money options are the most actively and

frequently traded options, thus the implied volatility obtained using at-the-money option

values would yield a credible estimation as the data used closely simulates actual trading

conditions.

As data from at-the-money options were becoming increasingly appealing to incor-

porate in implied volatility estimation, Brenner and Subrahmanyam [14] introduced a

simplified formula for calculating σ . Their article focused on reducing the complexity of

the Black-Scholes pricing formula by assuming the option was at-the-money and close

to expiry. These assumptions, coupled with using an asymptotic approximation for the

cumulative distribution function (CDF) for a standard normal, resulted in an approximate

option valuation formula where σ could be evaluated explicitly as a time-constant value.

This process allowed one to forego the need to use an iterative procedure to calculate the

implied volatility (e.g., the Newton-Raphson method), which was a common practice at

the time. The article highlighted that for options close to at-the-money, the value of the

option is comparatively proportional to the value of σ . Furthermore, Brenner and Sub-

rahmanyam stated that their approximation formula may also be implemented as a good

initial guess for numerical algorithms like the Newton-Raphson method, since the starting

seed is essential for improving the likelihood and speed of convergence [81]. The result

of Feinstein [45] is nearly identical to Brenner and Subrahmanyan; however, it was devel-

oped independently. Curtis and Carriker [40] also introduced a closed-form solution for

implied volatility estimation for at-the-money options. It can be shown that under certain

circumstances, the result by Brenner and Subrahmanyam is a special case of Curtis and

Carriker’s formula for σ (see “Final remarks” in [22]).
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Despite the resemblance conveyed by at-the-money implied volatility calculations to

true trading circumstances, the aforementioned estimations were ill-suited for evaluating

implied volatility for option moneyness that is not at-the-money. Studies have been con-

ducted to develop approximations that account for times when the underlying asset price

differs from the exercise price (i.e., in-the-money or out-of-the-money options). A notable

result was published by Corrado and Miller [36], where their approximation for σ reduces

to the Brenner-Subrahmanyam formula for options at-the-money. Their motivation was

primarily to improve the accuracy range of implied volatility estimations to a wider scope

of option moneyness not necessarily at-the-money. The derivation presented by Corrado

and Miller illustrates similarities to that of Brenner and Subrahamyam’s approach due to

both articles incorporating an asymptotic expansion of the CDF for a standard normal ran-

dom variable as a gateway to producing simplified approximations. The numerics gener-

ated by the authors’ result exhibited good agreement with the actual implied volatility via

the Black-Scholes formula for options close to and at-the-money. In addition, their numer-

ical output also demonstrated and confirmed that the use of the Brenner-Subrahmanyam

result was only accurate for at-the-money options.

Chance [20] developed an implied volatility approximation that extended the result

by Brenner and Subrahmanyam. The author’s motivation mimicked that of Corrado and

Miller as they derived an expression for σ to accommodate for the strike price bias.

Chance’s formula involved assuming all parameters are known for an at-the-money op-

tion, then first deriving an initial guess for σ using the Brenner-Subrahmanyan formula

(i.e., implied volatility for an at-the-money option). He then demonstrated that the value

of an option not at-the-money is simply an at-the-money option perturbed by a value ∆v,

which could be the result of differences in strike price and σ values. The perturbation

∆v is then obtained by second-order Taylor expansions resulting in an equation that is

quadratic in ∆σ . Upon computing ∆σ via the quadratic formula, the final σ value for an

option not at-the-money is the addition of both σ at-the-money plus ∆σ . Chance numeri-

cally verified the result and illustrated its effectiveness for options near at-the-money (no

more than 20 percent in- or out-of-the-money) and options far from expiry. The signifi-



CHAPTER 1. INTRODUCTION 16

cance of this was also asserted as long-term options were becoming increasingly popular

in practice; however, the author also noted the accuracy decay when the option is closer

to expiry. Furthermore, the model requires extra information including an at-the-money

option value and its associated Greeks (specifically, vega and the partial derivative with

respect to the strike price).

Bharadia et al. [7] also reported a result that claimed to be a highly simplified volatil-

ity estimation formula, where the primary advantages of the approximation are its sim-

plicity in form and the fact that it does not require the option to be at-the-money.

Amidst these optimistic results, Chambers and Nawalkha [19] comparatively exam-

ined the implied volatility estimation formulae of Bharadia et al., Corrado and Miller,

and Chance. Chambers and Nawalkha praised the result from Bharadia et al. for be-

ing very condense in form, but also pointed out the inaccuracy (possessing the highest

weighted approximation error amongst the three aforementioned estimates). Chambers

and Nawalkha commended the Corrado-Miller formula in that an at-the-money option

value was not a prerequisite, yet highlighted that the limitation was the square root term

(which could be negative). Furthermore, whether the formula would produce a complex

solution is unknown a priori; however, the likelihood is minimised substantially for rea-

sonable parameter values. Chambers and Nawalkha accommodated for the possibility of

a negative argument for the square root term by setting the term to be zero if the case

occurred. It was commented that Corrado and Miller’s model is extremely accurate for

options near at-the-money, but substantial errors are prevalent for options very far from

at-the-money. Corrado and Miller’s formula for σ possessed the second highest weighted

approximation error.

Special attention was devoted to Chance’s estimate in [19] as it produced the lowest

weighted approximation error amongst the three models. The assessment of Chance’s

approximation gave positive mention of accuracy and ease of understanding/implementa-

tion. Similar to Corrado and Miller, Chance’s formula yields the highest accuracy for near

at-the-money options, but deteriorates for options significantly far from at-the-money.

This consequently provided the mathematical structure for Chambers and Nawalkha’s re-
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sult, developing a simplified extension to Chance’s formula that dramatically improved

the accuracy.

Chambers and Nawalkha attempted to improve the accuracy of Chance’s implied

volatility model for options relatively far from at-the-money (where all three formulas

suffered in accuracy). Recall that Chance employed a second-order Taylor series expan-

sion in two variables as there was justification for both the strike price and volatility to

contribute to the change in option prices. Chambers and Nawalkha adopted a similar ap-

proach by performing a second-order Taylor Series expansion around ∆v, but only with

respect to σ . The result was a much simpler quadratic equation in ∆σ and similar to

Chance’s formula, required an initial guess for σ at-the-money (which is also computed

via Brenner and Subrahmanyam’s approximation). Chambers and Nawalkha asserted that

the effect of strike price differences can be encapsulated in the Brenner-Subrahmanyam

formula for σ , thus only requiring the partial derivative with respect to volatility in the

Taylor series expansion. The weighted approximation error is ultimately the lowest in

comparison to the three models by Chance, Corrado and Miller, and Bharadia et al. De-

spite this, Chambers and Nawalkha’s method shares the same detriment to Chance’s for-

mula in that an option value at-the-money is required to estimate a starting σ value.

From all the schemes presented above, the common hindrance is either the need for

additional data (e.g., at-the-money option value) or the deterioration of accuracy for op-

tions very far from at-the-money. Li [79] attempted to rectify the need for extra informa-

tion and improved reliability for options deep in- or out-of-the-money. By incorporating

a substitution of variables and Taylor series expansion, Li derived two separate formulas

for σ depending on whether the option was at-the-money or not. The numerical results

provided in Li’s paper demonstrate greater accuracy for σ for both at-the-money and not-

at-the-money scenarios. Interestingly, Li’s approximation for σ not at-the-money reduces

to the Brenner-Subrahmanyan formula under special conditions. Several other approaches

have also been developed over recent years (see Park et al. [91], Choi et al. [30], Zhang

& Man [116], Chen & Xu [24]). For the majority of the aforementioned cited works, the

primary motivation was to develop an analytical approximation for the implied volatil-
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ity that possessed benefits over their predecessors. Although many of the methods were

derived from seemingly ad hoc methodologies, the validity of these analytical results is

still valuable as it provides us with a means to evaluate and analyse the sensitivity of the

implied volatility to the other financial parameters. If one took a standard iterative (e.g.,

Newton-Raphson) numerical approach to compute the implied volatility, it may be diffi-

cult to gauge how the behaviour of this obtained σ value varies with the other parameters.

1.5 The Mellin transform

Perhaps the most fundamental mathematical technique that essentially connects all the

content in this thesis together is the Mellin transform. Named after its creator, the Finnish

mathematician Hjalmar Mellin, this integral transform can be related to the two-sided

Laplace transform through an exponential change of variables [11] and can also be linked

to the Fourier transform [32]. Historically, it has used consistently in many applications in

number theory due to its ability to exploit the analytic properties of the Riemann zeta func-

tion, which aided in one proof of the prime number theorem [109, pp. 51–54]. Addition-

ally, its usage has seen versatility in other fields of mathematics including the asymptotics

of Gamma-related functions seen in complex function theory [83], analysis of Dirichlet

series as seen in number theory [48, 86], and in statistics for studying the distribution

of products and quotients of independent random variables [44]. In terms of mathemat-

ical finance, one of the earliest sightings of the Mellin transform was by Cruz-Báez and

González-Rodrı́guez [39] where they incorporated semigroup theory to show the exis-

tence and uniqueness of European options when the associated parameters (i.e., risk-free

interest rate, constant dividend yield, and volatility) were independent of time. In partic-

ular, they made use of the inverse Mellin transform, but their solution still remained as a

complex-valued integral without further simplification. Panini and Srivastav [90] studied

how the Mellin transform could aid in pricing basket options. Taking a slight detour, a

basket option is an option that acts upon a collection (or basket) of stocks (sometimes

referred to as a rainbow option because the different “colours” can represent different

underlying assets). An example of this can be to create a basket option that trades two or
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more different foreign currencies. Basket options are particularly favourable as a hedging

mechanism due to the total volatility of a basket option being lower than the individual

volatilities of each of the underlying assets [67]. Similar to [39], the authors of [90] also

assumed the coefficients of the Black-Scholes system to be time-independent functions.

The next most notable work was by Jódar et al. [68] where the authors directly applied the

Mellin transform to the Black-Scholes PDE system and performed the necessary analysis.

They also conducted all their evaluations without the need to instantiate a change of vari-

ables, which is a common step when dealing with the Black-Scholes PDE as it reduces

the problem to the standard heat equation form. This in turn makes it easier to solve, but

having to keep track of these variable changes may prove to be quite tedious. However

like [39] and [90], the results in [68] also assumed time-independent forms for the co-

efficients associated to the Black-Scholes framework. Similarly, their final solution was

also expressed in terms of a complex integral as a consequence of instigating the inverse

Mellin transform to invert from the Mellin space to the original variable space. The analy-

sis to include time-dependent coefficients in the Black-Scholes model was not accounted

for until the comprehensive work of Rodrigo and Mamon [99]. Their findings included

the rigorous existence-uniqueness proof of European options in the Black-Scholes frame-

work with time-dependent coefficients. Furthermore, the exposition also asserts that the

results are under quite general European contingent claims – that is, for a general payoff

function that is not confined to a European put or call option. This is also the research

that introduced the Black-Scholes kernel, which will be used quite extensively in this the-

sis. To validate their general results, Rodrigo and Mamon examined the payoffs for a

European put and call to show that the analysis is consistent with the well known iden-

tities present in the literature. Rodrigo [98] then extended the previous seminal work by

analysing vanilla American options. Through the Mellin transform techniques, Rodrigo

was able to derive the American put and call option pricing formula in the integral form

that was originally accredited to Kim [72]. Moreover, the primary focus of the study was

to derive an approximate ODE for the optimal free boundary. This ODE can be solved

in isolation without the need to pair it with its corresponding option pricing formula that
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is apparent in the American option pricing problem. Rodrigo derived this result by bor-

rowing a concept from fluid mechanics known as the Kármán-Pohlausen technique that

deals with the thickness of a boundary layer [118, pp. 421–423]. As was previously

mentioned in the section regarding jump-diffusion models, Frontczak [49] incorporated

the Mellin transform to solve the PIDE system seen in [85] which was achieved via a

brute-force inversion. Although the final result is in terms of real functions, the inversion

process (which involves complex-valued integrals) needs to be repeated if one changed

the payoff function for the option, thus making this scheme somewhat cumbersome in

this regard. The Mellin transform and its affiliated techniques/identities will be seen re-

peatedly in this thesis. Although it can act in a Laplace/Fourier framework, we choose to

utilize the Mellin transform in its own space as it possesses some elegant properties when

dealing with functions multiplied by its derivatives. Specifically, there are terms in the

Black-Scholes PDE and Merton’s PIDE that have a form that meshes well with some of

the Mellin transform results.

1.6 Outline of the thesis

The thesis will be structured as follows. All the necessary preliminary knowledge will be

contained in chapter 2. This will cover the introductory content for the standard European

and American options as well as options on underlying assets that are subjected to jump-

diffusion dynamics, and the Mellin transform. These will form the basis for all the work

to come.

In chapter 3 will contain the alternative results to pricing options and evaluating im-

plied volatility in jump-diffusion models. Our approach implements the Mellin transform

similar to [49] to derive the necessary results. The structure will be as follows. We pro-

vide the main results (i.e., the derivations) and demonstrate specific cases to the main

results, associated verifications, and other pertinent analogous relations. The highlight of

this chapter will be deriving an exact analytical expression for the jump-diffusion compo-

nent, which to our knowledge has not been achieved up until now. Concluding remarks

will also be given to summarise and discuss these alternative formulas.
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The implied volatility content commences in chapter 4, where our main focus is de-

termining an expression for the implied volatility under the assumption that jumps are

present in the underlying asset price process. We begin by deriving a Dupire-like PIDE.

This is then followed by deriving the implied volatility formula required. Once again,

this is under jump-diffusion dynamics. Numerics will be analysed and investigated to

assess the potential application of the aforementioned results. Finally, we will present a

discussion of the findings followed by a conclusion with tentative future directions.

As an extension to the work in chapter 3, we will be investigating the jump-diffusion

model for American options in chapter 5. Specifically, the main focus here will be to

develop a method and associated algorithm to solve for the optimal moving boundary

(or exercise boundary) that separates the continuation and stopping/exercise regions for

American options. The result is an approximate ordinary differential equation that is

similar in form to the one Rodrigo derived in [98]. The accuracy of this new system will be

compared against a the finite-difference method for American options in jump-diffusion

dynamics. This is then succeeded by a discussion of the findings and concluding remarks.

In chapter 6, we propose a method for computing European compound options with

general payoffs assuming the underlying asset follows a geometric Brownian motion. We

also show that for standard vanilla European options, we only need to generate two cases;

the remaining two can be ascertained via a pseudo-put-call parity technique. We can also

obtain a combined result that resembles the standard put-call parity identity for compound

options, and this stems from using the pseudo-put-call parity approach to derive the four

standard vanilla compound option cases. We then extend to pricing European compound

options when the underlying pays one discrete dividend. Although analytical formulas

for European compound options with continuous dividend yields for the underlying have

been derived before in the literature, to our knowledge this has not been done for discrete

paying dividends either as a cash payment or proportional yield of the underlying asset.

The approach we adopt in this work incorporates the Black-Scholes kernel and the integral

identities associated with it to give an exact pricing formula for compound options on a

underlying that has a continuous dividend yield. With a slight modification, we also show
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that this approach is valid when the underlying pays one discrete dividend. We will model

the dynamics of the discrete dividend payment as a yield of the underlying asset.



Chapter 2

Preliminaries

2.1 Black-Scholes framework

We commence the preliminary knowledge by introducing the most fundamental frame-

work used in the theory of options pricing, known as the Black-Scholes framework [8].

To begin, we assume that the option price depends on the asset price under the risk-neutral

probability measure given by the following SDE

dSt = (r(t)−q(t))St dt +σ(t)St dWt , (2.1)

where S = {St : t ∈ [0,T ]} is the asset price process, {Wt : t ∈ [0,T ]} is a Wiener process

or Brownian motion with respect to the risk-neutral measure, T > 0 is the expiry, r(t)> 0

is the risk-free interest rate, q(t) ≥ 0 is the dividend yield, and σ(t) > 0 is the volatility.

Here we assume that the parameters r, q, and σ are continuous functions of time. Eq. (2.1)

indicates that the stochastic process St follows a geometric Brownian motion, implying

that St is lognormally distributed (i.e., St has a lognormal probability density function).

The term r(t)− q(t) is known as the drift coefficient that represents the average growth

rate of the asset which is a deterministic value. Thus, (r(t)−q(t))dt will yield the average

growth of the asset. The value σ(t) is often called the diffusion coefficient and this is

meant to replicate the uncertainty or erraticism in the asset price as it responds to external

factors. The term σdWt then emulates the probabilistic component in the SDE.

23
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A financial interpretation of this SDE is for each infinitesimal time increment, dt,

the associated return on the asset price is an expression defined by the relative change

in the asset price dSt/St . This relative change is comprised of a systematic term (r(t)−

q(t))dt which can be calculated deterministically, and a statistical component σdWt that

introduces random noise into the model [115]. As geometric Brownian motion can be

viewed as exponentiated Brownian motion [55], it is a more favourable formulation for

the asset price process because geometric Brownian motion is always positive (as opposed

to standard Brownian motion which can take negative values).

Assuming that the option depends only on the share price and time, it is well known

that the option value is given by Vt = v(St , t), where v = v(x, t) is a function that satisfies

the following terminal value problem

L v(x, t) :=
∂v
∂ t

(x, t)+
1
2

σ(t)2x2 ∂ 2v
∂x2 (x, t)+(r(t)−q(t))x

∂v
∂x

(x, t)−r(t)v(x, t) = 0, (2.2)

v(x,T ) = φ(x). (2.3)

Eq. (2.2) is commonly known as the Black-Scholes PDE and Eq. (2.3) is the payoff (i.e.,

loss or profit at expiry), where φ : [0,∞)→ [0,∞). For the European call and put options,

φ(x) = max(x−K,0) and φ(x) = max(K− x,0), respectively, where K > 0 is the strike

price. Note that at expiry, v(ST ,T ) = φ(ST ).

To solve the system (2.2), (2.3), one of the most common approaches is to implement

a change of variables that transforms (2.2) into the standard one-dimensional heat equa-

tion and shifts (2.3) from a final value problem to an initial value problem (see [17] for

the form of the heat equation). The details of solving this transformed system are given

in [115]. Thus the value of the European call option is given by

vcall
e (x, t) = xe−

∫ T
t q(τ)dτN

(
z1

( x
K
, t,T

))
−Ke−

∫ T
t r(τ)dτN

(
z2

( x
K
, t,T

))
(2.4)

and the European put option value is

vput
e = Ke−

∫ T
t r(τ)dτ)N

(
−z2

( x
K
, t,T

))
− xe−

∫ T
t q(τ)dτN

(
−z1

( x
K
, t,T

))
, (2.5)
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where we have defined the auxiliary functions z1 and z2 to be

z1(x, t,u) =
logx+

∫ u
t (r(τ)−q(τ)+σ(τ)2/2)dτ

(
∫ u

t σ(τ)2 dτ)
1/2 , (2.6)

z2(x, t,u) =
logx+

∫ u
t (r(τ)−q(τ)−σ(τ)2/2)dτ

(
∫ u

t σ(τ)2 dτ)
1/2 , (2.7)

and N is the CDF of a standard normal random variable (see Section 2.4). Another impor-

tant result is one that relates the European call to the European put option and is known

as the put-call parity:

vput
e (x, t) = vcall

e (x, t)+Ke−
∫ T

t r(τ)dτ − xe−
∫ T

t q(τ)dτ . (2.8)

The proof of the put-call parity relation can be found in [76].

We will now construct the foundation needed to tackle the American option pricing

problems in this thesis. As mentioned in the introduction, there are a multitude of ways to

formulate the American option pricing problem. The formulation we will present provides

a clear framework for all the possible scenarios that can occur with American options.

Due to the liberty of being able to exercise the option early, the American option

valuation problem involves two unknown functions: the option value itself Vt and the

function S∗ which is commonly denoted as the optimal exercise boundary [76]. For an

American put option, the goal is to ascertain vput
a = vput

a (x, t) and S∗ = S∗(t) such that

1. L vput
a (x, t) = 0, x > S∗(t),

2. vput
a (x, t) = K− x, 0≤ x < S∗(t),

with a payoff vput
a (x,T ) = max(K − x,0). For x = S∗(t), we will introduce continuity

conditions which in the literature are regularly referred to as smooth pasting conditions.

For the American put, these are

vput
a (S∗(t), t) = K−S∗(t),

∂vput
a

∂x
(S∗(t), t) =−1.

From this formulation, we can view the smooth pasting conditions as reflecting the inter-
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ests of option holders to maximize their profit. It is a crucial point to note that the delta

condition for the American put

∂vput
a

∂x
(S∗(t), t) =−1

is not a by-product of vput
a (S∗(t), t) = K−S∗(t). The smooth pasting conditions together

are imposed on an American option to ensure the absence of arbitrage opportunities [25].

The proof for the these smooth pasting conditions for both an American put and call can

be found in [29]. Although the delta condition is seldom used in deriving the pricing

formulae for American options, it is a necessity when solving the above option pricing

PDE numerically (e.g., using the method of lines) [26]. The value of the asset will dictate

what choice the holders should make due to the additional unknown S∗(t) as seen above

in the problem formulation. For an American put, the interval 0 ≤ x < S∗(t) is known

as the exercise region as it is the most optimal time to exercise the option irrespective

of time to expiry since the value of the American put is equal to its payoff. In contrast,

x > S∗(t) represents the continuation region where the American put is worth more than

its payoff and thus is more valuable to continue to hold the option. As we have mentioned

in the introduction, the position of S∗(t) (which divides the x domain into the exercise and

continuation regions) is unknown a priori which adds another layer of difficulty to the

option pricing problem.

An American call option is constructed in the following manner. We start off by

assuming that q(t)> 0 (otherwise, the American call will be equal to the European call).

Similar to the American put, we seek for functions vcall
a = vcall

a (x, t) and S∗ = S∗(t) such

that

1. L vcall
a (x, t) = 0, 0≤ x < S∗(t),

2. vcall
a (x, t) = x−K, x > S∗(t),

with a payoff vcall
a (x,T ) = max(x−K,0). The equivalent smooth pasting conditions at

x = S∗(t) are

vcall
a (S∗(t), t) = S∗(t)−K,

∂vcall
a

∂x
(S∗(t), t) = 1.
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For the American call option, the continuation and exercise region are opposite to the

American put. That is, the continuation region is 0≤ x < S∗(t) and the exercise region is

x > S∗(t). The problem can be restated such that the continuation and exercise regions are

accounted for in a single expression. For an American put, we have the following PDE

system

L vput
a (x, t) = (−rK +qx)H(S∗(t)− x), x≥ 0, x 6= S∗(t), 0≤ t < T, (2.9)

vput
a (x,T ) = max(K− x,0), x≥ 0, 0≤ t < T, (2.10)

vput
a (S∗(t), t) = K−S∗(t),

∂vput
a

∂ t
(S∗(t), t) =−1, 0≤ t < T, (2.11)

where H is the standard Heaviside function

H(x) =


1 if x≥ 0,

0 if x < 0.
(2.12)

Similarly, the American call option pricing problem is

L vcall
a = (rK−qx)H(x−S∗(t)), x≥ 0, x 6= S∗(t), 0≤ t < T, (2.13)

vcall
a (x,T ) = max(x−K,0), x≥ 0, 0≤ t < T, (2.14)

vcall
a (S∗(t), t) = S∗(t)−K,

∂vcall
a

∂ t
(S∗(t), t) = 1, 0≤ t < T. (2.15)

Both PDE systems (2.9)–(2.11) and (2.13)–(2.15) follow the representation introduced by

Jamshidian [64]. Solving the American put option valuation problem (2.9)–(2.11) gives

(see [98] for a Mellin transform approach)

vput
a (x, t) = vput

e (x, t)+ rK
∫ T

t
e−r(u−t)N

(
−z2

(
x

S∗(u)
, t,u

))
du

−qx
∫ T

t
e−q(u−t)N

(
−z1

(
x

S∗(u)
, t,u

))
du,

(2.16)



CHAPTER 2. PRELIMINARIES 28

where vput
e (x, t) is defined in (2.5). Similarly, the American call value is

vcall
a (x, t) = vcall

e (x, t)− rK
∫ T

t
e−r(u−t)N

(
z2

(
x

S∗(u)
, t,u

))
du

+qx
∫ T

t
e−q(u−t)N

(
z1

(
x

S∗(u)
, t,u

))
du,

(2.17)

where vcall
e (x, t) is given by (2.4).

2.2 Jump-diffusion framework

In contrast to the archetypal Black-Scholes framework, we now introduce the relevant

changes required for Merton’s [85] jump-diffusion model. The Black-Scholes model in-

troduced earlier in this chapter is sometimes labeled the standard diffusion or pure diffu-

sion scenario due to the nature of the SDE (2.1) being a continuous-time diffusion pro-

cess with a continuous sample path. When accounting for the possibility of instantaneous

jumps in the asset price, the underlying SDE needs to be adjusted to accommodate for

this. Under the assumption that the discontinuous jumps arrive as a Poisson process, the

risk-neutral asset price dynamics are given by

dSt

St
= (r(t)−q(t)−κλ )dt +σ(t)dWt +(Y −1)dNt , (2.18)

where {Wt : t ∈ [0,T ]} is the standard Wiener process as in (2.1), Y is a nonnegative

random variable with Y −1 denoting the impulse change in the asset price from St to Y St

as a consequence of the jump, κ = E[Y − 1] with E[·] as the expectation operator with

respect to Y , {Nt : t ∈ [0,T ]} is the aforementioned Poisson process with intensity λ , and

dNt =


1 with probability λ dt,

0 with probability (1−λ dt).
(2.19)

Additionally, Wt , Nt , and samples {Y1,Y2, . . .} from Y are assumed to be independent. Fur-

thermore, Y is also assumed to have a probability density function. Merton then extended
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(2.2) to ensure the behaviour of the jumps is properly encapsulated. The extension to in-

clude jumps allowed for the diffusion risk to be perfectly hedged but ignored the market

price of the jump risk. Thus, the result is a PIDE system:

∂v
∂ t

(x, t)+(r(t)−q(t)−κλ )x
∂v
∂x

(x, t)− r(t)v(x, t)+
1
2

σ(t)2x2 ∂ 2v
∂x2 (x, t)

+λ

∫
∞

0
(v(xy, t)− v(x, t)) f (y)dy = 0,

(2.20)

v(x,T ) = φ(x), (2.21)

where f is the probability density function (PDF) of Y such that
∫

∞

0 f (y)dy = 1. A special

case of Merton’s infinite series solution (mentioned in the introduction) is when Y is

lognormally distributed (i.e., Y ∼ LN(µY ,σ
2
Y )). The European option pricing formula

was shown to be

vM(x, t) =
∞

∑
n=0

(λ (1+κ)(T − t))n

n!
e−λ (1+κ)(T−t)vn(x, t), (2.22)

where

vn(x, t) = v(x, t;r,q,σ)|r=rn(t),q=q,σ=σn(t) ,

with

rn(t) = r−κλ +
n log(1+κ)

T − t
, σn(t)2 = σ

2 +
nσ2

Y
T − t

. (2.23)

That is, v is the European option price due to the Black-Scholes formula with constant

coefficients, and vn is the result of directly substituting rn(t) and σn(t) for r and σ , re-

spectively, into v.

2.2.1 The Black-Scholes kernel and its properties

We will also require the Black-Scholes kernel first introduced by Rodrigo and Mamon in

[99] and then extended upon in [98]. This is defined by

K (x, t,u) =
e−

∫ u
t r(τ)dτ

(
∫ u

t σ(τ)2 dτ)
1/2 N′(z2(x, t,u)), (2.24)
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and an alternative form given as

K (x, t,u) =
xe−

∫ u
t q(τ)dτ

(
∫ u

t σ(τ)2 dτ)
1/2 N′(z1(x, t,u)), (2.25)

where z1 and z2 are given in (2.6) and (2.7) respectively. Rodrigo and Mamon demon-

strated that for an arbitrary payoff function φ , the European option price can be formulated

as

v(x, t) =
∫

∞

0

1
z
K

(
x
z
, t,T

)
φ(z)dz. (2.26)

It can be seen that the option price (2.26) is expressible as a convolution of the Black-

Scholes kernel and the payoff (see the convolution definition in Section 2.3). As an ex-

tension to (2.24) and (2.25), it was also shown in [98] that

K

(
x
y
, t,u

)
=

∂

∂y

[
−xe−

∫ u
t q(τ)dτN

(
z1

(
x
y
, t,u

))]
, (2.27)

1
y
K

(
x
y
, t,u

)
=

∂

∂y

[
−e−

∫ u
t r(τ)dτN

(
z2

(
x
y
, t,u

))]
. (2.28)

The expressions (2.27) and (2.28) will prove to be useful for pricing for compound op-

tions.

2.3 Mellin transform

We now present the Mellin transform, which is going to be the mathematical technique

that is a basis for all the work in this thesis. Suppose that f : [0,∞)→ R is such that

f = f (x). The Mellin transform f̂ of f at ξ ∈ C is defined as

f̂ (ξ ) = M { f}(ξ ) =
∫

∞

0
xξ−1 f (x)dx,

provided the integral converges at ξ . Now we denote the function id by id(x) = x. Then

for each x ∈ [0,∞), define the functions (id · f ′) and (id2 · f ′′) by

(id · f ′)(x) = x f ′(x), (id2 · f ′′)(x) = x2 f ′′(x),
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respectively. It can be shown that [88, pp. 362–363]

M {x f ′(x)}= x̂ f ′(ξ ) =−ξ f̂ (ξ ), M
{

x2 f ′′(x)
}
= x̂2 f ′′(ξ ) = ξ (ξ +1) f̂ (ξ ), (2.29)

assuming that f satisfies

xξ f (x)
∣∣∣∞
0
= 0, xξ+1 f ′(x)

∣∣∣∞
0
= 0.

To complement the Mellin transform expression, the inverse Mellin transform [108] is

given by

f (x) = M−1{ f̂ (ξ )}= 1
2πi

∫ c+i∞

c−i∞
x−ξ f̂ (ξ )dξ ,

where the contour used to get from c− i∞ to c+ i∞ is the Bromwich contour since the

Mellin transform is related to the two-sided Laplace transfrom through an exponential

change of variables [11]. Furthermore, we have

M {( f ∗g)(x)}= ( f̂ ∗g)(ξ ) = f̂ (ξ )ĝ(ξ ),

where f ∗g is the convolution of f and g defined to be

( f ∗g)(x) =
∫

∞

0

1
y

f
(

x
y

)
g(y)dy for all x≥ 0. (2.30)

The only conditions we require for f and g (see [108, chapter 2] and [94, chapter 11]) is

that they are both defined on the positive real axis x ∈ (0,∞). In addition to the Mellin

transform and its properties, it was shown in [99] that the Mellin transform of (2.26) is

v̂(ξ , t) = ˆK (ξ , t,T )φ̂(ξ ), (2.31)

where

ˆK (ξ , t,T ) = e−
∫ T

t p(ξ ,τ)dτ , (2.32)
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with

p(ξ ,τ) = r(τ)+
(

r(τ)−q(τ)− 1
2

σ(τ)2
)

ξ − 1
2

σ(τ)2
ξ

2. (2.33)

2.4 Useful properties of the CDF of a standard normal

variable

Several properties of the standard cumulative normal distribution N and its derivative N′

will also be required [66, pp. 235–239], namely

N(x) =
1√
2π

∫ x

−∞

e−y2/2 dy, N(−x) = 1−N(x), N′(x) =
1√
2π

e−x2/2,

N(∞) = 1, N(−∞) = 0.
(2.34)

We also require the bivariate (standard) normal CDF [51]

N2(x,y;ρ) =
1

2π
√

1−ρ2

∫ x

−∞

∫ y

−∞

e−(u
2−2ρuv+v2)/(2(1−ρ2)) dvdu, (2.35)

where ρ ∈ (−1,1) . It is not difficult to show that

N2(x,∞;ρ) = N(x), N2(∞,y;ρ) = N(y),

N2(x,−∞;ρ) = N2(−∞,y;ρ) = 0,

N2(−∞,∞;ρ) = N2(∞,−∞;ρ) = 0, N2(∞,∞;ρ) = 1.

(2.36)

2.5 Lemmas and corollaries we will need

The following lemmas and corollaries will also be of great use throughout this thesis:

2.5.1 General lemmas

Lemma 1. For a > 0 and b ∈ R, we have

M−1
{

e−bξ/aeξ 2/(2a2)
}
= aN′(a logx+b).
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Proof. See Appendix A.1.

Lemma 2. For a1, a2 > 0 and b1, b2 ∈ R, we have

∫
∞

0

1
z

N′(a1 logz+b1)N′ (a2 log(1/z)+b2) dz =
1√

a2
1 +a2

2

N′

a1b2 +a2b1√
a2

1 +a2
2

 .

Proof. See Appendix A.2.

Lemma 3. For a1, a2 > 0, b1, b2 ∈ R, and c > 0, it follows that

∫
∞

c

1
z

N′(a1 logz+b1)N′ (a2 log(1/z)+b2) dz =
1√

a2
1 +a2

2

N′

a1b2 +a2b1√
a2

1 +a2
2

N(d),

where

d =
√

a2
1 +a2

2

(
log(1/c)+

b2

a2
− a1γ

a2
1 +a2

2

)
, γ =

a1b2

a2
+b1.

Proof. See Appendix A.3.

Lemma 4. Assuming that a1, a2 > 0, b1, b2 ∈ R, and c > 0, we see that

∫ c

0

1
z

N′(a1 logz+b1)N′ (a2 log(1/z)+b2) dz =
1√

a2
1 +a2

2

N′

a1b2 +a2b1√
a2

1 +a2
2

N(−d),

where

d =
√

a2
1 +a2

2

(
log(1/c)+

b2

a2
− a1γ

a2
1 +a2

2

)
, γ =

a1b2

a2
+b1.

Proof. See Appendix A.4.

Lemma 5. Assume a1, a2 > 0 and b1, b2, a, b ∈ R. Then

∫ b

a

1
y

N′(a1 log(1/y)+b1)dy =
1
a1

(N(a1 log(1/a)+b1)−N(a1 log(1/b)+b1)) ,∫ b

a
N′(a1 log(1/y)+b1)dy =

eb1/a1+1/(2a2
1)

a1

(
N(a1 log(1/a)+b1 +1/a1)

−N(a1 log(1/b)+b1 +1/a1)

)
.

Proof. See Appendix A.5.
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2.5.2 Lemmas and corollaries useful for the compound options frame-

work

The following results will be useful in the study of standard European compound options:

Lemma 6. For x,y ∈ R and ρ ∈ (−1,1), we have

∂

∂x
∂

∂y
N2(x,y;ρ) =

1√
1−ρ2

N′(x)N′
(

y−ρx√
1−ρ2

)
. (2.37)

Proof. See the Appendix B.1.

Lemma 7. For 0≤ t1 < t2 < t3 and x,y,z > 0, we have

1
y
K

(
x
y
, t1, t2

)
1
z
K

(
y
z
, t2, t3

)
=

∂

∂y
∂

∂ z

[
e−

∫ t3
t1

r(τ)dτN2

(
z2

(
x
y
, t1, t2

)
,z2

(
x
z
, t1, t3

)
;ρ

)]
(2.38)

and

1
y
K

(
x
y
, t1, t2

)
K

(
y
z
, t2, t3

)
=

∂

∂y
∂

∂ z

[
xe−

∫ t3
t1

r(τ)dτN2

(
z1

(
x
y
, t1, t2

)
,z1

(
x
z
, t1, t3

)
;ρ

)]
,

(2.39)

where

ρ =

[∫ t2
t1 σ(τ)2 dτ∫ t3
t1 σ(τ)2 dτ

]1/2

. (2.40)

Proof. See the Appendix B.2.

Corollary 1. Assume 0≤ t1 < t2 < t3. For a1,a2,b1,b2,x,y,z > 0, we have

e
∫ t2

t1
r(τ)dτ

∫ b1

a1

1
y
K

(
x
y
, t1, t2

)
dy = N

(
z2

(
x
a1

, t1, t2

))
−N

(
z2

(
x
b1

, t1, t2

))
, (2.41)

e
∫ t3

t1
r(τ)dτ

∫ b1

a1

∫ b2

a2

1
y
K

(
x
y
, t1, t2

)
1
z
K

(
y
z
, t2, t3

)
dzdy =

N2

(
z2

(
x
b1

, t1, t2

)
,z2

(
x
b2

, t1, t3

)
;ρ

)
+N2

(
z2

(
x
a1

, t1, t2

)
,z2

(
x
a2

, t1, t3

)
;ρ

)
,

−N2

(
z2

(
x
b1

, t1, t2

)
,z2

(
x
a2

, t1, t3

)
;ρ

)
−N2

(
z2

(
x
a1

, t1, t2

)
,z2

(
x
b2

, t1, t3

)
;ρ

)
(2.42)
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1
x

e
∫ t3

t1
q(τ)dτ

∫ b1

a1

∫ b2

a2

1
y
K

(
x
y
, t1, t2

)
K

(
y
z
, t2, t3

)
dzdy =

N2

(
z1

(
x
b1

, t1, t2

)
,z1

(
x
b2

, t1, t3

)
;ρ

)
+N2

(
z1

(
x
a1

, t1, t2

)
,z1

(
x
a2

, t1, t3

)
;ρ

)
−N2

(
z1

(
x
b1

, t1, t2

)
,z1

(
x
a2

, t1, t3

)
;ρ

)
−N2

(
z1

(
x
a1

, t1, t2

)
,z1

(
x
b2

, t1, t3

)
;ρ

)
,

(2.43)

where ρ is defined in (2.40).

Proof. See the Appendix B.3.

Corollary 1 will be essential for pricing compound options when the underlying asset

pays a discrete dividend.

Lemma 8. For 0≤ t1 < t2 < t3 < t4 and c,x,y,z > 0,

∫
∞

0

1
y
K

(
x
y
, t1, t2

)
K

(
cy
z
, t3, t4

)
dy = Kd

(
cx
z
, t1, t2, t3, t4

)
, (2.44)

where we define Kd to be the discretised Black-Scholes kernel given by

Kd(x, t1, t2, t3, t4) =
e−

∫ t2
t1

r(τ)dτ−
∫ t4

t3
r(τ)dτ

[
∫ t2

t1 σ(τ)2 dτ +
∫ t4

t3 σ(τ)2 dτ]1/2
N′(y2(x, t1, t2, t3, t4))

=
xe−

∫ t2
t1

q(τ)dτ−
∫ t4

t3
q(τ)dτ

[
∫ t2

t1 σ(τ)2 dτ +
∫ t4

t3 σ(τ)2 dτ]1/2
N′(y1(x, t1, t2, t3, t4))

(2.45)

with

y1(x, t1, t2, t3, t4) =
logx+

∫ t2
t1 [r(τ)−q(τ)+σ(τ)2/2]dτ +

∫ t4
t3 [r(τ)−q(τ)+σ(τ)2/2]dτ[∫ t2

t1 σ(τ)2 dτ +
∫ t4

t3 σ(τ)2 dτ

]1/2

(2.46)

y2(x, t1, t2, t3, t4)=
logx+

∫ t2
t1 [r(τ)−q(τ)−σ(τ)2/2]dτ +

∫ t4
t3 [r(τ)−q(τ)−σ(τ)2/2]dτ[∫ t2

t1 σ(τ)2 dτ +
∫ t4

t3 σ(τ)2 dτ

]1/2 .

(2.47)

Proof. See the Appendix B.4.

The expression (2.45) will be very valuable in pricing compound options where the

underlying asset pays a single dividend yield.
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Lemma 9. Assuming that 0≤ t1 < t2 < t3 < t4 < t5 and c,x,w,z > 0, then

1
z
Kd

(
cx
z
, t1, t2, t3, t4

)
1
w

K
( z

w
, t4, t5

)
=

∂

∂ z
∂

∂w

[
e−

∫ t2
t1

r(τ)dτ−
∫ t5

t3
r(τ)dτN2

(
y2

(
cx
z
, t1, t2, t3, t4

)
,y2

(cx
w
, t1, t2, t3, t5

)
;ρd

)]
,

(2.48)

1
z
Kd

(
cx
z
, t1, t2, t3, t4

)
K
( z

w
, t4, t5

)
=

∂

∂ z
∂

∂w

[
cxe−

∫ t2
t1

q(τ)dτ−
∫ t5

t3
q(τ)dτN2

(
y1

(
cx
z
, t1, t2, t3, t4

)
,y1

(cx
w
, t1, t2, t3, t5

)
;ρd

)]
,

(2.49)

where ρd is

ρd =

[∫ t2
t1 σ(τ)2 dτ +

∫ t4
t3 σ(τ)2 dτ∫ t2

t1 σ(τ)2 dτ +
∫ t5

t3 σ(τ)2 dτ

]1/2

. (2.50)

Proof. See the Appendix B.5.

The next corollary is analogous to Corollary 1 but adjusted for discrete dividend assets:

Corollary 2. Assume 0≤ t1 < t2 < t3 < t4 < t5. For a1,a2,b1,b2,x,z,w > 0, we have

e
∫ t2

t1
r(τ)dτ+

∫ t4
t3

r(τ)dτ

∫ b1

a1

1
z
Kd

(
cx
z
, t1, t2, t3, t4

)
dz = N

(
y2

(
cx
a1

, t1, t2, t3, t4

))
−N

(
y2

(
cx
b1

, t1, t2, t3, t4

))
,

(2.51)

e
∫ t2

t1
r(τ)dτ+

∫ t5
t3

r(τ)dτ

∫ b1

a1

∫ b2

a2

1
z
Kd

(
cx
z
, t1, t2, t3, t4

)
1
w

K
( z

w
, t4, t5

)
dwdz =

N2

(
y2

(
cx
b1

, t1, t2, t3, t4

)
,y2

(
cx
b2

, t1, t2, t3, t5

)
;ρd

)
+N2

(
y2

(
cx
a1

, t1, t2, t3, t4

)
,y2

(
cx
a2

, t1, t2, t3, t5

)
;ρd

)
−N2

(
y2

(
cx
b1

, t1, t2, t3, t4

)
,y2

(
cx
a2

, t1, t2, t3, t5

)
;ρd

)
−N2

(
y2

(
cx
a1

, t1, t2, t3, t4

)
,y2

(
cx
b2

, t1, t2, t3, t5

)
;ρd

)
,

(2.52)
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1
cx

e
∫ t2

t1
q(τ)dτ+

∫ t5
t3

q(τ)dτ

∫ b1

a1

∫ b2

a2

1
z
Kd

(
cx
z
, t1, t2, t3, t4

)
K
( z

w
, t4, t5

)
dwdz =

N2

(
y1

(
cx
b1

, t1, t2, t3, t4

)
,y1

(
cx
b2

, t1, t2, t3, t5

)
;ρd

)
+N2

(
y1

(
cx
a1

, t1, t2, t3, t4

)
,y1

(
cx
a2

, t1, t2, t3, t5

)
;ρd

)
−N2

(
y1

(
cx
b1

, t1, t2, t3, t4

)
,y1

(
cx
a2

, t1, t2, t3, t5

)
;ρd

)
−N2

(
y1

(
cx
a1

, t1, t2, t3, t4

)
,y1

(
cx
b2

, t1, t2, t3, t5

)
;ρd

)
,

(2.53)

where ρd is defined in (2.50)

Proof. See the Appendix B.6.



Chapter 3

Options pricing formula for European

options in jump-diffusion dynamics

3.1 Alternative option pricing formula where the under-

lying asset is

subjected to jump-diffusion dynamics

Analogous to [85] and [49], we want to solve the problem (2.20), (2.21). First, we assume

that the function ve = ve(x, t) denotes the European option with an underlying that is

described by jump-diffusion dynamics, and that is a solution to (2.20), (2.21). Applying

the Mellin transform of ve with respect to x to (2.20), (2.21), we get

∂ v̂e

∂ t
(ξ , t)− (r(t)−q(t)−κλ )ξ v̂e(ξ , t)− r(t)v̂e(ξ , t)+

1
2

σ(t)2
ξ (ξ +1)v̂e(ξ , t)

+λ

∫
∞

0
xξ−1

(∫
∞

0
(ve(xy, t)− ve(x, t)) f (y)dy

)
dx = 0,

v̂e(ξ ,T ) = φ̂(ξ ).

(3.1)

38
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For the integral term, reversing the order of integration and using z = xy, we obtain

∫
∞

0
xξ−1

(∫
∞

0
(ve(xy, t)− ve(x, t)) f (y)dy

)
dx

=
∫

∞

0
f (y)

(∫
∞

0
xξ−1ve(xy, t)dx

)
dy −

∫
∞

0
f (y)

(∫
∞

0
xξ−1ve(x, t)dx

)
dy

=
∫

∞

0
y−ξ f (y)

(∫
∞

0
zξ−1ve(z, t)dz

)
dy −

∫
∞

0
f (y)v̂e(ξ , t)dy

= v̂e(ξ , t)(E[Y−ξ ]−1).

Therefore (3.1) simplifies to

∂ v̂e

∂ t
=
(

pλ (ξ , t)−λE[Y−ξ ]
)

v̂e(ξ , t), v̂e(ξ ,T ) = φ̂(ξ ), (3.2)

where pλ is defined to be

pλ (ξ , t) = r(t)+λ +

(
r(t)−q(t)−κλ − 1

2
σ(t)2

)
ξ − 1

2
σ(t)2

ξ
2. (3.3)

Note that when λ = 0, Eq. (3.3) simplifies to p0(ξ , t) = p(ξ , t), where p(ξ , t) is given

in (2.33). The solution to (3.2) is

v̂e(ξ , t) = eλ (T−t)E[Y−ξ ]e−
∫ T

t pλ (ξ ,τ)dτ
φ̂(ξ ). (3.4)

To proceed, we let vλ = vλ (x, t) be the solution to the Black-Scholes system (2.2), (2.3)

with shifted parameters r(t)→ r(t)+λ and q(t)→ q(t)+λ +κλ . The payoff function

φ remains unchanged. Using (2.26), we can deduce the analogous formula

vλ (x, t) =
∫

∞

0

1
z
Kλ

(
x
z
, t,T

)
φ(z)dz, (3.5)

with Kλ being the shifted Black-Scholes kernel given by

Kλ (x, t,u) =
e−

∫ u
t (r(τ)+λ )dτ

(
∫ u

t σ(τ)2 dτ)1/2 N′(z2λ (x, t,u)) =
xe−

∫ u
t (q(τ)+λ+κλ )dτ

(
∫ u

t σ(τ)2 dτ)1/2 N′(z1λ (x, t,u)),

(3.6)
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where

z1λ (x, t,u) =
logx+

∫ u
t (r(τ)−q(τ)−κλ +σ(τ)2/2)dτ

(
∫ u

t σ(τ)2 dτ)
1/2 , (3.7)

z2λ (x, t,u) =
logx+

∫ u
t (r(τ)−q(τ)−κλ −σ(τ)2/2)dτ

(
∫ u

t σ(τ)2 dτ)
1/2 . (3.8)

Thus, using (2.31) in (3.4), we get

v̂e(ξ , t) = eλ (T−t)E[Y−ξ ]v̂λ (ξ , t). (3.9)

Now let J = J (x, t) be a function whose Mellin transform is

Ĵ (ξ , t) = eλ (T−t)E[Y−ξ ]. (3.10)

Then we can write (3.9) as v̂(ξ , t) = v̂λ (ξ , t)Ĵ (ξ , t), and from the convolution property

we obtain

ve(x, t) = (vλ (·, t)∗J (·, t))(x) =
∫

∞

0

1
z

vλ

(
x
z
, t
)

J (z, t)dz. (3.11)

3.2 The jump term J

As a short foreword, all derivations presented in this section are formal. Moreover, we

will be assuming that the random variable Y could belong to any family of distributions

where E[Y ] is finite and that E[Y−ξ ] is convergent. To find J , we can actually bypass

the complex integral required for an inverse Mellin transform. From (3.10), we have

Ĵ (ξ , t) =
∞

∑
n=0

(λ (T − t)E[Y−ξ ])n

n!
,

and as only the factor that depends on ξ is the one with the expectation, we invert Ĵ to

get

J (x, t) =
∞

∑
n=0

(λ (T − t))n

n!
M−1{E[Y−ξ ]n}. (3.12)
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We now let Fn = Fn(x) be a function such that F̂n(ξ ) = E[Y−ξ ]n, where n = 0,1, . . .. We

can rewrite F̂n as

F̂n(ξ ) = E[Y−ξ ]E[Y−ξ ]n−1 (n = 1,2, . . .),

and from the convolution property, F̂n can be inverted to yield

Fn(x) = M−1{E[Y−ξ ]}∗M−1{E[Y−ξ ]n−1}= M−1{F̂1(ξ )}∗M−1{F̂n−1(ξ )}

=
∫

∞

0

1
z

F1(z)Fn−1

(
x
z

)
dz.

Since Fn is recursive, we need the base cases F0 and F1. To find F0, we refer to its Mellin

transform and find that F̂0(ξ ) = E[Y−ξ ]0 = 1. This can be inverted to give

F0(x) = M−1{1}= δ (x−1),

where δ is the Dirac delta functiona To find F1, we know that M {F1(x)}=E[Y−ξ ]. From

the definition of the expectation, we see that

M {F1(x)}=
∫

∞

0
y−ξ f (y)dy,

where f is the PDF of Y . The substitution x = 1/y gives

M {F1(x)}=
∫

∞

0
xξ−1 1

x
f
(

1
x

)
dx = M

{
1
x

f
(

1
x

)}
;

hence we get

F1(x) =
1
x

f
(

1
x

)
.

We can then express (3.12) as

J (x, t) =
∞

∑
n=0

(λ (T − t))n

n!
Fn(x), (3.13)

aTo see how M−1{1} = δ (x− 1), we simply take the Mellin transform of δ (x− 1) to give M {δ (x−
1)}=

∫
∞

0 xξ−1δ (x−1)dx. Then using the property that
∫

∞

0 f (x)δ (x−a)dx = f (a) for a > 0 where f (x) =
xξ−1, we obtain M {δ (x−1)}= 1.
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with

Fn(x) =



δ (x−1) n = 0,

1
x

f
(

1
x

)
n = 1,

∫
∞

0

1
z

F1(z)Fn−1

(
x
z

)
dz n≥ 2.

(3.14)

The formula (3.13) for J can then be substituted into (3.11) for computation. Equation

(3.11) gives us the European option pricing formula with a general payoff where the

underlying asset has jumps. The key attributes of (3.11) are

1. The formula can be applied to any payoff and any jump (cf. [85, 74, 75]).

2. The option price can be expressed as the convolution of a standard European option

with shifted parameters and a separate function that encapsulates the behaviour of

the jump.

3. No complex integrals are required to be computed (cf. [49])b.

Additionally, it is also possible to show that Fn exists for all n ≥ 2 provided use the

aforementioned assumption that EY−ξ is finite and convergent. The details can be found

in Appendix D. Now we give an alternative expression for (3.11). We have

ve(x, t) =
∫

∞

0

1
z

vλ

(
x
z
, t
)

∞

∑
n=0

(λ (T − t))n

n!
Fn(z)dz.

Interchanging the summation and integral and using (3.5) for vλ , we obtain

ve(x, t) =
∞

∑
n=0

(λ (T − t))n

n!

∫
∞

0

Fn(z)
z

∫
∞

0

1
y
Kλ

(
x
yz
, t,T

)
φ(y)dydz.

Swapping the order of integration yields

ve(x, t) =
∞

∑
n=0

(λ (T − t))n

n!

∫
∞

0

φ(y)
y

∫
∞

0

1
z
Kλ

(
x
yz
, t,T

)
Fn(z)dzdy.

bIn [49], the option price was given as the Mellin inverse of an integrand that depends on the payoff.
Consequently, this inversion process has to be done every time the payoff is changed. On the other hand, in
our approach, since we are using the Mellin convolution theorem, it is only necessary to invert the Black-
Scholes kernel once, which we have done (refer to (3.15) below). Thus, our expression for the option price
only involves real integrals.
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The innermost integral with respect to z resembles an option whose payoff function is Fn

in accordance to (3.5) and (2.26). We will label this function wn, i.e., let

wn

(
x
y
, t
)
=
∫

∞

0

1
z
Kλ

(
x
yz
, t,T

)
Fn(z)dz,

and get

ve(x, t) =
∞

∑
n=0

(λ (T − t))n

n!

∫
∞

0

φ(y)
y

wn

(
x
y
, t
)

dy

=
∞

∑
n=0

(λ (T − t))n

n!
(wn(·, t)∗φ)(x)

=

((
∞

∑
n=0

(λ (T − t))n

n!
wn(·, t)

)
∗φ

)
(x),

(3.15)

where the Mellin convolution theorem was used in the second equality and its distributive

property in the third line. Note that (2.26) can be expressed as a convolution of the Black-

Scholes kernel and the payoff, namely

v(x, t) = (K (·, t,T )∗φ)(x). (3.16)

This leads to an interpretation for the summation in (3.15) as an analogue of the Black-

Scholes kernel in the case of jump-diffusion dynamics. When there are no jumps (i.e.,

λ = 0), equation (3.15) reduces to (3.16). This idea of representing the option price as

an iterated integral and swapping the order will be useful in Section 3.3.3 when we show

equality between our solution and Merton’s solution in the case of lognormal jumps.

3.3 Example: lognormally distributed jumps

We will now derive a specific formula for v when Y is lognormal (i.e., Y ∼ LN(µY ,σY )).

It is known [85] that

f (y) =
1

y
√

2πσ2
Y

e−(logy−µY )
2/(2σ2

Y ), E[Y−ξ ] = e−µY ξ+σ2
Y ξ 2/2. (3.17)
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To proceed, we present two ways of deriving the explicit formula: one by the general

recursion formula and the other by using a direct Mellin approach.

3.3.1 Result via the general recursion formula

Using (3.14), we obtain F1 for lognormal jumps as

F1(x) =
1√

2πσ2
Y

e−(logx+µY )
2/(2σ2

Y ) =
1√
σ2

Y

N′

 logx+µY√
σ2

Y

 ,

using (2.34) to change the exponential to N′. Similarly, F2 is given by

F2(x) =
∫

∞

0

1
z

F1(z)F1

(
x
z

)
dz =

1
σ2

Y

∫
∞

0

1
z

N′

 logz+µY√
σ2

Y

N′

 log(x/z)+µY√
σ2

Y

 dz.

Using Lemma 2, we choose a1 = a2 = 1/σY and b1 = b2 = µY/σY to simplify the integral

and yield

F2(x) =
1√
2σ2

Y

N′

 logx+2µY√
2σ2

Y

 .

Hence, using an induction argument, we can deduce that

Fn(x) =
1√
nσ2

Y

N′

 logx+nµY√
nσ2

Y

 .

The resulting formula for the jump is

J (x, t) = δ (x−1)+
∞

∑
n=1

(λ (T − t))n

n!
1√
nσ2

Y

N′

 logx+nµY√
nσ2

Y

 , (3.18)

recalling the definition of F0 from (3.14). Therefore v is

ve(x, t) = vλ (x, t)+
∞

∑
n=1

(λ (T − t))n

σY n!
√

n

∫
∞

0

1
z

N′
(

logz+nµY

σY
√

n

)
vλ

(
x
z
, t
)

dz, (3.19)
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using a standard property of the Dirac delta function. Note that we can also express (3.19)

as a summation from n = 0, where the n = 0 term corresponds to vλ (x, t) as can be seen

due to the properties of the Dirac delta function.

3.3.2 Result using Mellin identities

Substituting the second equation of (3.17) into (3.10), we get

Ĵ (ξ , t) =
∞

∑
n=0

(λ (T − t))n

n!
e−nµY ξ+nσ2

Y ξ 2/2.

Inverting Ĵ gives

J (x, t) =
∞

∑
n=0

(λ (T − t))n

n!
M−1

{
e−nµY ξ+nσ2

Y ξ 2/2
}
.

Using Lemma 1, with a = 1/(σY
√

n) and b = µY
√

n/σY , we see that

M−1
{

e−nµY ξ+nσ2
Y ξ 2/2

}
=

1√
nσ2

Y

N′

 logx+nµY√
nσ2

Y

 .

Then (3.12) for lognormally distributed jumps is given by

J (x, t) = δ (x−1)+
∞

∑
n=1

(λ (T − t))n

n!
1√
nσ2

Y

N′

 logx+nµY√
nσ2

Y

 , (3.20)

which is identical to (3.18). Hence (3.11) for lognormally distributed jumps is identical

to (3.19), as expected.

3.3.3 Verification of equality to Merton’s solution

We will now verify that (3.19) is identical to Merton’s option pricing formula in (2.22) for

lognormal jumps and an arbitrary payoff function φ . Note that Merton assumed that r, q,
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and σ are constant, so we too will make that assumption. The goal is to show that

ve(x, t) = vM(x, t), (3.21)

for constant r, q, and σ . We will start with the left-hand side using (3.19). We first convert

both vλ terms to their integral forms (3.5) to get

ve(x, t) =
∫

∞

0

1
y
Kλ

(
x
y
, t,T

)
φ(y)dy

+
∞

∑
n=1

(λ (T − t))n

σY n!
√

n

∫
∞

0

∫
∞

0

1
z

N′
(

logz+nµY

σY
√

n

)
1
y
Kλ

(
x
yz
, t,T

)
φ(y)dydz

=
∫

∞

0

1
y
Kλ

(
x
y
, t,T

)
φ(y)dy

+
∞

∑
n=1

(λ (T − t))n

σY n!
√

n

∫
∞

0

φ(y)
y

∫
∞

0

1
z

N′
(

logz+nµY

σY
√

n

)
Kλ

(
x
yz
, t,T

)
dzdy,

where Kλ is given in (3.6). We then want to evaluate

I =
∫

∞

0

1
z

N′
(

logz+nµY

σY
√

n

)
N′
(

z2λ

(
x
yz
, t,T

))
dz.

To do this, we substitute the first expression in (3.6) for Kλ . Recalling the form for z2λ

using (3.8), we apply Lemma 2 and we choose

a1 =
1

σY
√

n
, b1 =

nµY

σY
√

n
, a2 =

1
σ
√

T − t

b2 =
log(x/y)+(r−q−κλ −σ2/2)(T − t)

σ
√

T − t
.

This simplifies I to be

I =
σY
√

nσ
√

T − t(
nσ2

Y +σ2(T − t)
)1/2 N′

(
Zn

(
x
y
, t,u

))
,

where

Zn(x, t,u) =
logx+nµY +(r−q−κλ −σ2/2)(T − t)(

nσ2
Y +σ2(T − t)

)1/2 . (3.22)
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So far we have

ve(x, t) =
e−(r+λ )(T−t)

σ
√

T − t

∫
∞

0

1
y

N′
(

Z0

(
x
y
, t,u

))
φ(y)dy+

∞

∑
n=1

(λ (T − t))n

n!

× e−(r+λ )(T−t)(
nσ2

Y +σ2(T − t)
)1/2

∫
∞

0

1
y

N′
(

Zn

(
x
y
, t,u

))
φ(y)dy,

where we expand the first Kλ using (3.6) assuming constant r, q, and σ with

Z0

(
x
y
, t,u

)
=

log(x/y)+(r−q−κλ −σ2/2)(T − t)
σ
√

T − t
= z2λ

(
x
y
, t,T

)
.

This can actually be contracted to

ve(x, t) =
∞

∑
n=0

(λ (T − t))n

n!
· e−(r+λ )(T−t)(

nσ2
Y +σ2(T − t)

)1/2

∫
∞

0

1
y

N′
(

zn

(
x
y
, t,u

))
φ(y)dy

by recognising the relation between z0 and zn along with σ
√

T − t and (nσ2
Y +σ2(T −

t))1/2. The integral can also be simplified if we briefly recall from Merton’s solution (2.22)

that

vn(x, t) = v(x, t;r,q,σ)|r=rn(t), q=q, σ=σn(t).

From (2.26), this gives

vn(x, t) =
[∫

∞

0

1
y
K

(
x
y
, t,T

)
φ(y)dy

]∣∣∣∣
r=rn(t),q=q,σ=σn(t)

.

Now recalling the definition for rn(t) and σn(t) from (2.23), we choose (2.24) and get,

vn(x, t) =
e−(r−κλ )(T−t)−n log(1+κ)(

nσ2
Y +σ2(T − t)

)1/2

∫
∞

0

1
y

N′(dn)φ(y)dy,

where

dn =
log(x/y)+ [r−κλ +n log(1+κ)/(T − t)−q−σ2/2−nσ2

Y/(2(T − t))](T − t)(
nσ2

Y +σ2(T − t)
)1/2 .
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To proceed, we now turn to vM on the right-hand side of (3.21). We first change vn into

its kernel form using (2.24) and the definition of vn, rn(t), σn(t) from Section 2.1 to give

vM(x, t) =
∞

∑
n=0

(λ (1+κ)(T − t))n

n!
· e−λ (1+κ)(T−t) · e

−(r−κλ )(T−t)−n log(1+κ)(
nσ2

Y +σ2(T − t)
)1/2

×
∫

∞

0

1
y

N′(dn)φ(y)dy

=
∞

∑
n=0

(λ (T − t))n

n!
e−(r+λ )(T−t)(

nσ2
Y +σ2(T − t)

)1/2

∫
∞

0

1
y

N′(dn)φ(y)dy.

For a lognormal distribution, we have κ = eµY+σ2
Y /2−1 which reduces dn to

dn =
log(x/y)+nµY +(r−q−κλ −σ2/2)(T − t)(

nσ2
Y +σ2(T − t)

)1/2 = Zn

(
x
y
, t,u

)
.

Therefore

vM(x, t) =
∞

∑
n=0

(λ (T − t))n

n!
· e−(r+λ )(T−t)(

nσ2
Y +σ2(T − t)

)1/2

∫
∞

0

1
y

N′
(

Zn

(
x
y
, t,u

))
φ(y)dy

= ve(x, t),

hence showing equality between (3.19) and (2.22). The integrals containing N′(zn) can

be evaluated using Lemma 5 once the payoff function φ is defined. In practice, many

financial payoffs can be expressed as finite linear combinations of

x 7→ 1I(x), x 7→ x1I(x),

with 1I is the indicator function defined as

1I(x) =


1, x ∈ I,

0, x /∈ I,

where I is an arbitrary interval with endpoints a and b > a; the interval can be open, half-

closed or closed. For example, a call option has payoff φ(x) = max(x−K,0) which can
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be formulated as

max(x−K,0) = x1[K,∞)(x)−K1[K,∞)(x).

So the expression would be

ve(x, t) =
∞

∑
n=0

(λ (T − t))n

n!
· e−(r+λ )(T−t)(

nσ2
Y +σ2(T − t)

)1/2

∫
∞

0

1
y

N′(zn)max(y−K,0)dy

=
∞

∑
n=0

(λ (T − t))n

n!
· e−(r+λ )(T−t)(

nσ2
Y +σ2(T − t)

)1/2

∫
∞

K

1
y

N′(zn)(y−K)dy

=
∞

∑
n=0

(λ (T − t))n

n!
·
(

xe−(q+λ (1+κ))(T−t)+nµY+nσ2
Y /2 ·

N
(

log(x/K)+nµY +nσ2
Y +(r−q−κλ +σ2/2)(T − t)

(nσ2
Y +σ2(T − t))1/2

)
−Ke−(r+λ )(T−t)N

(
log(x/K)+nµY +(r−q−κλ −σ2/2)(T − t)

(nσ2
Y +σ2(T − t))1/2

))
.

Therefore the two expressions in Lemma 5 will account for any potential payoff one may

encounter in options pricing.

3.3.4 Comparison of the jump-diffusion and Black-Scholes models

For completeness, we will present some elementary numerical comparisons between the

option values when the asset price is governed by a jump-diffusion model and when it

follows the standard diffusion model. We will assume the jumps are lognormally dis-

tributed. The chosen parameters are r = 0.05, q= 0.0, σ = 0.3, T−t = 0.5, K = 100, λ =

0.5, µY = −0.90,σY = 0.45. For the option values with jump-diffusion dynamics, we

generated 30 terms for the infinite series. We will use a European call option and vary S0

between 50 and 500 to investigate the behaviour both in-the-money and out-of-the-money.

Comparing both plots in Figure 3.1, we see that options in a jump-diffusion framework

possess a higher value than those of the standard diffusion model. This is expected as

there is an extra component of uncertainty governed by the SDE in (2.18). The code for

both option profiles is provided in Appendix C.1.
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Figure 3.1: Call option profiles using (2.4) and (2.22). The financial parameters are
r = 0.05, q = 0.00, σ = 0.3, T − t = 0.5, K = 100, and S0 ∈ [50,500]. The lognormal
jump parameters are λ = 0.5, µY =−0.90, and σY = 0.45.

3.4 Example: double exponentially distributed jumps

We will also demonstrate how to derive a recursive formula for double exponentially

distributed jumps. A pricing formula does exist [74, 75] for a double exponential jump-

diffusion model, but it is expressed in a way that showing equality to the recursive form

(3.14) is very difficult. Thus only F1 will be determined since it is all that is required to

generate the other terms.

Suppose Y > 0 is drawn from a double exponential distribution with parameters ω1 >
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0, ω2 > 0, and p, q≥ 0 such that p+q = 1. Frontczak [49] gives the corresponding PDF

and expectation as

f (y) = pω1y−ω1−11{y≥1}+qω2yω2−11{0<y<1}, E[Y−ξ ] =
pω1

ω1 +ξ
+

qω2

ω2−ξ
,

where 1I is the indicator function of the interval I. Using (3.14), we get

F1(x) =
1
x

(
pω1

(
1
x

)−ω1−1

1{1/x≥1}+qω2

(
1
x

)ω2−1

1{0<1/x<1}

)

= pω1xω11{x≤1}+qω2x−ω21{x>1},

(3.23)

and from here we can obtain Fn recursively from (3.14). Using this, we can substitute into

(3.13) and then (3.11) to find the option price.

3.5 Example: gamma distributed jumps

Whilst a pricing formula for lognormal jumps and double exponential jumps have been

derived previously, none exists for gamma distributed jumps. We will show a recursive

solution that is still exact and analytic.

Suppose Y ∼Gamma(αY ,βY ), where αY > 0 affects the distribution shape and βY > 0

determines the scale (i.e., how far spread out the distribution is). The associated PDF of

Y is given by [49]

f (y) =
1

Γ(αY )β
αY
Y

yαY−1e−y/βY , E[Y−ξ ] =
β
−ξ

Y Γ(αY −ξ )

Γ(αY )
.

Then using (3.13), we have

F1(x) =
1
x

1
Γ(αY )β

αY
Y

(
1
x

)αY−1

e−1/(xβY ) =
(xβY )

−αY

Γ(αY )
e−1/(xβY ), (3.24)

which can then be employed recursively to compute Fn. Similarly, Fn can be substituted

into (3.13) and then (3.11) to find the corresponding option price.
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3.6 Discussion and conclusion

The key result presented in this chapter was the alternative pricing formula (3.11) for op-

tions in a jump-diffusion model for the underlying asset. There are several advantages

to this new formula. Firstly, (3.11) is applicable to any general payoff and type of jump.

Merton’s formula is only applicable when the jump is drawn from a particular distribu-

tion, namely, the lognormal distribution. On the other hand, Frontczak’s formula is also

applicable to any general payoff and type of jump as in (3.11), but a complex integral has

to be evaluated in Frontczak’s result and reduces to (2.22) for a given payoff and jump.

However, the integrals in (3.11) are all real since the Mellin transform inversion has been

performed in a different manner to [49] where the inversion was completed via a complex

integral.

Equation (3.11) conveniently represents the standard European option value with

shifted parameters and a function which mimics the discontinuous jumps. If multiple

types of options are to be priced or if the jump dynamics were changed, (3.11) is in a

form whereby any alterations can be easily incorporated since the jump function is com-

pletely separated from any other component of the pricing formula. Additionally, the

general pricing formula in [49] is expressed as a complex integral with the jump dynam-

ics embedded across multiple terms. In practice, this would be unfavourable as computing

complex integrals is relatively expensive when compared to real integrals.

Examples were given for the cases where the jumps have distributions that are log-

normal, double exponential, and gamma. For lognormal jumps, both [85] and [49] also

derived similar results; Merton’s classical formula (2.22) exploited the properties of ex-

pectations whilst Frontczak’s formula computed the Mellin inverse via algebraic manip-

ulation and the Mellin convolution. Equation (3.19) was derived using convolution and

direct inversion that bypasses the complex integral evaluation employed by Frontczak.

One approach used (3.13) to compute the terms recursively whilst the other relied on

the properties of the exponential function which simplified the algebra tremendously. It

should be emphasized that in (3.19), having the jump term isolated from the remainder of

the formula is convenient since it allows for the pricing process to be modular. That is,
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one can calculate the necessary jump term before determining the option price at the spec-

ified parameter values. Not only is the separation preferable for computation, it reiterates

the notion of interchangeability: if the jump dynamics were to change, (3.11) together

with (3.13) would be able to accommodate this efficiently. Although (3.13) is recursive in

the general case, one may obtain some insight into what Fn is by carefully analysing the

distribution of the jump. This could ultimately lead to easier calculations. Consequently,

it is possible to derive pricing formulas for any types of jumps as shown with the double

exponential distribution in (3.23) and the gamma distribution in (3.24). The key is being

able to calculate each term in the sequence F1,F2, . . .. If the integrals associated with Fn

are too complicated to solve analytically, one may resort to numerics to yield approxi-

mate solutions to (3.13). For the double exponential and gamma distributions, we kept

the jump terms in a recursive form to demonstrate the capability of (3.13). However, it is

not clear how to obtain a non-recursive form for Fn for double exponentially and gamma

distributed jumps as we did for the lognormal jumps.

There is also interest in finding an exact solution for Kou’s double exponentially

distributed jumps [74, 75] using (3.11) and (3.13) since recent empirical studies (in par-

ticular, the tests performed in [96]) suggest a better model for the asset process involves

the jumps following a double exponential distribution. In particular, it may be of interest

to see whether or not a Mellin transform route would generate a more elegant and simple

solution in lieu of Kou’s original solution, which involves the computation of quite com-

plicated Hh functions (see [1, pp. 691]). There is also the possibility to extend (3.11) to

price American options in jump-diffusion models, which will be examined in chapter 5

of this thesis.

In conclusion, we have devised and introduced a new scheme for option pricing when

the asset follows jump-diffusion dynamics. In particular, we were able to formulate this

new model to fit any type of jump. The consequent result can be computed recursively

within an infinite sum. This was achieved by implementing the properties of the Mellin

transform and the Black-Scholes kernel. We also highlighted how the recursion is han-

dled when the jump is extracted from a lognormal distribution and also provided some
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insight into how the recursion can be computed when the jump is double exponentially

and gamma distributed.



Chapter 4

Implied volatility estimation for

European options in jump-diffusion

dynamics

4.1 A PIDE analogue of Dupire’s equation

In this section, we will derive a PIDE that is the analogue of Dupire’s equation as seen in

[50]. The Dupire-like PIDE will serve as the platform for computing the implied volatility

of options with jump-diffusion asset dynamics.

4.1.1 Homogeneity of the solution

First, we assume that the payoff function φ now depends on a parameter x′ > 0 (i.e.,

φ = φ(x;x′)). The motivation for this is that in the case of a European put or call, x′

represents the strike price. Furthermore, we assume that φ is homogeneous of degree one

in x and x′. That is, we assume

φ(βx;βx′) = βφ(x;x′).

55
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Note that standard put and call payoffs satisfy this assumption. We show that the option

price function v is homogeneous of degree one in x and x′. That is, we want to show for

v = v(x, t;x′) that

v(βx, t;βx′) = βv(x, t;x′) (4.1)

for all β > 0. This equality can be proven via a uniqueness argument as follows. We first

express (2.20) as L v = 0. Now let w = w(x, t;x′) solve the following final value problem:

L w = 0, w(x,T ;x′) = βφ(x;x′). (4.2)

Next, we define the function v1(x, t;x′)= βv(x, t;x′), where v is a solution to (2.20), (2.21).

Then

L v1 = βL v = 0.

For the terminal condition, since v(x,T ;x′) = φ(x;x′), this implies that

v1(x,T ;x′) = βv(x,T ;x′) = βφ(x;x′).

Therefore v1 satisfies the final value problem (4.2). On the other hand, we now let

v2(x, t,x′) = v(βx, t;βx′). Computing the derivatives gives

∂v2

∂x
= βD1v,

∂ 2v2

∂x2 = β
2D11v,

where D1 and D11 represent the first and second partial derivatives with respect to the first

argument, respectively. Substituting these into (4.2), we get

L v2 = L v = 0,
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and by the homogeneity of φ , the terminal condition is

v2(x,T ;x′) = v
(
βx,T ;βx′

)
= φ(βx;βx′) = βφ(x;x′).

Hence v2 also satisfies the final value problem (4.2). By uniqueness, we have

v
(
βx, t;βx′

)
= v2(x, t;x′) = v1(x, t;x′) = βv(x, t;x′),

thus proving the homogeneity property for v and any general payoff φ that is homoge-

neous of degree one in x and x′.

4.1.2 Derivation of a Dupire-like PIDE via Euler’s theorem on ho-

mogeneous functions

The partial derivatives of the Dupire equation [50] are with respect to the strike price

K. Thus to derive a Dupire-like PIDE, we will require partial derivatives in terms of

x′ (the analogous variable for K). This can be done by invoking Euler’s theorem for

homogeneous functions [73, pp. 317] to v and we get

x
∂v
∂x

+ x′
∂v
∂x′

= v,

since v has been shown to be homogeneous in x and x′ of degree one. By differentiating

the above equation with respect to x and x′, we obtain

x
∂ 2v
∂x2 =−x′

∂ 2v
∂x∂x′

, x′
∂ 2v
∂x′2

=−x
∂ 2v

∂x′∂x
,

respectively. Hence it follows that

x2 ∂ 2v
∂x2 = x′2

∂ 2v
∂x′2

.

The only term left to account for is the integral in (2.20). Notice that the first integrand

term depends on y; we want to transfer the dependency on y to the third argument (i.e.,
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x′). This can be achieved by the homogeneity property in (4.1), and we obtain

v(xy, t;x′) = v
(

xy, t;
x′y
y

)
= yv

(
x, t;

x′

y

)
.

Thus, setting u(x′, t;x) = v(x, t;x′) and replacing all the x derivatives with x′ derivatives

and substituting the above rearrangement for the integrand, we get

∂u
∂ t
− (q(t)+κλ )u− (r(t)−q(t)−κλ )x′

∂u
∂x′

+
1
2

σ(t)2x′2
∂ 2u
∂x′2

+λ

∫
∞

0

(
yu
(

x′

y
, t;x
)
−u(x′, t;x)

)
f (y)dy = 0

(4.3)

with

u(x′,T ;x) = φ(x′;x), (4.4)

since u now depends on the variables x′ and t with x as a parameter. Equations (4.3) and

(4.4) together form the Dupire-like PIDE system for options in a jump-diffusion frame-

work. Note that this reduces to the standard Dupire PDE as seen in [50] in the absence of

jumps (i.e., λ = 0) when φ is either the call or put payoff.

4.2 Implied volatility formula

From (4.3) and (4.4), it is possible to now solve the inverse problem of implied volatility

estimation. Throughout the remainder of this section, we will assume that r and q are

constants. Suppose that we are given u(x′,0;S0) for all x′ > 0. We wish to derive an

explicit formula for σ in terms of certain integrals of u with respect to x′. The reason for

this is that in practice one can observe different time-zero option prices u1, u2, . . . ,um for

varying strike prices K1, K2, . . . ,Km, here corresponding to different values of x′. Once

we can extrapolate u for extreme values of x′, we would know the entire time-zero profile

of u.

First, denote by û the Mellin transform of u with respect to x′, i.e.,

û(ξ , t) =
∫

∞

0
(x′)ξ−1u(x′, t;x)dx′.
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We take the Mellin transform of (4.3) and (4.4) with respect to x′ to obtain

∂ û
∂ t
−Gλ (ξ )û(ξ , t) = 0, û(ξ ,T ) = φ̂(ξ ), (4.5)

where

Gλ (ξ ) =−
(

σ2

2
ξ (ξ +1)+(r−q−κλ )ξ − (q+κλ )+λE[Y ξ+1−1]

)
. (4.6)

We are left with an ODE in t. Solving (4.5) gives

û(ξ , t) = e−Gλ (ξ )(T−t)
φ̂(ξ ). (4.7)

We can proceed to isolate σ2 in (4.7) to yield

σ
2 =

2
ξ (ξ +1)

(
ln(û(ξ , t)/φ̂(ξ ))

T − t
− (r−q−κλ )ξ +(q+κλ )−λE[Y ξ+1−1]

)
,

(4.8)

where we have the flexibility to choose a value of ξ . Theoretically, σ2 should be constant

for any value of ξ and t, provided the Mellin transform of u exists. Furthermore, it should

be emphasised that (4.8) can be applied to any type of payoff and jump. When λ = 0,

(4.8) gives an explicit formula for the implied volatility in the usual diffusion framework.

4.3 Numerical simulations

This section will contain the numerical results obtained from the implied volatility for-

mula (4.8) for lognormal jumps. To test the validity of the model, we will require an

initial σ value to generate option prices before solving the inverse problem. The results

will be divided into two sets: the first set will be implementing purely theoretical data; the

second set will be generated using pseudo-market data that attempts to mimic observed

market prices and values. We will now elaborate on how the option prices are obtained.

For definiteness, we will consider a time-zero European call where the underlying follows
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standard diffusion dynamics (i.e., no jumps). That is, in (2.4) we set t = 0, x = S0, assume

r, q, and σ are constant, and view this as a function of K given as

vcall(K) = S0e−qT N
(

z1

(
S0

K
,0,T

))
−Ke−rT N

(
z2

(
S0

K
,0,T

))
, (4.9)

where z1 and z2 are defined as they are in (2.6) and (2.7), respectively.

4.3.1 Theoretical data for option prices

The Mellin transform is valid in the domain [0,∞). Since this implied volatility scheme

incorporates a Mellin transform with respect to the strike price K = x′ for a fixed x =

S0, we require time-zero option prices for varying K ∈ [0,∞). Numerically, we will use

discrete 200 values of K ∈ [1.0×10−6,8S0] evenly spaced to simulate continuity for the

entire domain K > 0. This will yield 200 call prices. In practice, this is seldom applicable

as many sources for financial data will only list discrete option prices for a finite set of K

values (i.e., much less than 200) and for a fixed asset price S0. Furthermore, it is often

implausible to expect the domain of K to be uniformly spaced. This approach is only

included to illustrate the accuracy of the model assuming a very smooth dataset.

4.3.2 Pseudo-market data for option prices

As mentioned before, the finite number of discrete option prices may prove insufficient in

exhibiting a continuous behaviour in the option price profile. Hence we require a method

for approximating the data beyond the option prices provided. The following procedure

will be demonstrated for a call option in the absence of jumps to simplify the calculations.

However, these steps can be adapted when accounting for jumps in the asset dynamics.

We assume that we have a set of call prices v1 > v2 > · · · > vm−1 > vm with corre-

sponding strike prices K1 < K2 < · · · < Km−1 < Km. It is known from [10] that the best

one-parameter logistic approximation of the standard normal CDF N for all z∈R is given

by

N(z)≈ 1
1+ e−az , a = 1.702,
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where the maximum difference between the approximation and exact expression for N is

less than 0.001 for z ∈ [−4.5,4.5]. Now for z < 0 we have

N(z)≈ eaz

1+ eaz = eaz(1− eaz + e2az−·· ·) = eaz− e2az + e3az−·· · .

Hence we can take N(z) ≈ eaz for z�−1. Using this logistic estimation in (4.9), this

approximates to

vcall(K)≈ S0e−qT

1+ e−ad1(S0/K,0,T )
− Ke−rT

1+ e−ad2(S0/K,0,T )
=

S0e−qT

1+ e−ad1
− Ke−rT

1+ e−ad2
,

where d1 and d2 are defined as

d1 = z1

(
S0

K
,0,T

)
, d2 = z2

(
S0

K
,0,T

)

using (2.6) and (2.7), respectively under the assumption of constant parameters. When

|K| � 1 we see that d1� 1 and d2� 1; hence vcall(K)≈ S0e−qT −Ke−rT . Therefore we

assume that

vcall(K) = S0e−qT −βK, 0 < K ≤ K1

for some β > 0. Using K1 to extrapolate, we see from vcall(K1) = v1 that we obtain

β =
S0e−qT − v1

K1
.

Conversely, when K� 0 we have −d1� 1 and −d2� 1. Using N(z)≈ eaz for −z� 1,

we can simplify N(d1) and N(d2) and approximate (4.9) by

vcall(K)≈ S0e−qT ead1−Ke−rT ead2.

As d1 = d2 +σ
√

T ,

ead2 = ea(log(S0/K)+(r−q−σ2/2)T)/(σ
√

T) =

(
S0

K

)a/(σ
√

T)
ea(r−q−σ2/2)

√
T/σ .
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Similarly,

ead1 = eaσ
√

T ead2,

hence we have

vcall(K)≈
(

S0e−qT eaσ
√

T −Ke−rT
)(S0

K

)a/(σ
√

T)
ea(r−q−σ2/2)

√
T/σ .

Therefore we assume that

vcall(K) =
γ1

Kδ
+

γ2

Kδ−1 , K ≥ Km

for some γ1,γ2,δ > 0. We will need to use Km−1 and Km to extrapolate, but we also require

another data point. For the call option, vcall(K)→ 0 as K → ∞, thus we let KL � Km

represent the strike price “near” infinity. We see from vcall(Km−1) = vm−1, vcall(Km) = vm,

and vcall(KL)≈ 0, and we deduce that

δ =
log(vm−1/vm)+ log((KL−Km)/(KL−Km−1))

log(Km/Km−1)
,

γ2 =
vmKδ

m
Km−KL

, γ1 =−KLγ2, KL� Km.

Thus the call option function can be reformulated to become

vcall(K) =


S0e−qT −βK 0 < K ≤ K1,

v j K = K j, j = 1, . . . ,m,

γ1
Kδ

+ γ2
Kδ−1 K ≥ Km,

(4.10)

where v1, . . . ,vm are the observed call prices. A similar process can also be adopted for

the European call or put with jumps. Figures 4.1a) and 4.1b) show the profile for the call

option with both theoretical and pseudo-market data, respectively.
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a) Call prices computed using (4.9) with 200 equally
spaced nodes for K between 10−6 and 8S0.
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b) Call prices computed using (4.9) for pseudo-
observed Black-Scholes values and (4.10) to extrapo-
late.

Figure 4.1: Call option profiles for K > 0. The parameter values are S0 = 15, T = 0.3,
r = 0.03, q = 0.02, and σ = 0.3.

4.3.3 Algorithm

The algorithm for computing σ2 for a call option is as follows:

1. Obtain option data v1,v2, · · · ,vm for K1 < K2 < · · · < Km either using theoretical,

pseudo-market or actual market data.

(a) Theoretical data – use (4.9) or (2.22) (with appropriate adjustments to the

notation) and ensure K1,K2, . . . ,Km are 200 evenly spaced nodes between

10−6 and 8S0 (adjust if 8S0 < Km).

(b) Pseudo-real or market data – generate v1,v2, · · · ,vm using theoretical data or

observed from the market, then use (4.10) (adapt for jumps if necessary) to



CHAPTER 4. IMPLIED VOLATILITY – EUROPEAN OPTIONS WITH JUMPS 64

create more data points for a smoother profile. For K ≈ 0, use 1.0×10−6; for

K� 0, use 8S0 (adjust if 8S0 < Km).

2. Choose a value of ξ .

3. Evaluate v̂call(ξ )=
∫

∞

0 Kξ−1vcall(K)dK via numerical integration (e.g., Gauss-Lobatto

or Gauss-Kronrod quadrature), where vcall is the entire time-zero option profile.

4. Substitute the value for v̂call(ξ ) into (4.8) and compute σ2.

4.3.4 Results

We will now report the implied volatility estimations for both theoretical option data and

pseudo-market option prices via extrapolation. The parameter values used are S0 = 15,

r = 0.05, q = 0.03, and T = 0.025. We used σ = 0.15 and σ = 0.3 as initial seeds to gen-

erate the corresponding option prices. All simulations are performed in MATLAB using a

European call option (with and without jumps). The Mellin transform is computed using

the adaptive Gauss-Kronrod quadrature scheme available in MATLAB. The MATLAB

code is provided in Appendix C.2.

Theoretical data

For the theoretical data, (3.19) is used to generate 200 European call option prices with

lognormal jumps for K ∈ [1.0× 10−6,8S0]. The associated lognormal parameters are

chosen to be λ = 0.10, µY = −0.90, and σY = 0.45. We generated 30 terms from the

infinite series. To illustrate the consistency of the algorithm, several ξ values are selected

for the Mellin transform. The domain chosen is ξ ∈ [1.0,5.0] in discrete increments of

0.25. Tables 4.1 and 4.2 show the numerical approximations for σ against the true values.

For the theoretical option prices, the implied volatility estimations for σ = 0.15 and

σ = 0.3 prove to be quite accurate with errors in the order of 10−7 to 10−6. The error

remains relatively consistent for all ξ in the allocated domain, which further highlights

the precision of the algorithm. It can be argued for σ = 0.15 that the absolute error is
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Implied volatility estimation for σ = 0.15
Avg. CPU time: 0.1 s

ξ Estimated σ Absolute error
1.0 0.150001657453424 1.6×10−6

1.25 0.149999916945745 8.3×10−8

1.5 0.150004007140589 4.0×10−6

1.75 0.150000231848765 2.3×10−7

2.0 0.150000372512579 3.7×10−7

2.25 0.150000519892163 5.1×10−7

2.5 0.150000665164591 6.6×10−7

2.75 0.150000808303685 8.0×10−7

3.0 0.150000949189142 9.4×10−7

3.25 0.150001087644665 1.0×10−6

3.5 0.150001223391692 1.2×10−6

3.75 0.150001355979046 1.3×10−6

4.0 0.150001484661131 1.4×10−6

4.25 0.150001608185628 1.6×10−6

4.5 0.150001724425047 1.7×10−6

4.75 0.150001829737164 1.8×10−6

5.0 0.150001917853050 1.9×10−6

Table 4.1: Implied volatility esti-
mations and errors for different ξ

when σ = 0.15 using pure theoret-
ical option data from (3.19). Aver-
age CPU time is given in seconds.

Implied volatility estimation for σ = 0.3
Avg. CPU time: 0.1 s

ξ Estimated σ Absolute error
1.0 0.300000812537166 8.1×10−7

1.25 0.300000602264498 6.0×10−7

1.5 0.300001642090901 1.6×10−6

1.75 0.300000647148822 6.4×10−7

2.0 0.300000660419985 6.6×10−7

2.25 0.300000671406796 6.7×10−7

2.5 0.300000680367558 6.8×10−7

2.75 0.300000687348957 6.8×10−7

3.0 0.300000692310426 6.9×10−7

3.25 0.300000695116983 6.9×10−7

3.5 0.300000695475283 6.9×10−7

3.75 0.300000692830239 6.9×10−7

4.0 0.300000686190937 6.8×10−7

4.25 0.300000329275066 3.2×10−7

4.5 0.300000337379160 3.3×10−7

4.75 0.300000329776874 3.2×10−7

5.0 0.300000298131713 2.9×10−7

Table 4.2: Implied volatility esti-
mations and errors for different ξ

when σ = 0.3 using pure theoreti-
cal option data from (3.19). Aver-
age CPU time is given in seconds.
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Implied volatility estimation for σ = 0.15
Avg. CPU time: 0.002 s

ξ Estimated σ Absolute error
1.0 0.149998728439811 1.2×10−6

1.25 0.150027834813882 2.7×10−5

1.5 0.150054557535829 5.4×10−5

1.75 0.150080609531067 8.0×10−5

2.0 0.150106032110318 1.0×10−4

2.25 0.150130843920878 1.3×10−4

2.5 0.150155063080464 1.5×10−4

2.75 0.150178294968951 1.7×10−4

3.0 0.150201382384214 2.0×10−4

3.25 0.150223926634414 2.2×10−4

3.5 0.150245946705591 2.4×10−4

3.75 0.150267456617342 2.6×10−4

4.0 0.150288471381866 2.8×10−4

4.25 0.150309005551112 3.0×10−4

4.5 0.150329021452815 3.2×10−4

4.75 0.150348633294877 3.4×10−4

5.0 0.150367805351298 3.6×10−4

Table 4.3: Implied volatility esti-
mations and errors for different ξ

when σ = 0.15 using (4.9) to gen-
erate pseudo-market data. Average
CPU time is given in seconds.

Implied volatility estimation for σ = 0.3
Avg. CPU time: 0.002 s

ξ Estimated σ Absolute error
1.0 0.300031895572929 3.1×10−5

1.25 0.300045257605552 4.5×10−5

1.5 0.300058090390309 5.8×10−5

1.75 0.300071242016552 7.1×10−5

2.0 0.300085040710682 8.5×10−5

2.25 0.300099577530501 9.9×10−5

2.5 0.300115017586394 1.1×10−4

2.75 0.300131558128381 1.3×10−4

3.0 0.300149410201347 1.4×10−4

3.25 0.300168805884818 1.6×10−4

3.5 0.300190000681277 1.9×10−4

3.75 0.300213193710094 2.1×10−4

4.0 0.300238860932383 2.3×10−4

4.25 0.300267261118478 2.6×10−4

4.5 0.300298771264214 2.9×10−4

4.75 0.300333806724048 3.3×10−4

5.0 0.300372824834949 3.7×10−4

Table 4.4: Implied volatility esti-
mations and errors for different ξ

when σ = 0.3 using (4.9) to gener-
ate pseudo-market data. Average
CPU time is given in seconds.
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increasing as ξ increases; however, this is primarily linked to approximation errors since

the Mellin transform is computed numerically.

Pseudo-market data

The pseudo-market option prices are computed using (4.9) with 20 discrete values of

K ∈ [5,25], and then incorporates (4.10) to extrapolate and provide continuity to the data.

Although we are considering a scenario with no jumps (i.e., λ = 0), a similar procedure

may be applied in the case of jumps as seen in the previous section using pure theoretical

data. Note that the discrete domain for K will need to be adjusted accordingly if S0

changes. Tables 4.3 and 4.4 list the results for the implied volatility estimation.

Once again, the results are quite satisfactory but the overall absolute error has in-

creased in order of magnitude in comparison to the estimations yielded by the purely the-

oretical dataset. This is mainly attributed to the extrapolating functions in (4.10). Whilst

it maintains the monotonicity of the option profile versus the strike price (e.g., monoton-

ically decreasing for a European call against strike), the main source of error lies within

the “tail” function (i.e., the approximation for the option price as K → ∞). This will be

elaborated upon in the discussion.

Comparison to other methods

We will now give a comparison of (4.8) against two other formulas for implied volatility

estimation. We first denote vcall to be observed European call price that is required to

compute the implied volatility. We will use the result by Brenner and Subrahmanyam [14]

σ ≈ vcall

S0

√
2π

T
, (4.11)

Corrado and Miller [36]

σ ≈ 1
S0 +K

√
2π

T

vcall− S0−K
2

+

√(
vcall− (S0−K)

2

)2

− (S0−K)2

π

 , (4.12)
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Implied volatility comparison for σ = 0.30
K Equation (4.11) Equation (4.12) Equation (4.13)

BS formula CM formula Newton’s method
Avg. CPU time: 0.00014 s Avg. CPU time: 0.00020 s Avg. CPU time: 0.00016 s

5.0 3.3255 1.2408 - 0.6786i 0.2998
6.0 2.9954 1.0653 - 0.5784i 0.3000
7.0 2.6653 0.9058 - 0.4873i 0.3000
8.0 2.3353 0.7601 - 0.4040i 0.3000
9.0 2.0053 0.6266 - 0.3276i 0.3000

10.0 1.6757 0.5041 - 0.2567i 0.3000
11.0 1.3492 0.3927 - 0.1874i 0.3000
12.0 1.0336 0.2957 - 0.1064i 0.3000
13.0 0.7440 0.3054 0.3000
14.0 0.4984 0.3123 0.3000
15.0 0.3093 0.3093 0.3000
16.0 0.1778 0.3066 0.3000
17.0 0.0949 0.2972 0.3000
18.0 0.0474 0.2494 - 0.0625i 0.3000
19.0 0.0222 0.3047 - 0.1337i 0.3000
20.0 0.0099 0.3623 - 0.1789i 0.3000
21.0 0.0042 0.4195 - 0.2150i 0.3000
22.0 0.0017 0.4749 - 0.2466i 0.3000
23.0 0.0007 0.5280 - 0.2753i 0.3000
24.0 0.0003 0.5785 - 0.3022i 0.3000
25.0 0.0001 0.6267 - 0.3275i 0.3000

Table 4.5: Comparison of implied volatility formulas for σ = 0.3.

and a standard Newton’s method approach [59]

σn+1 = σn−
F(σn)

F ′(σn)
, (4.13)

where F is the difference between value of the European call (2.4) at σ = σn and the

observed price vcall, and F ′ is the vega of the European call: the partial derivative of (2.4)

with respect to σ . The analysis will be conducted with 20 discrete strike values K ∈

[5,25] and the aforementioned parameters values used to compute the call prices using

(4.9). Table 4.5 gives the approximations for σ = 0.30.

It is immediately clear that the formulas (4.11) and (4.12) are heavily dependent

on the value of K. Brenner and Subrahmanyam’s formula yields plausible approxima-

tions when the option is at-the-money which is exemplified in Table 4.5. The Corrado-

Miller formula appears to allow more flexibility in the option’s moneyness; however, the

Corrado-Miller formula allows for complex solutions as seen by the numerical results.



CHAPTER 4. IMPLIED VOLATILITY – EUROPEAN OPTIONS WITH JUMPS 69

Both outcomes coincide with the details provided in the introduction; (4.11) is only valid

for options at-the-money or near at-the-money and while (4.12) is not restricted to at-the-

money options, it may generate complex values depending on the moneyness or parameter

values (see Chambers and Nawalkha [19]). Newton’s method (4.13) proved to the most

reliable of the three schemes. But the focus of the article is more on implied volatility esti-

mation in the scenario of a jump-diffusion model, where Newton’s method (or a standard

root-finding scheme) would not be a desirable approach.

4.4 Discussion and conclusion

The main result of this chapter was the implied volatility formula (4.8) for options under

a jump-diffusion framework. Many estimators already exist for the implied volatility,

but none of these schemes accommodates the possibility of jumps in the asset price. It

should be highlighted that (4.8) also works in the absence of jumps by setting λ = 0. Both

sets of implied volatility results for theoretical and pseudo-market data produced accurate

estimations for the true value of σ as shown in the numerical simulations.

For the theoretical data, the absolute errors remain in the order of 10−7 to 10−6.

The low order of magnitude for the errors is not surprising as the options price profile

exhibits nice continuity as all the values are evenly distributed between 10−6 and 8S0.

It was mentioned that the error appeared to be marginally increasing for σ = 0.15 for

larger values of ξ , but this is associated with the numerics as the Mellin transform was

performed via numerical integration.

For the pseudo-market data, the implied volatility estimation possessed higher orders

for the absolute error ranging from 10−5 to 10−4. The cause is undoubtedly the extrapo-

lation functions in (4.10). Both functions manage to capture the profile and monotonicity

of the option prices, but the main problem is their failure to replicate how the standard

normal CDF behaves. Although the logistic approximation in [10] is deemed to be one of

the most accurate, further testing has shown that the approximation (4.10) as K→∞ does

not actually decay at the same rate as it does in the Black-Scholes formula (4.9). Hence,

it can be inferred that the relatively larger errors are attributed to this subtle artefact in the
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extrapolation.

A brief comparison against three other methods was used to gauge the validity and

accuracy of (4.8) under the assumption of constant volatility. Both results by Brenner-

Subrahmanyan (4.11) and Corrado-Miller (4.12) provided acceptable implied volatility

estimations for particular strike prices, but continued to exemplify the drawbacks that are

inherent to their respective models. Brenner and Subrahmanyan’s formula is effectively

feasible only when the option is at-the-money; Corrado and Miller’s formula permits

marginal freedom in the option’s moneyness but suffers from the potential of complex

solutions which can be unknown a priori. Newton’s method proved to give the most

favourable results out of these three numerical schemes, but these are only applicable

for a standard diffusion case. A major advantage of (4.8) is its independence from the

option moneyness condition, although we are assuming we possess different option prices

for different strikes (which are readily available anyway). Although one could argue

that (4.8) has a slower execution time compared to the other three methods we used to

benchmark against, we justify our scheme’s versatility at being able to counteract the

flaws of (4.11) and (4.12), as well as to illustrate the use of the extrapolating functions.

The extrapolating functions can be ideal in situations where not enough option prices are

provided for different strikes. We did not demonstrate the extrapolation procedure for the

jump-diffusion case for simplicity, but the extension should be straightforward.

The implied volatility result could also be potentially modified for American options

in both standard diffusion and jump-diffusion frameworks. The main challenge would

be adapting to the moving boundary problem that exists in the asset price due to the

possibility of exercising the option before its expiry date.

To summarise, we derived a Dupire-like PIDE for options in a jump-diffusion envi-

ronment and ultimately an implied volatility formula within this framework. Numerical

approximations for implied volatility with and without jumps rival in accuracy and ro-

bustness to two well-known implied volatility results. The analysis and approach once

again incorporated the Mellin transform.



Chapter 5

Options pricing formula for American

options in jump-diffusion dynamics and

an approximate solution to the free

boundary

5.1 The PIDE system for American options and its solu-

tion

Continuing on from the European options in the previous chapter, we will now construct

the necessary PIDE systems required to solve the American options pricing formula when

the underlying asset is subjected to jump-diffusion dynamics. The analysis will begin with

the American put option under a general jump distribution followed by a special case for

the type of distribution that the jumps are assumed to follow. We will then repeat this

analysis for the American call option.

71



CHAPTER 5. JUMP-DIFFUSION – AMERICAN OPTIONS 72

5.1.1 American put option in jump-diffusion dynamics

Suppose we define the operator L ′ to be same as (2.20) except with r, q, and σ to be

constant instead of functions in time. This yields for a function v = v(x, t)

L ′v(x, t) =
∂v
∂ t

(x, t)+
1
2

σ
2x2 ∂ 2v

∂x2 +(r−q−κλ )x
∂v
∂x

(x, t)− rv(x, t)

+λ

∫
∞

0
(v(xy, t)− v(x, t)) f (y)dy = 0.

(5.1)

Then the American put option pricing problem with an underlying asset governed by

jump-diffusion dynamics requires us to find two functions vput
a = vput

a (x, t) and S∗ = S∗(t)

such that

vput
a (x,T ) = max(K− x,0), x≥ 0,

vput
a (x, t) = K− x, 0≤ t < T and 0≤ x < S∗(t),

L ′vput
a (x, t) = 0, 0≤ t < T and x > S∗(t),

(5.2)

and at x = S∗(t), the following smooth pasting conditions are assumed to be satisfied:

vput
a (S∗(t), t) = K−S∗(t),

∂vput
a

∂x
(S∗(t), t) =−1. (5.3)

We now proceed to create an inhomogeneous PIDE system similar to (2.9) – (2.11). We

only need to analyze the region 0≤ x< S∗(t) since we know for x> S∗(t) that L ′vput
a = 0.

Applying the operator L ′ to vput
a for 0≤ x < S∗(t) gives us

L ′vput
a (x, t) =−rK +(q+κλ )x+λ

∫
∞

0

(
vput

a (xy, t)− (K− x)
)

f (y)dy

=−K(r+λ )+ x(q+λ (κ +1))+λ

∫
∞

0
vput

a (xy, t)dy.

The remaining integral needs to be dealt with carefully. This is because the value of y can

affect the value of vput
a (xy, t), thus changing whether we are in the continuation region or

exercise/stopping region. Since the two possible cases are 0≤ xy < S∗(t) and xy > S∗(t),

the critical value in terms of y is y = S∗(t)/x. This means we have to split the integral into
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two regions giving

L ′vput
a (x, t) =−K(r+λ )+ x(q+λ (κ +1))+λ

∫
∞

0
vput

a (xy, t)dy

=−K(r+λ )+ x(q+λ (κ +1))+λ

(∫ S∗(t)/x

0
vput

a (xy, t) f (y)dy

+
∫

∞

S∗(t)/x
vput

a (xy, t) f (y)dy
)

=−K(r+λ )+ x(q+λ (κ +1))+λ

(∫ S∗(t)/x

0
(K− xy) f (y)dy

+
∫

∞

S∗(t)/x
vput

a (xy, t) f (y)dy
)
,

where we replaced vput
a (xy, t) with K−xy for the first integral on the right-hand side since

we are in the region 0 ≤ y < S∗(t)/x. We now split that same first integral on the right-

hand side to get

L ′vput
a (x, t) =−K(r+λ )+ x(q+λ (κ +1))+λ

(∫
∞

0
(K− xy) f (y)dy

−
∫

∞

S∗(t)/x
(K− xy) f (y)dy+

∫
∞

S∗(t)/x
vput

a (xy, t) f (y)dy
)

We know that κ = E[Y − 1]. Furthermore, we use the fact that λ can be written as

λ
∫

∞

0 f (y)dy since
∫

∞

0 f (y)dy = 1 and this simplifies our expression to

L ′vput
a (x, t) =−rK +qx+λ

∫
∞

S∗(t)/x

(
vput

a (xy, t)− (K− xy)
)

f (y)dy,

for 0 < x < S∗(t). Now we create the inhomogeneous PIDE by simply appending a Heav-

iside function to account for x > S∗(t) as we did for Eq. (2.9)–(2.11), which reformulates

our problem to the following system

L ′vput
a (x, t) = gp(x, t), x≥ 0, x 6= S∗(t), 0≤ t < T (5.4)

vput
a (x,T ) = max(K− x,0), x≥ 0, 0≤ t < T (5.5)

vput
a (S∗(t), t) = K−S∗(t),

∂vput
a

∂x
(S∗(t), t) =−1, 0≤ t < T, (5.6)
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where

gp(x, t) =
(
−rK +qx+λ

∫
∞

S∗(t)/x

(
vput

a (xy, t)− (K− xy)
)

f (y)dy
)

H(S∗(t)− x). (5.7)

This PIDE system (5.4)–(5.6) is similar to (2.9)–(2.11) except now the model has been

adjusted to accommodate for the presence of jumps. However, if we set λ = 0 which

equates to having no jumps in the underlying asset dynamics, we would recover the stan-

dard diffusion PDE system for an American put.

To proceed with solving this system, we take the Mellin transform of (5.4) with re-

spect to x and get

∂ ṽput
a

∂ t
(ξ , t)−

(
pλ (ξ )−λE[Y−ξ ]

)
ṽput

a (ξ , t) = g̃(ξ , t), (5.8)

with

pλ (ξ ) = r+λ +

(
r−q−κλ − σ2

2

)
ξ − σ2

2
ξ

2,

and we leave the Mellin transform of g(x, t) as it is without further computation. Notice

how (5.8) is almost identical in form to (3.2) except that we are left with an additional

function of ξ and t on the right-hand side. Furthermore, the expression for pλ here is the

exact same as (3.3). Thus we have an inhomogeneous linear ODE in t. Solving (5.8) by

using an integrating factor e−(pλ (ξ )−λE[Y−ξ ])(u−t) and subject to a final condition at u = T

will yield

ṽput
a (ξ , t) = ṽput

a (ξ ,T )e−(pλ (ξ )−λE[Y−ξ ])(T−t)−
∫ T

t
e−(pλ (ξ )−λE[Y−ξ ])(u−t)g̃p(ξ ,u)du.

Recognising that ṽput
a (ξ ,T ) is the Mellin transform of vput

a (ξ ,T ) = max(K − x,0), we

replace ṽput
a (ξ ,T ) with φ̃put(ξ ) and obtain

ṽput
a (ξ , t) = φ̃put(ξ )e−(pλ (ξ )−λE[Y−ξ ])(T−t)−

∫ T

t
e−(pλ (ξ )−λE[Y−ξ ])(u−t)g̃p(ξ ,u)du.

Using the results from chapters 2 and 3, we take the inverse Mellin transform of both
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sides to obtain

vput
a (x, t) = (vput

λ
(·, t)∗J (·, t,T ))(x)−M−1

{∫ T

t
e−(pλ (ξ )−λE[Y−ξ ])(u−t)g̃p(ξ ,u)du

}
,

where M−1 is the inverse Mellin operator, vput
λ

= vput
e |r=r+λ ,q=q+λ+κλ using the expres-

sion for vput
e from (2.5), J is the function

J (x, t,u) =
∞

∑
n=0

(λ (u− t))n

n!
Fn(x), (5.9)

with Fn defined in (3.14). We could have reused the definition of J from (3.13), but here

we require a third argument for J that was not necessary in the European case. As (3.11)

is for a European option with a general payoff, we can apply the result for a put option

payoff and simplify the convolution term above to be

(vput
λ

(·, t)∗J (·, t,T ))(x) = vput
e (x, t),

so all that remains is to evaluate the remaining integral. To make the calculation a bit

clearer, we will use

e−(pλ (ξ )−λE[Y−ξ ])(u−t) = F̃(ξ ,u)

for ease of notation. Using the Convolution theorem, the integral inverts to

M−1
{∫ T

t
F̃(ξ ,u)g̃p(ξ ,u)du

}
=
∫ T

t
M−1{F̃(ξ ,u)g̃p(ξ ,u)

}
du

=
∫ T

t
(F(·,u)∗gp(·,u))(x)du

=
∫ T

t

∫
∞

0

1
z

F
(

x
z
,u
)

gp(z,u)dzdu,

where F and g are the inverse Mellin transforms of F̃ and g̃, respectively. We have

purposefully expanded the convolution term to its integral form as this makes the next

step much easier to see. The point of introducing F̃ is because, upon inversion, this term
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itself is another convolution. That is,

F
(

x
z
,u
)
= M−1{F̃(ξ ,u)

}
= M−1

{
e−(pλ (ξ )−λE[Y−ξ ])(u−t)

}
= (Kλ (·, t,u)∗J (·, t,u))

(
x
z

)
=
∫

∞

0

1
w

J (w, t,u)Kλ

(
x

zw
, t,u

)
dw,

where we used the inverse Mellin transform of eλE[Y−ξ ](u−t) from (3.10) and e−pλ (ξ )(u−t)

from (3.5), and also Kλ given in (3.6). Thus,

M−1
{∫ T

t
F̃(ξ ,u)g̃p(ξ ,u)du

}
=
∫ T

t

∫
∞

0

∫
∞

0

1
z

gp(z,u)
1
w

J (w, t,u)

×Kλ

(
x

zw
, t,u

)
dwdzdu,

and our American put option pricing formula under jump-diffusion dynamics is

vput
a (x, t) = vput

e (x, t)+
∫ T

t

∫
∞

0

∫
∞

0

1
z

gp(z,u)
1
w

J (w, t,u)Kλ

(
x

zw
, t,u

)
dwdzdu. (5.10)

This is very similar in form to (2.16) but with the triple integral on the right-hand side

in lieu of a single integral representing the early exercise premium that is inherent for

American options.

5.1.2 Example: lognormally distributed jumps for an American put

option

As a special case for the American put option, we will assume that the underlying asset

follows lognormally distributed jump dynamics. This will allow us to evaluate a few of

the integrals that appear in (5.10). As a preparatory step, we will first denote the triple
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integral in (5.10) by I. Then using the expression for gp from (5.7), we see that

I =−rK
∫ T

t

∫
∞

0

∫ S∗(u)

0

1
w

J (w, t,u)
1
z
Kλ

(
x

zw
, t,u

)
dzdwdu

+q
∫ T

t

∫
∞

0

∫ S∗(u)

0

1
w

J (w, t,u)Kλ

(
x

zw
, t,u

)
dzdwdu

+
∫ T

t

∫
∞

0

∫ S∗(u)

0

1
w

J (w, t,u)
1
z
Kλ

( z
w
, t,u

)
×λ

∫
∞

S∗(u)/z

(
vput

a (zy, t)− (K− zy)
)

f (y)dydzdwdu

= I1 + I2 + I3,

where we had to swap the integrals with respect to w and z in order to simplify the Heav-

iside function that appears in gp. Each of these integrals will be investigated separately to

see if they can be simplified. For I1, we will make use of Eq. (3.18) for J and the first

identity in (3.6) for Kλ (assuming time-constant functions for r, q, and σ ) to get

I1 =−rK
∫ T

t

e(r+λ )(u−t)

σ
√

u− t

∫
∞

0

∫ S∗(u)

0

1
w

δ (w−1)
1
z

N′
(

z2λ

(
x

zw
, t,u

))
dzdwdu

− rK
∫ T

t

e(r+λ )(u−t)

σ
√

u− t

∞

∑
n=1

(λ (u− t))n

n!
√

nσ2
Y

∫
∞

0

∫ S∗(u)

0

1
zw

N′

 logw+nµY√
nσ2

Y


×N′

(
z2λ

(
x

zw
, t,u

))
dzdwdu

= I1,a + I1,b.

For I1,a, we swap the order of integration between z and w (constant limits with respect

to each of these dummy variables) and using the well known result of f (a) =
∫

∞

0 δ (x−

a) f (x)dx for a > 0 to obtain

I1,a =−rK
∫ T

t

e(r+λ )(u−t)

σ
√

u− t

∫ S∗(u)

0

1
z

N′
(

z2λ

(
x
z
, t,u

))
dzdu.
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Then we employ Lemma 5 and referring to (3.8) for the complete expression of z2λ , we

can assign

a = 0, b = S∗(u), a1 =
1√

nσ2
Y +σ2(u− t)

, b1 = z2

(
x
z
, t,u

)
,

which then gives us

I1,a =−rK
∫ T

t
e(r+λ )(u−t)N

(
−z2λ

(
x

S∗(u)
, t,u

))
du.

Unfortunately, the time integral cannot be solved analytically without prior knowledge of

S∗ so it will be left unsimplified

For I1,b, we once again swap the order of integration between z and w. Then we make

use of Lemma 2 because z2λ takes the form of a logarithmic function. In accordance to

Lemma 2, we make the following declarations

a1 =
1√
nσ2

Y

, b1 =
nµY√
nσ2

Y

, a2 =
1

σ
√

u− t
, b2 = z2λ

(
x
z
, t,u

)
,

and integrating with respect to w leaves us with

I1,b =−rK
∫ T

t

∞

∑
n=1

(λ (u− t))n

n!
√

nσ2
Y +σ2(u− t)

e(r+λ )(u−t)
∫ S∗(u)

0

1
z

N
(

Zn

(
x
z
, t,u

))
dzdu,

where Zn is defined in (3.22). To compute the integral with respect to z, we once again

incorporate Lemma 5 and set

a = 0, b = S∗(u), a1 =
1√

nσ2
Y +σ2(u− t)

, b1 = Zn

(
x
z
, t,u

)
,

to obtain

I1,b =−rK
∫ T

t

∞

∑
n=1

(λ (u− t))n

n!
e(r+λ )(u−t)N

(
−Zn

(
x

S∗(u)
, t,u

))
du.
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Now adding I1,a and I1,b gives us the original integral I1, and finally

I1 =−rK
∫ T

t
e(r+λ )(u−t)N

(
−z2λ

(
x

S∗(u)
, t,u

))
du

− rK
∫ T

t

∞

∑
n=1

(λ (u− t))n

n!
e(r+λ )(u−t)N

(
−Zn

(
x

S∗(u)
, t,u

))
du

=−rK
∞

∑
n=0

∫ T

t

(λ (u− t))n

n!
e(r+λ )(u−t)N

(
−Zn

(
x

S∗(u)
, t,u

))
du, (5.11)

where after comparing z2λ and Zn (i.e., when n= 0, Z0 = z2λ ), the summation can actually

encompass both terms with an extended summation index to n = 0. This was not possible

to do before as the original summation term that appears in J possessed a fraction that

would have been undefined at n = 0.

We now give a similar treatment to I2. Substituting (3.18) for J but using the second

identity for Kλ in (3.6) (again, assuming the functions r, q, and σ are constant with

respect to t), we find that

I2 =−q
∫ T

t

e(r+λ )(u−t)

σ
√

u− t

∫
∞

0

∫ S∗(u)

0

1
w

δ (w−1)N′
(

z2λ

(
x

zw
, t,u

))
dzdwdu

−q
∫ T

t

e(r+λ )(u−t)

σ
√

u− t

∞

∑
n=1

(λ (u− t))n

n!
√

nσ2
Y

∫
∞

0

∫ S∗(u)

0

1
w

N′

 logw+nµY√
nσ2

Y


×N′

(
z2λ

(
x

zw
, t,u

))
dzdwdu

= I2,a + I2,b.

To calculate I2,a, we swap the integrals with respect to z and w and using the properties of

the Dirac delta function gives us

I2,a = qx
∫ T

t

e(q+λ+κλ )(u−t)

σ
√

u− t

∫ S∗(u)

0
N′
(

z1λ

(
x
z
, t,u

))
dzdu.

Then using the second result of Lemma 5 with

a = 0, b = S∗(u), a1 =
1√

nσ2
Y +σ2(u− t)

, b1 = z1

(
x
z
, t,u

)
,
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the integral becomes

I2,a = qx
∫ T

t
e(q+λ+κλ )(u−t)N′

(
−z1λ

(
x

S∗(u)
, t,u

))
dzdu.

with z1λ from (3.7). Similarly for I2,b, we apply the same procedure as we did for I1,b

except when using Lemma 2, we choose

a1 =
1√
nσ2

Y

, b1 =
nµY√
nσ2

Y

, a2 =
1

σ
√

u− t
, b2 = z1λ

(
x
z
, t,u

)
,

to get

I2,b = q
∫ T

t

∞

∑
n=1

(λ (u− t))n

n!
√

nσ2
Y +σ2(u− t)

e(r+λ )(u−t)
∫ S∗(u)

0
N
(

Zn

(
x
z
, t,u

))
dzdu.

To compute the remaining integral with respect to z, we once again have the aid of the

second result from Lemma 5 and set

a = 0, b = S∗(u), a1 =
1√

nσ2
Y +σ2(u− t)

, b1 = Zn

(
x
z
, t,u

)
.

Upon doing this, I2,b becomes

I2,b = qx
∫ T

t

∞

∑
n=1

(λ (u− t))n

n!
enµY+nσ2

Y /2e(q+λ+κλ )(u−t)N
(
−Dn

(
x

S∗(u)
, t,u

))
du,

where we have defined a new function Dn to be

Dn(x, t,u) =
logx+nµY +nσ2

Y +(r−q−κλ +σ2/2)(u− t)√
nσ2

Y +σ2(u− t)
. (5.12)

Now like I1, we can obtain I2 by adding I2,a and I2,b. In a similar manner to I2, we notice

that when n = 0, D0 = z1λ . So then this leads to

I2 = qx
∞

∑
n=0

∫ T

t

(λ (u− t))n

n!
enµY+nσ2

Y /2e(q+λ+κλ )(u−t)N
(
−Dn

(
x

S∗(u)
, t,u

))
du. (5.13)
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The final integral, I3, is probably the most difficult to simplify because it contains 4 in-

tegrals. Nevertheless, it is possible to manipulate this expression and reduce it down to

2 integrals which would undoubtedly help in alleviating some strain on any numerical

computations. To start off, we first set

F(z,u) = λ

∫
∞

S∗(u)/z

(
vput

a (zy, t)− (K− zy)
)

f (y)dy,

which corresponds to the innermost integral of I3. Next we swap the order of integration

between z and w to give

I3 =
∫ T

t

∫ S∗(u)

0

F(z,u)
z

∫
∞

0

1
w

J (w, t,u)Kλ

(
x

zw
, t,u

)
dwdzdu.

Then by using J from (3.18) for a lognormal distribution, the integral becomes

I3 =
∫ T

t

∫ S∗(u)

0

F(z,u)
z

∫
∞

0

1
w

δ (w−1)Kλ

(
x

zw
, t,u

)
dwdzdu

+
∫ T

t

∫ S∗(u)

0

F(z,u)
z

∫
∞

0

1
w

∞

∑
n=1

(λ (u− t))n

n!
√

nσ2
Y

N′

 logw+nµY√
nσ2

Y


×Kλ

(
x

zw
, t,u

)
dwdzdu

= I3,a + I3,b.

Evaluating I3,a results in

I3,a =
∫ T

t

∫ S∗(u)

0

F(z,u)
z

Kλ

(
x
z
, t,u

)
dzdu

= λ

∫ T

t

∫ S∗(u)

0

1
z
Kλ

(
x
z
, t,u

)∫
∞

S∗(u)/z

(
vput

a (zy, t)− (K− zy)
)

f (y)dydzdu.

The next step is to swap the order of integration between y and z, but we must be careful

because one of the limits depends z. From this we get

I3,a = λ

∫ T

t

∫
∞

1
f (y)

∫ S∗(u)

S∗(u)/y

1
z
Kλ

(
x
z
, t,u

)(
vput

a (zy, t)− (K− zy)
)

dzdydu.
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Now we invoke a change of variables by letting p = (zy)/S∗(u). This is so we can remove

S∗ from the limits of integration. The substitution leads us to

I3,a = λ

∫ T

t

∫
∞

1
f (y)

∫ y

1

1
p
Kλ

(
xy

S∗(u)p
, t,u

)
×
(

vput
a (S∗(u)p, t)− (K−S∗(u)p)

)
dpdydu.

Now we reverse the order of integration between p and y and we see that

I3,a = λ

∫ T

t

∫
∞

1

1
p

(
vput

a (S∗(u)p, t)− (K−S∗(u)p)
)

×
∫

∞

p
f (y)Kλ

(
xy

S∗(u)p
, t,u

)
dydpdu.

Recalling the definition of f for lognormally distributed jumps in (3.17) and the first

identity for Kλ in (3.6), the integral expands to

I3,a =
λ

σY

∫ T

t

e(r+λ )(u−t)

σ
√

u− t

∫
∞

1

1
p

(
vput

a (S∗(u)p, t)− (K−S∗(u)p)
)

×
∫

∞

p

1
y

N′
(

logy−µY

σY

)
N′
(

z2λ

(
xy

S∗(u)p
, t,u

))
dydpdu

The innermost integral can be evaluated using Lemma 3 and the associated variables be

set to

a1 =
1

σY
, b1 =

−µY

σY
, a2 =

−1
σ
√

u− t
, b2 = z2λ

(
x

S∗(u)p
, t,u

)
, c = p,

which gives

I3,a = λ

∫ T

t

e(r+λ )(u−t)√
σ2

Y +σ2(u− t)

∫
∞

1

1
p

(
vput

a (S∗(u)p, t)− (K−S∗(u)p)
)

N′
(

Z1

(
x

S∗(u)p
, t,u

))
N(β (p,u))dpdu,
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where Z1 is defined by (3.22) with n = 1 and

β (p,u) =

√
σ2(u− t)+σ2

Y

σY σ
√

u− t

(
log
(

S∗(u)
p

)
− (r−q−κλ −σ

2/2)(u− t)

σ2(u− t)
(
log(x/(S∗(u)p))+µY +(r−q−κλ −σ2/2)(u− t)

)
σ2

Y +σ2(u− t)

)
.

(5.14)

All that remains is to simplify I3,b. Using (3.6) for Kλ makes I3,b become

I3,b =
∫ T

t

∞

∑
n=1

(λ (u− t))n

n!
√

nσ2
Y

e(r+λ )(u−t)

σ
√

u− t

∫ S∗(u)

0

F(z,u)
z

×
∫

∞

0

1
w

N′

 logw+nµY√
nσ2

Y

N′
(

z2λ

(
x

zw
, t,u

))
dwdzdu.

The innermost integral with respect to w is computed first with the help of Lemma 5 by

choosing

a1 =
1√
nσ2

Y

, b1 =
nµY√
nσ2

Y

, a2 =
1

σ
√

u− t
, b2 = z2λ (x/z, t,u).

This gives us

I3,b =
∫ T

t

∞

∑
n=1

(λ (u− t))n

n!
√

nσ2
Y +σ2(u− t)

e(r+λ )(u−t)
∫ S∗(u)

0

F(z,u)
z

N′
(

Zn

(
x
z
, t,u

))
dzdu,

with Zn defined in (3.22). Now we substitute F back into the expression and see that

I3,b = λ

∫ T

t

∞

∑
n=1

(λ (u− t))ne(r+λ )(u−t)

n!
√

nσ2
Y +σ2(u− t)

∫ S∗(u)

0

1
z

N′
(

Zn

(
x
z
, t,u

))

×
∫

∞

S∗(u)/z

(
vput

a (zy, t)− (K− zy)
)

f (y)dydzdu.

Similarly to how we dealt with I3,a, we interchange the order of integration between y and

z, declare a substitution of p = (zy)/S∗(u), then reverse the integration between p and y.
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The result of these steps is

I3,b = λ

∫ T

t

∞

∑
n=1

(λ (u− t))ne(r+λ )(u−t)

n!σY

√
nσ2

Y +σ2(u− t)

∫
∞

1

1
p

(
vput

a (S∗(u)p, t)− (K−S∗(u)p)
)

×
∫

∞

p

1
y

N′
(

logy−µY

σY

)
N′
(

Zn

(
xy

S∗(u)p
, t,u

))
dydpdu,

where we also replaced f with the PDF for a lognormal distribution. The integral with

respect to y can be integrated by Lemma 3 with

a1 =
1

σY
, b1 =

−µY

σY
, a2 =

−1
σ
√

u− t
, b2 = Zn

(
x

S∗(u)p
, t,u

)
, c = p.

Thus I3,b is given by

I3,b = λ

∫ T

t

∞

∑
n=1

(λ (u− t))ne(r+λ )(u−t)

n!
√

(n+1)σ2
Y +σ2(u− t)

∫
∞

1

1
p

(
vput

a (S∗(u)p, t)− (K−S∗(u)p)
)

×N′
(

Zn+1

(
x

S∗(u)p
, t,u

))
N(βn(p,u))dpdu,

where Zn+1 is defined by (3.22) with n replaced with n+1 and

βn(p,u) =

√
σ2(u− t)+(n+1)σ2

Y

σY

√
nσ2

Y +σ2(u− t)

(
log
(

S∗(u)
p

)
− (r−q−κλ −σ

2/2)(u− t)

−nµY +

√
nσ2

Y +σ2(u− t)

σY

√
(n+1)σ2

Y +σ2(u− t)

×
(

log
(

x
S∗(u)p

)
+(n+1)µY +(r−q−κλ −σ

2/2)(u− t)
))

.

(5.15)
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So combining I3,a with I3,b once more, the final form of integral I3 is

I3 = λ

∫ T

t

e(r+λ )(u−t)√
σ2

Y +σ2(u− t)

∫
∞

1

1
p

(
vput

a (S∗(u)p, t)− (K−S∗(u)p)
)

N′
(

Z1

(
x

S∗(u)p
, t,u

))
N(β (p,u))dpdu

+λ

∫ T

t

∞

∑
n=1

(λ (u− t))ne(r+λ )(u−t)

n!
√

(n+1)σ2
Y +σ2(u− t)

∫
∞

1

1
p

(
vput

a (S∗(u)p, t)− (K−S∗(u)p)
)

×N′
(

Zn+1

(
x

S∗(u)p
, t,u

))
N(βn(p,u))dpdu,

and upon recognising that β (p,u) is actually βn(p,u) when n = 0, and Z1 = Zn+1 when

n = 0 also, I3 can be simplified further to

I3 = λ

∞

∑
n=0

∫ T

t

(λ (u− t))ne(r+λ )(u−t)

n!
√
(n+1)σ2

Y +σ2(u− t)

∫
∞

1

1
p

(
vput

a (S∗(u)p, t)− (K−S∗(u)p)
)

×N′
(

Zn+1

(
x

S∗(u)p
, t,u

))
N(βn(p,u))dpdu.

(5.16)

Thus, we have calculated the individual components I1, I2, and I3 of I. Therefore, the

American put option pricing formula under lognormal jump-diffusion dynamics is given

by

vput
a (x, t) = vput

e (x, t)+
∞

∑
n=0

(
− rK

∫ T

t

(λ (u− t))n

n!
e(r+λ )(u−t)N

(
−Zn

(
x

S∗(u)
, t,u

))
du

+qx
∫ T

t

(λ (u− t))n

n!
enµY+nσ2

Y /2e(q+λ+κλ )(u−t)N
(
−Dn

(
x

S∗(u)
, t,u

))
du

+λ

∫ T

t

(λ (u− t))ne(r+λ )(u−t)

n!
√

(n+1)σ2
Y +σ2(u− t)

∫
∞

1

1
p

(
vput

a (S∗(u)p, t)− (K−S∗(u)p)
)

×N′
(

Zn+1

(
x

S∗(u)p
, t,u

))
N(βn(p,u))dpdu

)
,

(5.17)

where vput
e is given by (3.19) for a European put option in jump-diffusion dynamics, Zn

is defined in (3.22), the expression for Dn is from (5.12), and βn from (5.15). Eq. (5.17)
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is still an implicit formula, which can be mildly cumbersome to solve especially since

S∗ is also an unknown parameter. Hence, we require an expression for S∗ and these are

obtained using the smooth-pasting conditions (5.6) as we will see later in §5.2.

5.1.3 American call option in jump-diffusion dynamics

We will now provide the derivation for the American call option for an underlying asset

that follows a jump-diffusion model. Similar to the put option valuation, we wish to find

two functions vcall
a = vcall

a (x, t) and S∗ = S∗(t) such that

vcall
a (x,T ) = max(x−K,0), x≥ 0,

vcall
a (x, t) = x−K, 0≤ t < T and x > S∗(t),

L ′vcall
a (x, t) = 0, 0≤ t < T and 0≤ x < S∗(t),

(5.18)

and at x = S∗(t), the following smooth pasting conditions are assumed to be satisfied:

vcall
a (S∗(t), t) = S∗(t)−K,

∂vcall
a

∂x
(S∗(t), t) = 1. (5.19)

In contrast to the American put, we need to investigate what happens in the region x >

S∗(t) as this will allow us to pair it with L ′vcall
a (x, t) = 0 for 0 ≤ x < S∗(t) to form an

inhomogeneous PIDE. In order to achieve this, we first apply the operator L ′ to vcall
a in

the region x > S∗(t) to get

L ′vcall
a (x, t) = K(r+λ )− x(q+λ (κ +1))+λ

∫
∞

0
vcall

a (xy, t)dy.

Similar to the American put, we need to split the remaining integral into the regions

(0,S∗(t)/x) and (S∗(t)/x,∞) as y = S∗(t)/x is the critical point that determines whether

the American call option is in the continuation or exercise region, thus effectively chang-
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ing its value. Doing so gives

L ′vcall
a (x, t) = K(r+λ )− x(q+λ (κ +1))+λ

(∫ S∗(t)/x

0
vcall

a (xy, t) f (y)dy

+
∫

∞

S∗(t)/x
vcall

a (xy, t) f (y)dy
)

= K(r+λ )− x(q+λ (κ +1))+λ

(∫ S∗(t)/x

0
vcall

a (xy, t) f (y)dy

+
∫

∞

S∗(t)/x
(xy−K) f (y)dy

)
,

where we replaced vcall
a (xy, t) with xy−K for the second integral on the right-hand side

since that interval corresponds to the exercise region for the American call option. We

now split that same second integral on the right-hand side to get

L ′vcall
a (x, t) = K(r+λ )− x(q+λ (κ +1))+λ

(∫ S∗(t)/x

0
vcall

a (xy, t) f (y)dy

+
∫

∞

0
(xy−K) f (y)dy−

∫ S∗(t)/x

0
(xy−K) f (y)dy

)

Using κ = E[Y −1] and 1 =
∫

∞

0 f (y)dy simplifies our expression to

L ′vcall
a (x, t) = rK−qx+λ

∫ S∗(t)/x

0

(
vcall

a (xy, t)− (xy−K)
)

f (y)dy,

for x > S∗(t). The inhomogeneous PIDE can be created by introducing a Heaviside func-

tion, which reformulates our problem to the following system

L ′vcall
a (x, t) = gc(x, t), x≥ 0, x 6= S∗(t), 0≤ t < T (5.20)

vcall
a (x,T ) = max(x−K,0), x≥ 0, 0≤ t < T (5.21)

vcall
a (S∗(t), t) = S∗(t)−K,

∂vcall
a

∂x
(S∗(t), t) = 1, 0≤ t < T, (5.22)

where

gc(x, t) =
(

rK−qx+λ

∫ S∗(t)/x

0

(
vcall

a (xy, t)− (xy−K)
)

f (y)dy
)

H(x−S∗(t)). (5.23)
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Once again if we set λ = 0, we would recover the PDE system (2.13)–(2.15).

We will also be incorporating the Mellin transform to solve the aforementioned PIDE

system. However, we have to assume that the Mellin transform variable ξ be strictly

negative (i.e., ξ < 0). This constraint ensures that the Mellin transform of (5.21) will be

defined.

Taking the Mellin transform of (5.20) with respect to x and ξ < 0 gives

∂ ṽcall
a

∂ t
(ξ , t)−

(
pλ (ξ )−λE[Y−ξ ]

)
ṽcall

a (ξ , t) = g̃c(ξ , t) (5.24)

with

pλ (ξ ) = r+λ +

(
r−q−κλ − σ2

2

)
ξ − σ2

2
ξ

2,

and g̃c is taken to be the Mellin transform of g. We now have the exact same ODE in t

as we did for the American put option in §5.1.1. The remaining steps to solving the ODE

and inverting are identical to deriving the American put value, and this leads us to

vcall
a (x, t) = vcall

e (x, t)+
∫ T

t

∫
∞

0

∫
∞

0

1
z

gc(z,u)
1
w

J (w, t,u)Kλ

(
x

zw
, t,u

)
dwdzdu,

(5.25)

where gc is given in (5.23), J is defined in (5.9), and Kλ is given by (3.6). Although

this appears to be identical in form to (5.10), the key difference is highlighted by the

functions gc and gp. As we will see in the following section, when you assume a particular

distribution for the jump dynamics, the resultant expression is quite different.

5.1.4 Example: lognormally distributed jumps for an American call

option

Just as for the American put option, we will now derive a special case of (5.25) in the

circumstance that the jumps are lognormally distributed. The steps of the analysis will

match that of the American put, except using different lemmas in the analogous situations.

First, we let the triple integral in (5.10) be I. Then using the expression for gc
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from (5.7) gives

I = rK
∫ T

t

∫
∞

0

∫
∞

S∗(u)

1
w

J (w, t,u)
1
z
Kλ

(
x

zw
, t,u

)
dzdwdu

−q
∫ T

t

∫
∞

0

∫
∞

S∗(u)

1
w

J (w, t,u)Kλ

(
x

zw
, t,u

)
dzdwdu

+
∫ T

t

∫
∞

0

∫
∞

S∗(u)

1
w

J (w, t,u)
1
z
Kλ

( z
w
, t,u

)
×λ

∫ S∗(u)/z

0

(
vcall

a (zy, t)− (zy−K)
)

f (y)dydzdwdu

= I1 + I2 + I3,

where the order of integration between z and w had to be swapped in order to simplify

the Heaviside function in gc. We first look at I1 and incorporate Eq. (3.18) for J and the

first identity for Kλ in (3.6) to arrive at

I1 = rK
∫ T

t

e(r+λ )(u−t)

σ
√

u− t

∫
∞

0

∫
∞

S∗(u)

1
w

δ (w−1)
1
z

N′
(

z2λ

(
x

zw
, t,u

))
dzdwdu

rK
∫ T

t

e(r+λ )(u−t)

σ
√

u− t

∞

∑
n=1

(λ (u− t))n

n!
√

nσ2
Y

∫
∞

0

∫
∞

S∗(u)

1
zw

N′

 logw+nµY√
nσ2

Y


×N′

(
z2λ

(
x

zw
, t,u

))
dzdwdu

= I1,a + I1,b,

where we assumed r, q, and σ are constants. Now for I1,a, the limits of integration for

z and w are constants with respect to each other. So we will swap them and then use

f (a) =
∫

∞

0 δ (x−a) f (x)dx for a > 0 to obtain

I1,a = rK
∫ T

t

e(r+λ )(u−t)

σ
√

u− t

∫
∞

S∗(u)

1
z

N′
(

z2λ

(
x
z
, t,u

))
dzdu.

Making use of Lemma 5 and checking the full form of z2λ in (3.8) allows us to set

a = S∗(u), b = ∞, a1 =
1√

nσ2
Y +σ2(u− t)

, b1 = z2

(
x
z
, t,u

)
,
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to give

I1,a = rK
∫ T

t
e(r+λ )(u−t)N

(
z2λ

(
x

S∗(u)
, t,u

))
du.

We cannot proceed to simplify this as the integral with respect to u cannot be computed

without knowing S∗ for all of u from t to T .

The integral I1,b is treated in a similar manner. We once again swap the order of inte-

gration between z and w. Then Lemma 2 will be used since z2λ is actually a logarithmic

function. To utilize Lemma 2, we need to set

a1 =
1√
nσ2

Y

, b1 =
nµY√
nσ2

Y

, a2 =
1

σ
√

u− t
, b2 = z2λ

(
x
z
, t,u

)
,

and integrating with respect to w leaves us with

I1,b = rK
∫ T

t

∞

∑
n=1

(λ (u− t))n

n!
√

nσ2
Y +σ2(u− t)

e(r+λ )(u−t)
∫

∞

S∗(u)

1
z

N
(

Zn

(
x
z
, t,u

))
dzdu,

with Zn defined in (3.22). We once again incorporate Lemma 5 to complete the integral

in z by setting

a = S∗(u), b = ∞, a1 =
1√

nσ2
Y +σ2(u− t)

, b1 = Zn

(
x
z
, t,u

)
,

to obtain

I1,b = rK
∫ T

t

∞

∑
n=1

(λ (u− t))n

n!
e(r+λ )(u−t)N

(
Zn

(
x

S∗(u)
, t,u

))
du.

Now that all the simplifications have been performed, we now recover I1 by adding I1,a



CHAPTER 5. JUMP-DIFFUSION – AMERICAN OPTIONS 91

and I1,b to get

I1 = rK
∫ T

t
e(r+λ )(u−t)N

(
z2λ

(
x

S∗(u)
, t,u

))
du

rK
∫ T

t

∞

∑
n=1

(λ (u− t))n

n!
e(r+λ )(u−t)N

(
Zn

(
x

S∗(u)
, t,u

))
du

= rK
∞

∑
n=0

∫ T

t

(λ (u− t))n

n!
e(r+λ )(u−t)N

(
Zn

(
x

S∗(u)
, t,u

))
du, (5.26)

where the summation can be extended to n = 0 when we see that z2λ = Zn for n = 0.

Like the American put, we could not immediately make this observation since J had a

fraction where n = 0 would render it undefined.

The integral I2 follows a similar path for the lemmas and techniques used in deriving

the analogous term with the American put. The lengthy calculations will be omitted, but

the result is

I2 = qx
∞

∑
n=0

∫ T

t

(λ (u− t))n

n!
enµY+nσ2

Y /2e(q+λ+κλ )(u−t)N
(

Dn

(
x

S∗(u)
, t,u

))
du, (5.27)

with Dn defined in (5.12). However, we will be providing the complete derivation and

solution of I3 as this term is rather complicated. As we will see, the result of I3 will be a

double integral which is more ideal to work with in comparison to a quadruple integral.

To begin, we let

F(z,u) = λ

∫ S∗(u)/z

0

(
vcall

a (zy, t)− (zy−K)
)

f (y)dy,

which is the inner most integral of I3. Swapping the order of integration between z and w

yields

I3 =
∫ T

t

∫
∞

S∗(u)

F(z,u)
z

∫
∞

0

1
w

J (w, t,u)Kλ

(
x

zw
, t,u

)
dwdzdu.

Next we use J from (3.18) which corresponds to J for a lognormal distribution. The
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integral becomes

I3 =
∫ T

t

∫
∞

S∗(u)

F(z,u)
z

∫
∞

0

1
w

δ (w−1)Kλ

(
x

zw
, t,u

)
dwdzdu

+
∫ T

t

∫
∞

S∗(u)

F(z,u)
z

∫
∞

0

1
w

∞

∑
n=1

(λ (u− t))n

n!
√

nσ2
Y

N′

 logw+nµY√
nσ2

Y


×Kλ

(
x

zw
, t,u

)
dwdzdu

= I3,a + I3,b.

We evaluate I3,a by using the properties of the Dirac delta function to give

I3,a =
∫ T

t

∫
∞

S∗(u)

F(z,u)
z

Kλ

(
x
z
, t,u

)
dzdu

= λ

∫ T

t

∫
∞

S∗(u)

1
z
Kλ

(
x
z
, t,u

)∫ S∗(u)/z

0

(
vcall

a (zy, t)− (zy−K)
)

f (y)dydzdu,

where F has now been substituted back in. Next we swap the order of integration between

y and z, but once again care needs to be taken since one of the limits here depends on z.

Reversing the order gets us to

I3,a = λ

∫ T

t

∫ 1

0
f (y)

∫ S∗(u)/y

S∗(u)

1
z
Kλ

(
x
z
, t,u

)(
vcall

a (zy, t)− (zy−K)
)

dzdydu.

We then make the substitution p = (zy)/S∗(u) which allows us to remove S∗ from the

limits of integration to give

I3,a = λ

∫ T

t

∫ 1

0
f (y)

∫ 1

y

1
p
Kλ

(
xy

S∗(u)p
, t,u

)
×
(

vcall
a (S∗(u)p, t)− (S∗(u)p−K)

)
dpdydu.
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Now we swap the integration order between p and y to find that

I3,a = λ

∫ T

t

∫ 1

0

1
p

(
vcall

a (S∗(u)p, t)− (S∗(u)p−K)
)

×
∫ p

0
f (y)Kλ

(
xy

S∗(u)p
, t,u

)
dydpdu.

Recalling the definition of f for lognormally distributed jumps in (3.17) and the first

identity for Kλ in (3.6), the integral expands to

I3,a =
λ

σY

∫ T

t

e(r+λ )(u−t)

σ
√

u− t

∫ 1

0

1
p

(
vcall

a (S∗(u)p, t)− (S∗(u)p−K)
)

×
∫ p

0

1
y

N′
(

logy−µY

σY

)
N′
(

z2λ

(
xy

S∗(u)p
, t,u

))
dydpdu

The innermost integral can be evaluated using Lemma 4 with

a1 =
1

σY
, b1 =

−µY

σY
, a2 =

−1
σ
√

u− t
, b2 = z2λ

(
x

S∗(u)p
, t,u

)
, c = p,

which gives

I3,a = λ

∫ T

t

e(r+λ )(u−t)√
σ2

Y +σ2(u− t)

∫
∞

1

1
p

(
vcall

a (S∗(u)p, t)− (S∗(u)p−K)
)

N′
(

Z1

(
x

S∗(u)p
, t,u

))
N(−β (p,u))dpdu,

where β is given in (5.14) and Z1 from (3.22) with n = 1.

Now we draw our attention to I3,b. Using (3.6) for Kλ gives

I3,b =
∫ T

t

∞

∑
n=1

(λ (u− t))n

n!
√

nσ2
Y

e(r+λ )(u−t)

σ
√

u− t

∫
∞

S∗(u)

F(z,u)
z

×
∫

∞

0

1
w

N′

 logw+nµY√
nσ2

Y

N′
(

z2λ

(
x

zw
, t,u

))
dwdzdu.
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By using Lemma 5, we can evaluate the integral with respect to w by choosing

a1 =
1√
nσ2

Y

, b1 =
nµY√
nσ2

Y

, a2 =
1

σ
√

u− t
, b2 = z2λ (x/z, t,u),

then we are left with

I3,b =
∫ T

t

∞

∑
n=1

(λ (u− t))n

n!
√

nσ2
Y +σ2(u− t)

e(r+λ )(u−t)
∫

∞

S∗(u)

F(z,u)
z

N′
(

Zn

(
x
z
, t,u

))
dzdu,

with Zn defined in (3.22). Substituting F back into the expression gets us

I3,b = λ

∫ T

t

∞

∑
n=1

(λ (u− t))ne(r+λ )(u−t)

n!
√

nσ2
Y +σ2(u− t)

∫
∞

S∗(u)

1
z

N′
(

Zn

(
x
z
, t,u

))

×
∫ S∗(u)/z

0

(
vcall

a (zy, t)− (zy−K)
)

f (y)dydzdu.

Now we follow the exact same steps as for I3,a. First, we reverse the order of integra-

tion between y and z, then invoke a substitution of p = (zy)/S∗(u) before swapping the

integration between p and y. The end result is

I3,b = λ

∫ T

t

∞

∑
n=1

(λ (u− t))ne(r+λ )(u−t)

n!σY

√
nσ2

Y +σ2(u− t)

∫ 1

0

1
p

(
vcall

a (S∗(u)p, t)− (S∗(u)p−K)
)

×
∫ p

0

1
y

N′
(

logy−µY

σY

)
N′
(

Zn

(
xy

S∗(u)p
, t,u

))
dydpdu,

where we also replaced f with the lognormal PDF. The integral with respect to y can be

simplified via Lemma 4. We choose

a1 =
1

σY
, b1 =

−µY

σY
, a2 =

−1
σ
√

u− t
, b2 = Zn

(
x

S∗(u)p
, t,u

)
, c = p,
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to reduce I3,b to

I3,b = λ

∫ T

t

∞

∑
n=1

(λ (u− t))ne(r+λ )(u−t)

n!
√
(n+1)σ2

Y +σ2(u− t)

∫ 1

0

1
p

(
vcall

a (S∗(u)p, t)− (S∗(u)p−K)
)

×N′
(

Zn+1

(
x

S∗(u)p
, t,u

))
N(−βn(p,u))dpdu,

where Zn+1 is defined by (3.22) with n replaced with n+1 and βn from (5.15). By adding

the components I3,a and I3,b back together, we recover I3 and it is given as

I3 = λ

∫ T

t

e(r+λ )(u−t)√
σ2

Y +σ2(u− t)

∫ 1

0

1
p

(
vcall

a (S∗(u)p, t)− (S∗(u)p−K)
)

N′
(

Z1

(
x

S∗(u)p
, t,u

))
N(−β (p,u))dpdu

+λ

∫ T

t

∞

∑
n=1

(λ (u− t))ne(r+λ )(u−t)

n!
√
(n+1)σ2

Y +σ2(u− t)

∫ 1

0

1
p

(
vcall

a (S∗(u)p, t)− (S∗(u)p−K)
)

×N′
(

Zn+1

(
x

S∗(u)p
, t,u

))
N(−βn(p,u))dpdu.

Upon further inspection, we see that β (p,u) is actually βn(p,u) when n = 0, and Z1 =

Zn+1 when n = 0 also. Thus I3 in its final form is

I3 = λ

∞

∑
n=0

∫ T

t

(λ (u− t))ne(r+λ )(u−t)

n!
√

(n+1)σ2
Y +σ2(u− t)

∫ 1

0

1
p

(
vcall

a (S∗(u)p, t)− (S∗(u)p−K)
)

×N′
(

Zn+1

(
x

S∗(u)p
, t,u

))
N(−βn(p,u))dpdu.

(5.28)

Now that all the integrals have been evaluated (as far as they can), the American call
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option pricing formula for the underlying asset following a jump-diffusion process is

vcall
a (x, t) = vcall

e (x, t)+
∞

∑
n=0

(
rK
∫ T

t

(λ (u− t))n

n!
e(r+λ )(u−t)N

(
Zn

(
x

S∗(u)
, t,u

))
du

−qx
∫ T

t

(λ (u− t))n

n!
enµY+nσ2

Y /2e(q+λ+κλ )(u−t)N
(

Dn

(
x

S∗(u)
, t,u

))
du

+λ

∫ T

t

(λ (u− t))ne(r+λ )(u−t)

n!
√

(n+1)σ2
Y +σ2(u− t)

∫ 1

0

1
p

(
vcall

a (S∗(u)p, t)− (S∗(u)p−K)
)

×N′
(

Zn+1

(
x

S∗(u)p
, t,u

))
N(−βn(p,u))dpdu

)
,

(5.29)

where vcall
e is given by (3.19) for a European call option with jumps, Zn is defined in (3.22),

the expression for Dn is from (5.12), and βn from (5.15). Like the American put option,

we also need to pair (5.29) with an equation that solves for the unknown S∗.

5.2 Integral equations for S∗ for both the American put

and call options in a jump-diffusion model

The solution for vput
a and vcall

a require the knowledge of S∗(t) and so need to be solved

together with another equation for S∗(t). This is done by setting up an integral equation

in terms of S∗ by using the boundary conditions at S∗(t) that divide the domain of the

asset price into the continuation and exercise regions. Note that the S∗ term is different

for both the put and call options.

For the American put option, we use (5.6) and so have two conditions at our disposal.

We will derive both of them. First we incorporate vput
a (S∗(t), t) = K− S∗(t) and we set

x = S∗(t) in (5.10) to get

K−S∗(t) = vput
e (S∗(t), t)+

∫ T

t

∫
∞

0

∫
∞

0

1
z

gp

(
S∗(t)

z
,u
)

1
w

J (w, t,u)Kλ

( z
w
, t,u

)
dwdzdu.

(5.30)

Eq. (5.30) may initially appear to be a simple implicit equation for S∗(t), but the hid-



CHAPTER 5. JUMP-DIFFUSION – AMERICAN OPTIONS 97

den layer of complication lies in the function gp that contains the other unknown vput
a .

Thus if the American put option pricing problem for jump-diffusion processes were to

be solved numerically, one would have to solve the (5.10) and (5.30) simultaneously. As

we mentioned in the introduction, a scheme to solve this linked integral equation system

was reported in [27]. Alternatively, we may use the other value-matching condition of

∂vput
a

∂x (S∗(t), t) = −1 to provide us with another integral equation for S∗(t). Taking the

partial derivative of (5.10) with respect to x, we get

∂vput
a

∂x
(x, t) =

∂vput
e

∂x
(x, t)+

∫ T

t

∫
∞

0

∫
∞

0

1
z

∂gp

∂x

(
x
z
,u
)

1
w

J (w, t,u)Kλ

( z
w
, t,u

)
dwdzdu.

Then we evaluate this expression at x = S∗(t) to find

−1 =
∂vput

e

∂x
(S∗(t), t)+

∫ T

t

∫
∞

0

∫
∞

0

1
z

∂gp

∂x

(
S∗(t)

z
,u
)

1
w

J (w, t,u)

×Kλ

( z
w
, t,u

)
dwdzdu.

(5.31)

Similarly for the American call option and using (5.22), we would obtain the following:

S∗(t)−K = vcall
e (S∗(t), t)+

∫ T

t

∫
∞

0

∫
∞

0

1
z

gc

(
S∗(t)

z
,u
)

1
w

J (w, t,u)Kλ

( z
w
, t,u

)
dwdzdu,

(5.32)

1 =
∂vcall

e
∂x

(S∗(t), t)+
∫ T

t

∫
∞

0

∫
∞

0

1
z

∂gc

∂x

(
S∗(t)

z
,u
)

1
w

J (w, t,u)

×Kλ

( z
w
, t,u

)
dwdzdu.

(5.33)

5.3 Asymptotic behaviour of S∗ at terminal time

We will now present a brief derivation on how to find the value of S∗ at t = T which

we will denote S∗(T ). In the literature, there are three popularised methods for finding

S∗(T ) in the standard diffusion model for the underlying asset. One was proposed by

Kim [72] where the integral equation system for the option pricing and optimal exercise

boundary were used directly to evaluate the limit of the free boundary as t goes to T .

The second well known approach was presented by Wilmott et al. [114] in the standard
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diffusion setting for the American call option. They determined the limiting value of the

optimal exercise boundary by performing a local analysis of the standard Black-Scholes

PDE. This process involved finding values of the underlying asset that would make the

inhomogeneous term in Jamshidian’s [64] form for the Black-Scholes PDE equal to zero

for sufficiently small values of t away from T . Chiarella et al. [28] then confirmed that

by simply equating the inhomogeneous term in the PDE equal to zero and setting the

underlying asset variable equal to S∗(T ), then the expression could be rearranged and

an intuitive argument could be made to arrive at the same value of S∗(T ) that resulted

from the analyses of Kim and Wilmott. Chiarella and Ziogas in [27] then extended their

work and applied the same principles to finding S∗(T ) for an American call in the jump-

diffusion framework. They also provided a derivation using the methodologies of Kim

but this was illustrated to be algebraically cumbersome.

The derivation we will be giving for S∗(T ) will be for an American put option in

jump-diffusion dynamics. Furthermore, we will be adapting a similar argument to that of

Chiarella and Ziogas in [27] as this is most definitely the most straightforward and elegant

procedure to follow. We will omit this for the American call option as one could simply

find the details in [27]. To begin, we first refer to the inhomogeneous term of the PIDE

given in (5.7). First we extend the limits of integration to give

g(x, t) =
(
−rK +qx+λ

∫
∞

0

(
vput

a (xy, t)− (K− xy)
)

f (y)dy
)

H (S∗(t)− x) .

This is valid because vput
a (xy, t) = K−xy when y≤ S∗(t)/x as we would be in the exercise

region. Next we set t = T and x = S∗(T ) then setting g(S∗(T ),T ) = 0, we get

−rK +qS∗(T )+λ

∫
∞

0

(
vput

a (S∗(T )y,T )− (K−S∗(T )y)
)

f (y)dy = 0,

where the Heaviside function becomes 1 due to its definition (2.12). Given that vput
a (x,T )=

max(K− x,0) from (5.5), the expression becomes

−rK +qS∗(T )+λ

∫
∞

0
(max(K−S∗(T )y,0)− (K−S∗(T )y)) f (y)dy = 0.
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Now we have two cases to consider. If K − S∗(T )y ≥ 0, then the integral term above

collapses and we would obtain

S∗(T ) = K
r
q
.

Due to the type of payoff the American put option has, it is never optimal to exercise this

option when x > K since max(K− x,0) would equal 0. Thus, we must have x≤ K which

implies S∗(T )≤ K. Then we can deduce that

S∗(T ) = K min
(

1,
r
q

)
, (5.34)

which corresponds to the standard diffusion scenario for the limiting value on the optimal

exercise boundary for an American put (see [76, pp. 261]). This is quite easy to see as the

integral term disappearing correlates to removing any form of jumps in the model. There-

fore our attention must be focused on when max(K−S∗(T )y,0)≤ 0. In this situation, we

obtain y≥ K/S∗(T ) and our equation becomes

−rK +qS∗(T )+λ

∫
∞

K/S∗(T )
(S∗(T )y)−K) f (y)dy = 0.

Rearranging for S∗(T ) yields

S∗(T ) = K
r+λ

∫
∞

K/S∗(T ) f (y)dy

q+λ
∫

∞

K/S∗(T ) y f (y)dy
.

We once again employ the same argument that S∗(T ) ≤ K must be held otherwise the

option would be worthless, and we arrive at

S∗(T ) = K min

(
1,

r+λ
∫

∞

K/S∗(T ) f (y)dy

q+λ
∫

∞

K/S∗(T ) y f (y)dy

)
. (5.35)

Although (5.35) is an implicit result, we can implement standard root-finding techniques

like Newton-Raphson to determine which case we would need to consider for the mini-

mum function. It should also be emphasized that (5.35) can be applied to any distribution

specified for the jump-diffusion dynamics. Moreover, we can obtain (5.34) if we set λ = 0
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which reverts back to the standard diffusion process for the underlying asset.

In contrast to the American put option, the American call option has a limiting value

for the optimal exercise boundary of [27]

S∗(T ) = K max

(
1,

r+λ
∫ K/S∗(T )

0 f (y)dy

q+λ
∫ K/S∗(T )

0 y f (y)dy

)
. (5.36)

5.3.1 Example: S∗(T ) for lognormally distributed jumps

We will now look at a special case when the jumps are lognormally distributed for an

American put option. Recall that if a random variable Y is lognormal, then its den-

sity function and expectation are given in (3.17). This can be rewritten in terms of N′

from (2.34) to get

f (y) =
1

yσY
N′
(

logy−µY

σY

)
.

Now we investigate each of the integral terms in (5.35) separately. Looking at the numer-

ator term first and labelling this term temporarily as I1 will give us

I1 = r+λ

∫
∞

K/S∗(T )

1
yσY

N′
(

logy−µY

σY

)
dy.

Making a substitution of v = (logy−µY )/σY in the integral term, we get

I1 = r+λ

∫
∞

γ1

N′(v)dv = r+λN(−γ1) = r+λN
(
− logK/S∗(T )−µY

σY

)
,

where we used γ1 = (log(K/S∗(T ))−µY )/σY after the change of variables and incorpo-

rated (2.34) once more to complete the integral. All that remains is to compute the integral

on the denominator of (5.35). Coining this term as I2 and replacing f (y) with the PDF for

lognormal jumps gives us

I2 = q+λ

∫
∞

K/S∗(T )

1
σY

N′
(

logy−µY

σY

)
dy.
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Applying the same change of variables as for I1, we set v = (logy− µY )/σY to simplify

I2 to be

I2 = q+λeµY

∫
∞

γ2

eσY vN′(v)dv = q+
λeµY

√
2π

∫
∞

γ2

eσY ve−v2/2 dv,

where γ2 = (log(K/S∗(T ))− µY )/σY and we have temporarily switched N′ back to its

exponential form for the next step. Completing the square in the exponential terms in the

integral yields

I2 = q+
λeµY+σ2

Y /2
√

2π

∫
∞

γ2

e−(v−σY )
2/2 dv = q+λeµY+σ2

Y /2
∫

∞

γ2

N′(v−σY )dv,

where we swapped the exponential term for its N′ counterpart. We now perform one final

linear transform of w = v−σY which simplifies the expression to

I2 = q+λeµY+σ2
Y /2
∫

∞

γ2−σY

N′(w)dw = q+λeµY+σ2
Y /2N (−γ2 +σY )

= q+λeµY+σ2
Y /2N

(
− logK/S∗(T )−µY

σY
+σY

)
.

Therefore, the value of S∗(T ) for an American put option under lognormally distributed

jumps is

S∗(T ) = K min

(
1,

r+λN ((logS∗(T )/K +µY )/σY )

q+λeµY+σ2
Y /2N ((logS∗(T )/K +µY )/σY +σY )

)
. (5.37)

For comparison, S∗(T ) for an American call option with jumps that are lognormally dis-

tributed is given by [27]

S∗(T ) = K max

(
1,

r+λN ((logK/S∗(T )−µY )/σY )

q+λeµY+σ2
Y /2N ((logK/S∗(T )−µY )/σY +σY )

)
. (5.38)
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5.4 Approximate integro-differential equation to the free

boundary for American options in jump-diffusion dy-

namics

We could not solve the American option pricing problem along with its respective integral

equations as demonstrated in the previous section due to the difficulty in determining S∗.

Several numerical methods exist that have yielded quite positive results (e.g., see [69]

and [27]), but these often can be quite complex in implementation if minor details are

omitted from the expositions. Thus in a similar manner to [98] where an approximate

ODE was found, we will derive an approximation for the free boundary S∗, except now we

will be examining it in a jump-diffusion framework so the ODE will now be an integro-

differential equation (IDE). The numerical results from [98] for the standard diffusion

dynamics in the asset price showed to be accurate when compared against widely accepted

techniques for computing the American option value (e.g., the binomal method).

5.4.1 Approximate IDE for an American put option

To derive the approximate IDE for the American put option, we will need to make use

of the PIDE (5.1) and implement the following identities (which can all be derived using

integration by parts):

∫ b(t)

a(t)
x

∂v
∂x

(x, t)dx = [xv(x, t)]b(t)a(t)−
∫ b(t)

a(t)
v(x, t)dx, (5.39)

∫ b(t)

a(t)
x2 ∂ 2v

∂x2 (x, t)dx =
[

x2 ∂v
∂x

(x, t)−2xv(x, t)
]b(t)

a(t)
+2

∫ b(t)

a(t)
v(x, t)dx, (5.40)

∫ b(t)

a(t)

∂v
∂ t

(x, t)dx =−v(b(t), t)ḃ(t)+ v(a(t), t)ȧ(t)+
d
dt

∫ b(t)

a(t)
v(x, t)dx. (5.41)

To apply these to the American put, we let v = vput
a (x, t), a(t) = S∗(t), and b(t) = ∞. That

is, we are examining the continuation region since we know from (5.2) that vput
a satisfies

L ′vput
a = 0 for x > S∗(t). So now we integrate (5.1) from S∗(t) to ∞ and using (5.39)–
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(5.41) gives

0 =
d
dt

∫
∞

S∗(t)
vput

a (x, t)dx+(σ2−2r−q−κλ )
∫

∞

S∗(t)
vput

a (x, t)dx+ vput
a (S∗(t), t)Ṡ∗(t)

−

(
σ2

2
S∗(t)2 ∂vput

a

∂x
(S∗(t), t)− (σ2− r+q+κλ )S∗(t)vput

a (S∗(t), t)

)

+λ

∫
∞

0
f (y)

∫
∞

S∗(t)

[
vput

a (xy, t)− vput
a (x, t)

]
dxdy.

(5.42)

We now apply the same procedure to the European put option vput
e and obtain

0 =
d
dt

∫
∞

S∗(t)
vput

e (x, t)dx+(σ2−2r−q−κλ )
∫

∞

S∗(t)
vput

e (x, t)dx+ vput
e (S∗(t), t)Ṡ∗(t)

−

(
σ2

2
S∗(t)2 ∂vput

e

∂x
(S∗(t), t)− (σ2− r+q+κλ )S∗(t)vput

e (S∗(t), t)

)

+λ

∫
∞

0
f (y)

∫
∞

S∗(t)

[
vput

e (xy, t)− vput
e (x, t)

]
dxdy.

(5.43)

Subtracting (5.43) from (5.42) yields

0 =
d
dt

∫
∞

S∗(t)

[
vput

a (x, t)− vput
e (x, t)

]
dx+

[
vput

a (S∗(t), t)− vput
e (S∗(t), t)

]
Ṡ∗(t)

+(σ2−2r−q−κλ )
∫

∞

S∗(t)

[
vput

a (x, t)− vput
e (x, t)

]
dx

− σ2

2
S∗(t)2

(
∂vput

a

∂x
(S∗(t), t)− ∂vput

e

∂x
(S∗(t), t)

)

+
(
σ

2− r+q+κλ
)

S∗(t)
(

vput
a (S∗(t), t)− vput

e (S∗(t), t)
)

+λ

∫
∞

0
f (y)

∫
∞

S∗(t)

[
vput

a (xy, t)− vput
e (xy, t)

]
−
[
vput

a (x, t)− vput
e (x, t)

]
dxdy.

(5.44)

From [98], we use the assumption that

∫
∞

S∗(t)
vput

a (x, t)dx≈
∫

∞

S∗(t)
vput

e (x, t)dx, (5.45)

which is the Kármán-Pohlausen technique that deals with the thickness of a boundary

layer [118, pp. 421–423]. Combined with the smooth pasting conditions (5.6), this sim-
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plies (5.44) to

Ṡ∗(t) =
σ2

2 S∗(t)2
(

∂vput
e

∂x (S∗(t), t)+1
)
−λ

∫
∞

0 f (y)
∫

∞

S∗(t)

[
vput

a (xy, t)− vput
e (xy, t)

]
dxdy

vput
e (S∗(t), t)+S∗(t)−K

− (σ2− r+q+κλ )S∗(t),

(5.46)

giving us the approximation IDE for S∗(t) for an American put under jump-diffusion dy-

namics. We once again need to treat the integral with care as the value of y can potentially

shift the value of vput
a out of the continuation region. Similar to the derivation of the option

valuation formula, we need to split the integral into two parts again except in this instance,

we opt to use a change of variables for simplicity. Let

I =
∫

∞

0
f (y)

∫
∞

S∗(t)

[
vput

a (xy, t)− vput
e (xy, t)

]
dxdy.

Using the substitution z = xy transforms the integral to

I =
∫

∞

0

f (y)
y

∫
∞

yS∗(t)

[
vput

a (z, t)− vput
e (z, t)

]
dzdy

=
∫ 1

0

f (y)
y

∫
∞

yS∗(t)

[
vput

a (z, t)− vput
e (z, t)

]
dzdy+

∫
∞

1

f (y)
y

∫
∞

yS∗(t)

[
vput

a (z, t)− vput
e (z, t)

]
dzdy

= I1 + I2

where we split the integral in y at y= 1 because this is the value that could determine if the

quantity z = yS∗(t) would place vput
a (z, t) in the continuation or exercise region. We have

also given them temporary names I1 and I2 for ease of reference. We can immediately

eliminate I2 since it will decay to 0. This is because in this region, y ∈ (1,∞), and then

this implies that yS∗(t) > S∗(t). So the z domain of z ∈ (yS∗(t),∞) by default is a subset

of z ∈ (S∗(t),∞), which is precisely the continuation region. Hence I2 will be 0 because

∫
∞

yS∗(t)

[
vput

a (z, t)− vput
e (z, t)

]
dz≈ 0
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due to the assumption (5.45) that applies to the American put option in the continuation

region. I1 will require a bit more analysis. Since y ∈ (0,1) for I1, we have yS∗(t) <

S∗(t) and this means that the z domain for the inner integral z ∈ (yS∗(t),∞) will include

subsets z ∈ (S∗(t),∞) (that is, the continuation region) and z ∈ (yS∗(t),S∗(t)) (below the

continuation region). The latter subset is guaranteed to be below the continuation region

due to our aforementioned condition on y. Thus we break up the inner integral in I1 with

respect to z into

I1 =
∫ 1

0

f (y)
y

(∫ S∗(t)

yS∗(t)

[
vput

a (z, t)− vput
e (z, t)

]
dz+

∫
∞

S∗(t)

[
vput

a (z, t)− vput
e (z, t)

]
dz
)

dy.

The second integral for z ∈ (S∗(t),∞) will disappear due to (5.45). We can then set

vput
a (z, t) = K− z in the first integral since z ∈ (yS∗(t),S∗(t)) is below the continuation

region and thus automatically makes it the exercise region for the American put option.

So far this gives us

I1 =
∫ 1

0

f (y)
y

∫ S∗(t)

yS∗(t)

[
K− z− vput

e (z, t)
]

dzdy

=
∫ S∗(t)

0

[
K− z− vput

e (z, t)
]∫ z/S∗(t)

0

f (y)
y

dydz,

where we have swapped the order of integration in the second line. We now wish to

extend the y domain to the entire real numbers and this can be accomplished by simply

incorporating a Heaviside function to produce

I1 =
∫ S∗(t)

0

[
K− z− vput

e (z, t)
]∫ ∞

0

1
y

H
(

z
S∗(t)

− y
)

f (y)dydz.

As f represents the PDF for an arbitrary type of jump, the y integral can be computed in

terms of an expectation to give

I = I1 =
∫ S∗(t)

0

[
K− z− vput

e (z, t)
]
E
[

1
Y

H
(

z
S∗(t)

−Y
)]

dz
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Now substituting this into (5.53), we at last arrive at the approximate IDE for S∗ for an

American put option subject to a jump-diffusion model

Ṡ∗(t) =
σ2

2 S∗(t)2
(

∂vput
e

∂x (S∗(t), t)+1
)
−λ

∫ S∗(t)
0

[
K− z− vput

e (z, t)
]
E
[ 1

Y H (z/S∗(t)−Y )
]

dz

vput
e (S∗(t), t)+S∗(t)−K

− (σ2− r+q+κλ )S∗(t).

(5.47)

Additionally, it can be observed that if λ = 0, we would obtain the approximate ODE for

the free boundary in a pure-diffusion setting [98].

5.4.2 Example of an approximate IDE for an American put option

and S∗: lognormally distributed jumps

Similar to the terminal value of S∗ at t = T , we will be examining a special case of (5.47)

when Y ∼ LN(µY ,σ
2
Y ). From (3.17), the expectation term in (5.47) becomes

E
[

1
Y

H
(

z
S∗(t)

−Y
)]

=
∫

∞

0

H (z/S∗(t)− y)
y

f (y)dy

=
∫

∞

0

H (z/S∗(t)− y)
y

1

y
√

2πσ2
Y

e−(logz−µY )
2/(2σ2

Y ) dy

=
1√

2πσ2
Y

∫ z/S∗(t)

0

1
y2 e−(logz−µY )

2/(2σ2
Y ) dy.

To continue computing this expectation, we let v = (logy−µY )/σY and it follows that

E
[

1
Y

H
(

z
S∗(t)

−Y
)]

=
1√
2π

∫
γ

−∞

e−σY v−µY e−v2/2 dv

=
e−µY

√
2π

∫
γ

−∞

e−(v
2+2σY v)2/2 dv,
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where γ = (log(z/S∗(t))− µY )/σY . Upon completing the square inside the exponential

term, we see the expression becomes

E
[

1
Y

H
(

z
S∗(t)

−Y
)]

=
e−µY+σ2

Y /2
√

2π

∫
γ

−∞

e−(v+σY )
2/2 dv

= e−µY+σ2
Y /2N

(
log(z/S∗(t))−µY

σY
+σY

)

where we implemented a final linear shift of w = v+σY and replaced the exponential

term with N′ to evaluate the remainder of the integral to arrive at our result. Therefore, we

replace the expectation in (5.47) to obtain the approximate IDE for S∗(t) in lognormally

distributed jumps:

Ṡ∗(t) =
σ2

2 S∗(t)2
(

∂vput
e

∂x (S∗(t), t)+1
)

vput
a (S∗(t), t)+S∗(t)−K

− (σ2− r+q+κλ )S∗(t)

−
λ
∫ S∗(t)

0

[
K− z− vput

e (z, t)
]

e−µY+σ2
Y /2N

(
log(z/S∗(t))−µY

σY
+σY

)
dz

vput
e (S∗(t), t)+S∗(t)−K

.

(5.48)

5.4.3 Approximate IDE for an American call option

We will now repeat the analysis to derive an IDE for the American call option’s free

boundary. To begin, we apply the identities (5.39)–(5.41) to the American call and choose

v = vcall
a , a(t) = 0, and b(t) = S∗(t). Note that the limits of integration a(t) and b(t) are

opposite to the American put option as the American call option’s continuation region

is the interval (0,S∗(t)). Therefore in this region, we know that L ′vcall
a = 0. So we

integrate (5.1) from 0 to S∗(t) and the results (5.39)–(5.41) give

0 =
d
dt

∫ S∗(t)

0
vcall

a (x, t)dx+(σ2−2r−q−κλ )
∫ S∗(t)

0
vcall

a (x, t)dx+ vcall
a (S∗(t), t)Ṡ∗(t)

−
(

σ2

2
S∗(t)2 ∂vcall

a
∂x

(S∗(t), t)− (σ2− r+q+κλ )vcall
a (S∗(t), t)

)
+λ

∫
∞

0
f (y)

∫ S∗(t)

0

[
vcall

a (xy, t)− vcall
a (x, t)

]
dxdy.

(5.49)
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Now repeating this for the European call, we obtain

0 =
d
dt

∫ S∗(t)

0
vcall

e (x, t)dx+(σ2−2r−q−κλ )
∫ S∗(t)

0
vcall

e (x, t)dx+ vcall
e (S∗(t), t)Ṡ∗(t)

−
(

σ2

2
S∗(t)2 ∂vcall

e
∂x

(S∗(t), t)− (σ2− r+q+κλ )vcall
e (S∗(t), t)

)
+λ

∫
∞

0
f (y)

∫ S∗(t)

0

[
vcall

e (xy, t)− vcall
e (x, t)

]
dxdy.

(5.50)

Subtracting (5.50) from (5.49) gets to

0 =
d
dt

∫ S∗(t)

0

[
vcall

a (x, t)− vcall
e (x, t)

]
dx+

[
vcall

a (S∗(t), t)− vcall
e (S∗(t), t)

]
Ṡ∗(t)

+(σ2−2r−q−κλ )
∫ S∗(t)

0

[
vcall

a (x, t)− vcall
e (x, t)

]
dx

− σ2

2
S∗(t)2

(
∂vcall

a
∂x

(S∗(t), t)− ∂vcall
e

∂x
(S∗(t), t)

)
+
(
σ

2− r+q+κλ
)(

vcall
a (S∗(t), t)− vcall

e (S∗(t), t)
)

+λ

∫
∞

0
f (y)

∫ S∗(t)

0

[
vcall

a (xy, t)− vcall
e (xy, t)

]
−
[
vcall

a (x, t)− vcall
e (x, t)

]
dxdy.

(5.51)

From [98], we use the assumption of

∫ S∗(t)

0
vcall

a (x, t)dx≈
∫ S∗(t)

0
vcall

e (x, t)dx, (5.52)

and combining this with the smooth pasting conditions (5.22) simplifies (5.51) to

Ṡ∗(t) =
σ2

2 S∗(t)2
(

∂vcall
e

∂x (S∗(t), t)−1
)
−λ

∫
∞

0 f (y)
∫ S∗(t)

0
[
vcall

a (xy, t)− vcall
e (xy, t)

]
dxdy

vcall
e (S∗(t), t)−S∗(t)+K

− (σ2− r+q+κλ )S∗(t),

(5.53)

which is the approximate IDE for S∗(t) for an American call option with an underlying

that follows a jump-diffusion model. Similar to the American put, the remaining integral

can be dealt with quite easily. We let the integral be denoted by I and through a change of
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variables z = xy, we get

I =
∫

∞

0

f (y)
y

∫ yS∗(t)

0

[
vcall

a (z, t)− vcall
e (z, t)

]
dzdy

=
∫ 1

0

f (y)
y

∫ yS∗(t)

0

[
vcall

a (z, t)− vcall
e (z, t)

]
dzdy

+
∫

∞

1

f (y)
y

∫ yS∗(t)

0

[
vcall

a (z, t)− vcall
e (z, t)

]
dzdy

= I1 + I2.

Notice again how the outermost integral is split at y = 1 as this will determine whether

the value yS∗(t) is in the continuation or exercise region. For I1 we see that y < 1 and this

means that yS∗(t)< S∗(t). So the region (0,yS∗(t)) is a subset of (0,S∗(t)) which allows

us to enforce (5.52). Thus I1 will be 0 and all that remains is the integral I2. For this

integral, y > 1 which gives us yS∗(t) > S∗(t). That means we are able to split the inner

integral at z = S∗(t) to give

I2 =
∫

∞

1

f (y)
y

(∫ S∗(t)

0

[
vcall

a (z, t)− vcall
e (z, t)

]
dz +

∫ yS∗(t)

S∗(t)

[
vcall

a (z, t)− vcall
e (z, t)

]
dz
)

dy.

From (5.52), we can immediate eliminate the first integral with z ∈ (0,S∗(t)) and we are

left with

I = I2 =
∫

∞

1

f (y)
y

∫ yS∗(t)

S∗(t)

[
vcall

a (z, t)− vcall
e (z, t)

]
dzdy.

The next step is to reverse the order of integration between z and y to yield

I =
∫

∞

S∗(t)

[
vcall

a (z, t)− vcall
e (z, t)

]∫ ∞

z/S∗(t)

f (y)
y

dydz

=
∫

∞

S∗(t)

[
z−K− vcall

e (z, t)
]∫ ∞

z/S∗(t)

f (y)
y

dydz,

where we replaced vcall
a (z, t) with z−K as the region for z here is the exercise region for

an American call option. Using similar techniques to the American put, we eventually

arrive at

I =
∫

∞

S∗(t)

[
z−K− vcall

e (z, t)
]
E
[

1
Y

H
(

Y − z
S∗(t)

)]
dz.
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Hence, the approximate IDE for an American call option is given by

Ṡ∗(t) =
σ2

2 S∗(t)2
(

∂vcall
e

∂x (S∗(t), t)−1
)
−λ

∫
∞

S∗(t)
[
z−K− vcall

e (z, t)
]
E
[

1
Y H
(

Y − z
S∗(t)

)]
dz

vcall
e (S∗(t), t)−S∗(t)+K

− (σ2− r+q+κλ )S∗(t),

(5.54)

5.4.4 Example of an approximate IDE for an American call option

and S∗: lognormally distributed jumps

Similar to the American put, we will now be examining a special case of (5.54) when Y

is drawn from a lognormal distribution. Using (3.17), the expectation term in (5.54) is

E
[

1
Y

H
(

Y − z
S∗(t)

)]
=
∫

∞

0

H (y− z/S∗(t))
y

f (y)dy

=
∫

∞

0

H (y− z/S∗(t))
y

1

y
√

2πσ2
Y

e−(logz−µY )
2/(2σ2

Y ) dy

=
1√

2πσ2
Y

∫
∞

z/S∗(t)

1
y2 e−(logz−µY )

2/(2σ2
Y ) dy.

Next we let v = (logy−µY )/σY and the integral simplifies to

E
[

1
Y

H
(

Y − z
S∗(t)

)]
=

1√
2π

∫
∞

γ

e−σY v−µY e−v2/2 dv

=
e−µY

√
2π

∫
∞

γ

e−(v
2+2σY v)2/2 dv,

where γ = (log(z/S∗(t))− µY )/σY . Now we complete the square inside the exponential

term and computing the integral gives

E
[

1
Y

H
(

Y − z
S∗(t)

)]
= e−µY+σ2

Y /2N
(
−
(

log(z/S∗(t))−µY

σY
+σY

))
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The final step is to substitute the expectation in (5.54) to obtain the approximate IDE for

S∗(t) in lognormally distributed jumps:

Ṡ∗(t) =
σ2

2 S∗(t)2
(

∂vcall
e

∂x (S∗(t), t)−1
)

vput
a (S∗(t), t)−S∗(t)+K

− (σ2− r+q+κλ )S∗(t)

−
λ
∫

∞

S∗(t)
[
z−K− vcall

e (z, t)
]

e−µY+σ2
Y /2N

(
−
(

log(z/S∗(t))−µY
σY

+σY

))
dz

vcall
e (S∗(t), t)−S∗(t)+K

.

(5.55)

5.5 An algorithm for numerically solving the approxi-

mate IDE for S∗ for an American put option

In this section, we will illustrate how to solve the approximate IDE (5.47) numerically.

The algorithm we will describe is easy to follow and only employs basic numerical math-

ematical techniques to aid us in solving for S∗(t). Before we proceed, one should take

caution of the form for (5.47). First of all, it is implicit and this automatically defaults us

to involve a root-finding method like Newton-Raphson. Secondly, the formula for S∗(t)

contains an integral which also contains the unknown in the upper limit of the integral

and the integrand itself. This inherently introduces further obstacles in that standard nu-

merical techniques for solving integrals and IDEs may not be as straightforward to apply.

To mitigate some difficulty in the problem, we incorporate a “lagging” approach to solve

this approximate IDE. The motivational core was inspired by Tavella and Randall [104]

where they devised a finite difference method (FDM) scheme to solve the PIDE (2.20).

The crux of their algorithm was to solve the diffusion components implicitly (i.e., at the

next time step) and the jump terms explicitly (i.e., at the current time step) which is an

implicit-explicit method. By solving the jump-diffusion terms explicitly, this created a

lagging effect on the equation and markedly simplified the numerical implementation.

We will replicate a similar procedure.

To begin, we divide our time domain into N equally-spaced subintervals and use the

index i to denote the ith time step such that t = ti where tn = n∆t for i = 0,1, . . . ,N. Next

we label S∗i to be the value of S∗ at t = ti. We solve this problem by marching backwards

in time from t = T because the value of S∗(T ) is known from (5.35). Using a backwards
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derivative approximation for Ṡ∗

Ṡ∗(t) =
S∗i −S∗i−1

∆t
,

and solving for the unknown S∗i−1 nets us the following expression

S∗i −S∗i−1

∆t
=

σ2

2 S∗i−1
2
(

∂vput
e

∂x (S∗i−1, t)+1
)

vput
e (S∗i−1, t)+S∗i−1−K

− (σ2− r+q+κλ )S∗i−1

−
λ
∫ S∗i−1

0

[
K− z− vput

e (z, t)
]

e−µY−σ2
Y /2N

(
log(S∗i−1/z)−µY

σY
+σY

)
dz

vput
e (S∗i−1, t)+S∗i−1−K

.

For the integral term, we now instantiate the lagging technique by setting all S∗i−1 terms

to S∗i (i.e., the value of S∗ at the previous time step). We do this because the value of S∗i is

a known quantity, so calculating the integral with numerical methods like Trapezoidal or

Simpsons quadrature rules will be much more efficient. Thus we have

S∗i −S∗i−1

∆t
=

σ2

2 S∗i−1
2
(

∂vput
e

∂x (S∗i−1, t)+1
)

vput
e (S∗i−1, t)+S∗(t)−K

− (σ2− r+q+κλ )S∗i−1

−
λ
∫ S∗i

0

[
K− z− vput

e (z, t)
]

e−µY+σ2
Y /2N

(
log(z/S∗i )−µY

σY
+σY

)
dz

vput
e
(
S∗i−1, t

)
+S∗i−1−K

,

with the integral now a completely explicit term. Rearranging this yields

0 = S∗i−1−S∗i +∆t

 σ2

2 S∗i−1
2
(

∂vput
e

∂x (S∗i−1, t)+1
)

vput
e (S∗i−1, t)+S∗i−1−K

− (σ2− r+q+κλ )S∗i−1


−∆t

λ
∫ S∗i

0

[
K− z− vput

e (z, t)
]

e−µY+σ2
Y /2N

(
log(z/S∗i )−µY

σY
+σY

)
dz

vput
e
(
S∗i−1, t

)
+S∗i−1−K

 ,

(5.56)

and this can be solved using a standard root-finding technique for nonlinear equations.

The initial guess that we input to solve for S∗i−1 will be S∗i with the justification that if the

time domain is discretized into enough subintervals, the resulting profile for S∗ should be

continuous and the approximations will ideally be close to one another in a monotonically

decreasing behaviour from T to time zero. Note for an American call option, the inverse
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will occur and the values of S∗ will be monotonically increasing from T to time zero.

In summary, you apply (5.56) starting from t = T going backwards and stopping at the

time-zero value for t. This effectively mimics the method outlined by Rodrigo [98] and

reduces to the same problem when λ = 0. In concise steps, the algorithm is

1. Declare and initialize all relevant financial and numerical parameters and functions.

2. Discretize the specified time domain into N subintervals (or N +1 nodes).

3. Create an empty array or vector of length N +1 to store the approximate values of

S∗.

4. Manually compute S∗(T ) using (5.35) and store it as the first element in the array.

5. Evaluate the integral in (5.56) using numerical integration.

6. Solve (5.56) using a root-finding technique for S∗i−1 with an initial seed of S∗i .

7. Repeat steps 5 and 6 until the time-zero value has been reached.

5.6 A finite difference method for solving the PIDE

In order to check the accuracy in solving the IDE (5.47) and the respective option prices

observed using this approximate profile for S∗ from the IDE, we will compare it to the

solution obtained directly from solving the PIDE. It was mentioned in [25] that the PIDE

system (5.4)–(5.7) must be solved with an integral equation for S∗ simultaneously. Fur-

thermore, the implementation will most definitely be numerical. This provides the mo-

tivation for introducing a FDM to solve this problem. Although taking this stance is far

from novel (e.g. see [35] and [104]), we believe our approach is more intuitive to under-

stand, easy to implement computationally and informative with the details.

One of the traditional FDMs used in options pricing uses a few change of variables

in order to change the PDE (or PIDE) to resemble the typical heat equation. Whilst this

may be more elegant, we believe it is quite easy to lose track of the current variable space.

Furthermore, it can be cumbersome to visualize these results because the original problem
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has been altered through these variable changes. Hence we will constrain our analysis to

the original variables contained within the problem.

First, we denote vn
i to be the value of our option v at v(xi, tn) where

xi = i∆x, i = 0,1, · · · , I, tn = n∆t, n = 0,1, · · · ,N,

with

∆x =
xmax− xmin

I
, ∆t =

T − t0
N

.

To discretize the derivatives in the PIDE, we will be using the backwards difference for

the t derivative and central difference formulations for the x derivatives. These are

∂v
∂ t

=
vn

i − vn−1
i

∆t
,

∂v
∂x

=
vn

i+1− vn
i−1

2∆x
, and

∂ 2v
∂x2 =

vn
i−1−2vn

i + vn
i+1

(∆x)2 .

The initial difficulty in discretizing the PIDE comes from the integral term. Depending

on how we choose to discretize this, we may need to extrapolate or interpolate values of

x that are otherwise not defined on the x-grid space. However, we can avoid this entirely

by being smart in the choice for the grid resolution (i.e., what is selected for ∆x). For the

integral, we will firstly introduce a change of variables z = xy to give

I =
∫

∞

0
v(xy, t) f (y)dy =

1
x

∫
∞

0
v(z, t) f

( z
x

)
dz.

We will introduce an approximation to this integral by setting zmax to be a value that

replicates the behaviour of z→ ∞. That is,

I ≈ 1
x

∫ zmax

0
v(z, t) f

( z
x

)
dz.

Now we let vn
j be the discrete version of v(z j, tn) where

z j = j∆z, j = 0,1, · · · ,J, and ∆z =
zmax

J
.
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So by first replacing x with i∆x, we get

I ≈ 1
i∆x

∫ zmax

0
v(z, t) f

( z
i∆x

)
dz≈ 1

i∆x

J

∑
j=0

vn
j f
(

j∆z
i∆x

)
∆z,

where we replace the integral with a Riemann sum. Note that we could in theory replace

the integral with any type of numerical integration scheme (e.g., the class of numerical

quadratures), but the Riemann sum is the most transparent for our purposes. We want

to highlight that vn
j does not necessarily need to possess the same grid as vn

i . If the grid

resolutions are not compatible with one another, there will be the need for extrapolation

or interpolation as mentioned before. However, we will force the grids to be identical

by setting ∆z = ∆x. This simplifies things tremendously with our integral discretization

collapsing to

I ≈ 1
i∆x

J

∑
j=0

vn
j f
(

j∆x
i∆x

)
∆x =

1
i

J

∑
j=0

vn
j f
(

j
i

)
. (5.57)

The justification for choosing ∆z = ∆x is that for a put option (European and American),

the value of the option becomes worthless as the asset price (denoted here by x) goes to

infinity. Asymptotically, this means that these extreme asset values will give us vn
j = vn

i =

0 for large j and i, and thus extending our grid that far in the x domain will not be of any

computational detriment.

Now combining all of this together for the PIDE and its terminal condition gives us

the following expression

vn
i − vn−1

i
∆t

+
1
2

σ(t)2(i∆x)2
(

vn
i−1−2vn

i + vn
i+1

(∆x)2

)
+(r−q−κλ )i∆x

(
vn

i+1− vn
i−1

2∆x

)
− (r+λ )vn

i +
λ

i

J

∑
j=0

vn
j f
(

j
i

)
= 0,

with the terminal condition vN
i = φ(xi) since at n = N, tN = T . Since we are solving

backwards in time from t = T , the term we want to isolate is vn−1
i and this expression
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rearranged gives us

vn−1
i = vn

i +∆t
(

1
2

σ
2i2
(
vn

i−1−2vn
i + vn

i+1
)
+(r−q−κλ )i

(
vn

i+1− vn
i−1

2

)
− (r+λ )vn

i +
λ

i

J

∑
j=0

vn
j f
(

j
i

))
, i = 0,1, · · · , I, n = 0,1, · · · ,N.

(5.58)

The astute reader will notice that we may encounter a problem at i = 0 since we would be

dividing by 0 in a few terms. However, this is avoided by simply declaring the appropriate

boundary conditions to mimic the asymptotic behaviour of the option. That is the value

of vn
0 will be equal v = v(x, t) as x→ 0 for all n. Similarly, vn

I will be equal to v = v(x, t)

as x→ ∞ for all n. This means that i = 0 and i = I will be omitted from computation as

these values can be set before we commence the FDM implementation.

5.7 Numerical simulations

For this section, several numerical results will be presented for the approximate free

boundary by the algorithm presented in the previous section. We will be executing the

numerical implementations for an American put option and under the assumption that

the jumps are lognormally distributed. In a similar manner to Rodrigo [98], we will be

comparing the option price profiles from solving the approximate IDE (5.48) with (5.37)

and (5.17) against a well known numerical scheme. However this time in the event of

jump-diffusion dynamics, we will be using the FDM scheme (5.58) for f being a lognor-

mal distribution versus the standard binomial method. One issue that remains with (5.17)

is its implicit form with vput
a being inside the integral. We wish to ascertain an explicit

formula albeit it will be an approximation. We will let vput
a inside the integral be equal to
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vput
e , the standard European put option (2.5). Then (5.17) is approximated by

vput
a (x, t)≈ vput

e (x, t)+
∞

∑
n=0

(
− rK

∫ T

t

(λ (u− t))n

n!
e(r+λ )(u−t)N

(
−Zn

(
x

S∗(u)
, t,u

))
du

−qx
∫ T

t

(λ (u− t))n

n!
enµY+nσ2

Y /2e(q+λ+κλ )(u−t)N
(
−Dn

(
x

S∗(u)
, t,u

))
du

+λ

∫ T

t

(λ (u− t))ne(r+λ )(u−t)

n!
√

(n+1)σ2
Y +σ2(u− t)

∫
∞

1

1
p

(
vput

e (S∗(u)p, t)− (K−S∗(u)p)
)

×N′
(

Zn+1

(
x

S∗(u)p
, t,u

))
N(βn(p,u))dpdu

)
.

(5.59)

5.7.1 The approximate free boundary for an American put option

Although we have derived an explicit approximation for vput
a (x, t) in (5.59), one obstacle

remains: the second unknown S∗, the optimal exercise boundary. However, with the

algorithm to solve (5.48), we are able to obtain a complete profile of S∗ for the entire time

domain that is specified. Ascertaining all the values of S∗ enables us to then solve (5.59)

as all the quantities will be known. A representation of S∗ from solving the approximate

IDE (5.48) is given in Figure 5.1. The plot for S∗ exhibits a similar behaviour as S∗ (i.e.,

in the standard diffusion model) in terms of monotonicity as was highlighted in [98].

5.7.2 Results

Here we will report the numerical outcomes from solving (5.59) paired with solving the

system for S∗ (5.48), (5.37) against the FDM (5.58). Similar to the plot for S∗ that was

displayed in the previous section, we will be employing the exact same parameter values.

The financial parameters we will be using are t = 0, T = 0.5, K = 5, r = 0.05, q = 0, and

σ = 0.3. The domain of S0 (the underlying asset) will range from 10−3 to 4K. This is

done to emulate the scenarios of S0→ 0 and S0→ ∞. The jump-diffusion parameters are

µY = 0.9, σY = 0.45, and λ = 0.1. The simulations are done using MATLAB.

For the FDM, we use 101 spatial nodes and 501 temporal gridpoints. Consequently,

this means we will also require 501 values of S∗ between t = 0 and t = 0.5. The domain of
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Figure 5.1: The profile for S∗ from solving the approximate IDE (5.48) using t = 0,
T = 0.5, K = 5, r = 0.05, q = 0, and σ = 0.3. The associated lognormal parameters are
µY = 0.9, σY = 0.45, and λ = 0.1.

S0 ∈ [10−3,4K] will need to be divided into 100 equally-spaced subintervals to correspond

to the 101 gridpoints used in the FDM. This is to ensure all resultant plots are consistent in

terms of the input values used. For an American put option, we also require the following

boundary conditions

vn
0 = K, vn

I = 0, for all n = 0,1, . . . ,N,

which correspond to the American put option at S0→ 0 and S0→ ∞ respectively for all

time values in the domain. The option value curves are given in Figure 5.2 along with

the absolute error between the two for the entire S0 region. The MATLAB code for the

FDM, the approximate IDE for S∗, and solving (5.59) is available in the appendix with

comments on how the code functions. Specifically, Appendix C.3 contains all that was

used in this chapter.

From Figure 5.2a), we can see that the American put option profiles overlap quite

closely. Despite the assumptions that were made in order to simplify the pricing formula

in (5.59), the errors that would have arose did not propagate to the resulting option values.
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other financial parameters are t = 0, T = 0.5, K = 5, r = 0.05, q = 0, and
σ = 0.3.
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Figure 5.2: American put value plots from the FDM and approximate IDE system us-
ing (5.59), (5.48), and (5.37). The domain for the asset price is once again (10−3,4K).

This is highlighted in the absolute error between the option values in Figure 5.2b) where

the difference is only marginal.
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5.7.3 Conclusion

In conclusion, we have derived an approximate IDE that enables us to solve for the op-

timal exercise boundary in a jump-diffusion model without the need to pair it with its

corresponding option valuation formula. Furthermore, upon setting an approximate term

for one of the integral terms for the American put option pricing formula, we were able to

obtain an explicit approximation for the American put in jump-diffusion dynamics. The

numerical reliability of these results were compared against the FDM to directly solve the

Merton PIDE. Additionally the accuracy was acceptable for the given parameter values.

Tentative future research could entail trialing different approximations for the integral

term that appears in (5.59) to make the pricing formula a better explicit approximate and

also investigating the behaviour of such results when accounting for discrete dividend

payments.



Chapter 6

Alternative method for computing

European compound options

6.1 Outline

This chapter will be outlined as follows. We will introduce the general compound options

pricing formula in Section 6.2 with examples of application. This section also contains an

interesting type of put-call parity that can occur for European vanilla compound options.

In Section 6.3, we demonstrate the versatility of our pricing formula for a non-standard

compound option. The variation to the pricing compound options when the underlying

asset pays one discrete dividend is examined in Section 6.4. Closing remarks regarding

these findings are provided in Section 6.5.

6.2 Generalised compound option pricing formulas

A compound option pricing formula for general payoffs will now be introduced. To begin,

we first denote two options by v1 and v2 with payoffs φ1 and φ2 at expiry times T1 and T2,

respectively. We also assume that T1 < T2. We now construct a compound option where

v1 has an underlying that is the second option v2. We can express this mathematically

121
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from (2.26) to give

v1(x, t) =
∫

∞

0

1
y
K

(
x
y
, t,T1

)
φ1(v2(y,T1))dy, (6.1)

where

v2(y,T1) =
∫

∞

0

1
z
K

(
y
z
,T1,T2

)
φ2(z)dz. (6.2)

We will illustrate how this works with the four standard European compound options.

6.2.1 Call-on-a-call compound option

A call-on-a-call option, denoted by vcc, is composed of two European call options with

two different strikes K1 and K2 and payoffs φ1(x) = max(x−K1,0) at T1 and φ2(x) =

max(x−K2,0) at T2, respectively. Using (6.1), where we identify v1 with vcc and v2 with

vc, we obtain

vcc(x, t) =
∫

∞

0

1
y
K

(
x
y
, t,T1

)
max(vc(y,T1;K2,T2)−K1,0)dy.

To proceed, we assume that vc(y,T1;K2,T2)> K1 for all y greater than some critical value

y∗c [76]. Due to the monotonicity of a European call with respect to the asset value, this

critical value y∗c will always be unique (see Figure 6.1). This simplifies the integral to

vcc(x, t) =
∫

∞

y∗c

1
y
K

(
x
y
, t,T1

)
[vc(y,T1;K2,T2)−K1]dy

=
∫

∞

y∗c

1
y
K

(
x
y
, t,T1

)
vc(y,T1;K2,T2)dy−K1

∫
∞

y∗c

1
y
K

(
x
y
, t,T1

)
dy.



CHAPTER 6. EUROPEAN COMPOUND OPTIONS 123

European put and call option plotted against asset price

Asset price

O
p
ti
o

n
 v

a
lu

e

 

 

K
1

y
p

*
y

c

*

Call price

Put price

Figure 6.1: The European call (2.4) and European put (2.5) plotted against x for a fixed
t ∈ [0,T ). The horizontal line that intersects both profiles is some strike price K1 associ-
ated with the compound option. The intersection values correspond to the critical values
(y∗c for a call and y∗p for a put) the underlying option must be below or above in order to
have a positive payoff for the compound option.

Using (2.26) for vc gives

vcc(x, t) =
∫

∞

y∗c

1
y
K

(
x
y
, t,T1

)∫
∞

0

1
z
K

(
y
z
,T1,T2

)
max(z−K2,0)dzdy

−K1

∫
∞

y∗c

1
y
K

(
x
y
, t,T1

)
dy

=
∫

∞

y∗c

∫
∞

K2

1
y
K

(
x
y
, t,T1

)
K

(
y
z
,T1,T2

)
dzdy

−K2

∫
∞

y∗c

∫
∞

K2

1
y
K

(
x
y
, t,T1

)
1
z
K

(
y
z
,T1,T2

)
dzdy−K1

∫
∞

y∗c

1
y
K

(
x
y
, t,T1

)
dy.

We evaluate each integral using (2.41) – (2.43) in Corollary 1 by choosing a1 = y∗c , b1 =∞,

a2 = K2, and b2 = ∞. Using (2.36), we have

vcc(x, t) = xe−
∫ T2

t q(τ)dτN2

(
z1

(
x
y∗c
, t,T1

)
,z1

(
x

K2
, t,T2

)
;ρ
∗
)

−K2e−
∫ T2

t r(τ)dτN2

(
z2

(
x
y∗c
, t,T1

)
,z2

(
x

K2
, t,T2

)
;ρ
∗
)

−K1e−
∫ T1

t r(τ)dτN
(

z2

(
x
y∗c
, t,T1

))
,

(6.3)
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where

ρ
∗ =

(∫ T1
t σ(τ)2 dτ∫ T2
t σ(τ)2 dτ

)1/2

. (6.4)

This agrees with the results derived by Geske [106] and Kwok [76] who both implemented

a probabilistic approach via a risk-neutral measure to compute the pricing formula.

6.2.2 Put-on-a-put compound option

In contrast to the call-on-a-call option, a put-on-a-put option vpp comprises of a European

put option with a strike K1 and payoff φ1(x) = max(K1− x,0) at T1 with an underlying

European put option with strike K2 and payoff φ2(x) = max(K2− x,0) at T2. Using (6.1)

where we identify v1 with vpp and v2 with vp, we obtain

vpp(x, t) =
∫

∞

0

1
y
K

(
x
y
, t,T1

)
max(K1− vp(y,T1;K2,T2),0)dy.

We want the values of y such that vp(y,T1;K2,T2)< K1 to ensure a strictly positive argu-

ment for the payoff φ1. According to Figure 6.1, this corresponds to y > y∗p. Although the

European put option profile also exhibits monotonic (decreasing) behaviour, there is an

extra restriction for y∗p to be unique. At y = 0, the underlying put option will be

vp(0,T1) = K2e−
∫ T2

T1
r(τ)dτ

.

In order for y∗p to be unique, we require

K1 ≤ K2e−
∫ T2

T1
r(τ)dτ

, (6.5)

since the intersection of K1 with the option profile will represent the critical value for the

compound option. If K1 > K2e−
∫ T2

T1
r(τ)dτ , there will be no intersection with the European

put option curve and thus no critical value for the compound option.
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Substituting vp for its integral expression using (2.26), we have

vpp(x, t) = K1

∫
∞

y∗p

1
y
K

(
x
y
, t,T1

)
dy

−
∫

∞

y∗p

1
y
K

(
x
y
, t,T1

)∫
∞

0

1
z
K

(
y
z
,T1,T2

)
max(K2− z,0)dzdy

= K1

∫
∞

y∗p

1
y
K

(
x
y
, t,T1

)
dy−K2

∫
∞

y∗p

∫ K2

0

1
y
K

(
x
y
, t,T1

)
1
z
K

(
y
z
,T1,T2

)
dzdy

+
∫

∞

y∗p

∫ K2

0

1
y
K

(
x
y
, t,T1

)
K

(
y
z
,T1,T2

)
dzdy.

Once again, each integral is evaluated using (2.41) – (2.43) in Corollary 1 and simplified

using (2.36). Choosing a1 = y∗p, b1 = ∞, a2 = 0, and b2 = K2 yields

vpp(x, t) = K2e−
∫ T2

t r(τ)dτ

[
N2

(
z2

(
x
y∗p
, t,T1

)
,z2

(
x

K2
, t,T2

)
;ρ
∗

)
−N

(
z2

(
x
y∗p
, t,T1

))]

− xe−
∫ T2

t q(τ)dτ

[
N2

(
z1

(
x
y∗p
, t,T1

)
,z1

(
x

K2
, t,T2

)
;ρ
∗

)
−N

(
z1

(
x
y∗p
, t,T1

))]

+K1e−
∫ T1

t r(τ)dτN

(
z2

(
x
y∗p
, t,T1

))
,

where ρ∗ is the same as in (6.4).

6.2.3 Call-on-a-put compound option

We will use vcp for the value of a call-on-a-put compound option. This is made up of a

European call option with a strike price K1 and payoff φ1(x) = max(x−K1,0) at T1 with

an underlying European put option with strike K2 and payoff φ2(x) = max(K2− x,0) at

T2. From (6.1), we associate v1 with vcp and v2 with vp to get

vcp(x, t) =
∫

∞

0

1
y
K

(
x
y
, t,T1

)
max(vp(y,T1;K2,T2)−K1,0)dy.

We assume the vp(y,T1;K2,T1) > K1 to ensure that the payoff φ1 is positive. However

in contrast to the previous examples, we need to be below the critical value y∗p (since the

underlying is a put option) in order to achieve this (see Figure 6.1). We also express vp in
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integral form using (2.26) which leaves us with

vcp(x, t) =
∫ y∗p

0

1
y
K

(
x
y
, t,T1

)∫
∞

0

1
z
K

(
y
z
,T1,T2

)
max(K2− z,0)dzdy

−K1

∫ y∗p

0

1
y
K

(
x
y
, t,T1

)
dy

= K2

∫ y∗p

0

∫ K2

0

1
y
K

(
x
y
, t,T1

)
1
z
K

(
y
z
,T1,T2

)
dzdy

−
∫ y∗p

0

∫ K2

0

1
y
K

(
x
y
, t,T1

)
K

(
y
z
,T1,T2

)
dzdy−K1

∫ y∗p

0

1
y
K

(
x
y
, t,T1

)
dy,

where we still assume (6.5) to ensure uniqueness for y∗p. Using Corollary 1 with a1 = 0,

b1 = y∗p, a2 = 0, and b2 = K2 and upon simplifying all the N and N2 terms using (2.36),

we get

vcp(x, t) = vpp(x, t)+ vp(x, t;K2,T2)−K1e−
∫ T1

t r(τ)dτ . (6.6)

Eq. (6.6) behaves like a pseudo-put-call parity between vpp and vcp. It should be high-

lighted that this equation bares a strong similarity to the standard put-call parity re-

sult (2.8). We will witness a similar occurrence for a put-on-a-call compound option

next.

6.2.4 Put-on-a-call compound option

The final standard combination is a put-on-a-call compound option, which we will label

vpc. This option is constructed with a European put option with strike K1 and payoff

φ1(x) = max(K1− x,0) at T1 with an underlying European call option with strike K2 and

payoff φ2(x) = max(x−K2,0) at T2. Setting v1 to vpc and v2 to vc in (6.1) results in

vpc(x, t) =
∫

∞

0

1
y
K

(
x
y
, t,T1

)
max(K1− vc(y,T1;K2,T2),0)dy.

For vc(y,T1;K2,T2)< K1 to be satisfied and guarantee a positive payoff φ1, we need to be

below y∗c according to Figure 6.1 (since the option being compounded on is a European
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call). This simplifies to

vpc(x, t) = K1

∫ y∗c

0

1
y
K

(
x
y
, t,T1

)
dy−

∫ y∗c

0

1
y
K

(
x
y
, t,T1

)
vc(y,T1;K2,T2)dy.

Once again incorporating (2.26) for vc leads to

vpc(x, t) = K1

∫ y∗c

0

1
y
K

(
x
y
, t,T1

)
dy

−
∫ y∗c

0

1
y
K

(
x
y
, t,T1

)∫
∞

0

1
z
K

(
y
z
,T1,T2

)
max(z−K2,0)dzdy

= K1

∫ y∗c

0

1
y
K

(
x
y
, t,T1

)
dy−

∫ y∗c

0

∫
∞

K2

1
y
K

(
x
y
, t,T1

)
K

(
y
z
,T1,T2

)
dzdy

+K2

∫ y∗c

0

∫
∞

K2

1
y
K

(
x
y
, t,T1

)
1
z
K

(
y
z
,T1,T2

)
dzdy.

Choosing a1 = 0, b1 = y∗c , a2 = K2, and b2 = ∞ for Corollary 1 will give

vpc(x, t) = vcc(x, t)− vc(x, t;K2,T2)+K1e−
∫ T1

t r(τ)dτ , (6.7)

where ρ∗ is as in (6.4) and (2.36) was used to simplify the N and N2 terms. This is the

pseudo-put-call parity relation between vcc and vpc. It should be stressed the critical values

y∗c and y∗p may not necessarily be equal, thus a put-call parity relating vcc and vpp without

a dependence on vpc and vcp is unlikely to be ascertained unless in special circumstances

(e.g., y∗c = y∗p). However, adding (6.6) to (6.7) and rearranging gives us

vcc(x, t)+ vpp(x, t) = vpc(x, t)+ vcp(x, t)+ vc(x, t;K2,T2)− vp(x, t;K2,T2)

Now using (2.8), we can relate vc(x, t;K2,T2) to vp(x, t;K2,T2) and obtain

vcc(x, t)+ vpp(x, t) = vpc(x, t)+ vcp(x, t)+ xe−
∫ T2

t q(τ)dτ −K2e−
∫ T2

t r(τ)dτ , (6.8)

which resembles the standard put-call parity identity in (2.8) in form. Another interesting

route would have been to incorporate a portfolio argument to arrive at (6.8), but we opted

for our presented approach as it ties in closely with the results from this work.
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6.3 Generalised example: straddle-on-a-call compound

option

We outlined in Section 6.2 that the results in Corollary 1 can be implemented for any

financial payoff in options pricing to generate any compound option pricing formula.

This is attainable since any of the aforementioned payoffs can be expressed as finite linear

combinations of the functions

x 7→ 1I(x), x 7→ x1I(x), (6.9)

where 1I is the indicator function defined as

1I(x) =


1, x ∈ I,

0, x /∈ I,

and where I is an arbitrary interval with endpoints a and b with a < b. The interval can be

open, half-closed, or closed. The two auxiliary functions in (6.9) are the building blocks

for many financial payoffs in options pricing. For example, a call option has a payoff

max(x−K,0) which can be written as

max(x−K,0) = x1[K,∞)(x)−K1[K,∞)(x),

where the interval I is [K,∞).

In general, there are four possibilities for the auxiliary functions to consider in com-

pound options:

1. φ1(x) = 1I(x), φ2(x) = 1I(x),

2. φ1(x) = 1I(x), φ2(x) = x1I(x),

3. φ1(x) = x1I(x), φ2(x) = 1I(x),

4. φ1(x) = x1I(x), φ2(x) = x1I(x).
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Using (6.1) and (6.2), it can be shown that the first two cases when used will result

in (2.41) upon evaluation; (2.42) will be the result when using the third case; and com-

putation using the fourth possibility will yield (2.43). To highlight the flexibility and

generality of (6.9), we will look at pricing a straddle-on-a-call option.

To set this up, we require two options: an outer straddle option with payoff max(x−

K1,0)+max(K1− x,0) at t = T1, and an inner call option with payoff max(x−K2,0) at

t = T2. We will denote a straddle by vs and the compound option by vsc. So we have

vsc(x, t) =
∫

∞

0

1
y
K

(
x
y
, t,T1

)
[max(vc(y,T1)−K1,0)+max(K1− vc(y,T1),0)] dy.

Upon splitting up the terms, we notice we have the two integrals that formulate a call-on-

a-call compound option and a put-on-a-call compound option, respectively. Thus,

vsc(x, t) = vcc(x, t)+ vpc(x, t). (6.10)

6.4 Compound options with discrete dividends

Up until now, the model we have presented for pricing compound options assumes a con-

tinuous dividend yield for the lifetime of the options. That is, q is a time-continuous

function. Here we introduce a technique to formulate compound options when the under-

lying asset pays one dividend yield at a fixed time. What we will show is that it is only

one slight variation needed to the methodology used to derive all the previous formulas.

The underlying asset with a potential dividend yield (whether discrete or continuous)

is governed by [115]

dSt = [r(t)St−D(St , t)]dt +σ(t)St dWt ,

where D(St , t) does not necessarily to have be linear in St . It follows that a European



CHAPTER 6. EUROPEAN COMPOUND OPTIONS 130

option whose underlying follows the SDE above satisfies

∂v
∂ t

+
1
2

σ(t)2x2 ∂ 2v
∂x2 +[r(t)x−D(x, t)]

∂v
∂x
− r(t)v = 0.

This is a potential unified approach to pricing options regardless of whether the dividend

yield is continuous or discrete. However, the Black-Scholes kernel identities in the pre-

liminaries rely on the dividend term D being linear in x (i.e., D(x, t) = q(t)x). Therefore,

in order to adapt the kernel identities, we have assumed a specific form for D to be able

to construct a pricing formula for discrete dividends.

To proceed, we assume a dividend of value proportional to the asset price is paid out

on a date t = td , where td is before the expiry. Consequently, this means that the asset price

St will decrease by a proportion of its value as it passes td . We call the proportion factor

qd ∈ [0,1). Using t−d and t+d to indicate an infinitesimal time before and after the dividend

payment date, respectively, mathematically this implies the following jump condition

St+d
= St−d

−qdSt−d
= (1−qd)St−d

. (6.11)

A common way to price options when the underlying pays a discrete dividend is to solve

the Black-Scholes equation (2.2) backwards in time twice; once from expiry T to t+d and

then from t−d to an arbitrary time t [115, 67]. However, an extra step is required whereby

the jump condition (6.11) for St needs to be accounted for as a boundary condition be-

tween t+d and t−d .

We will first illustrate this concept of discrete dividend payments in a standard Euro-

pean option with payoff φ . Suppose one dividend is paid at time td ∈ (0,T ). Once again,

we denote t−d and t+d to be the moment before and after the dividend payment is made,

respectively. Working backwards from T to t+d , we define a function w to be

w(x, t) =
∫

∞

0

1
y
K

(
x
y
, t,T

)
φ(y)dy, t+d ≤ t ≤ T,
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where we used (2.26). From the jump condition (6.11), we have

w
(

St−d
, t−d
)
= w

(
St+d

, t+d
)
= w

(
(1−qd)St−d

, t+d
)
.

This expression acts as our payoff from t−d backwards to time-zero since it is the matching

condition between t+d and t−d . Therefore,

v(x, t) =


∫

∞

0

1
y
K

(
x
y
, t, t−d

)
w
(
(1−qd)y, t+d

)
dy if 0≤ t ≤ t−d ,∫

∞

0

1
y
K

(
x
y
, t,T

)
φ(y)dy = w(x, t) if t+d ≤ t ≤ T.

(6.12)

For compound options paying only one discrete dividend, we have three cases to consider

since we have two terminal dates T1 and T2 (T1 < T2) for the compound and underlying

option, respectively. We assume that 0 < td < T2.

6.4.1 Case 1: 0 < td < T1 < T2

In this scenario, we assume that the dividend payment is before the terminal date of the

compound option (see Figure 6.2).

0 t−d
td t+d T1 T2

Figure 6.2: The dividend is paid on the date td which is before the expiry T1 of the
compound option.

Working backwards from T1 to t+d , we first define w1 to be

w1(x, t) =
∫

∞

0

1
y
K

(
x
y
, t,T1

)
φ1(v2(y,T1))dy, t+d ≤ t ≤ T1, (6.13)

where

v2(y,T1) =
∫

∞

0

1
z
K

(
y
z
,T1,T2

)
φ2(z)dz. (6.14)

Equation (6.13) is valid since between t+d and T1, the compound option has not yet expired.
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Using (6.11) to match across the boundary t+d gives

w1

(
St−d

, t−d
)
= w1

(
St+d

, t+d
)
= w1

(
(1−qd)St−d

, t+d
)
.

Then for 0≤ t ≤ t−d , we have

v1(x, t) =
∫

∞

0

1
y
K

(
x
y
, t, t−d

)
w1
(
(1−qd)y, t+d

)
dy.

Thus the compound option v1 is given by

v1(x, t) =


∫

∞

0

1
y
K

(
x
y
, t, t−d

)
w1
(
(1−qd)y, t+d

)
dy if 0≤ t ≤ t−d ,∫

∞

0

1
y
K

(
x
y
, t,T1

)
φ1(v2(y,T1))dy if t+d ≤ t ≤ T1,

(6.15)

with v2 defined as in (6.14). In this case, the compound option needs to be “segmented” in

a piecewise manner since the dividend payment date td is situated before T1 (i.e., during

the compound option’s lifespan). We will see in the next scenario how the location of td

changes the formula for a compound option under one discrete dividend payment.

6.4.2 Case 2: 0 < T1 < td < T2

We also consider the circumstance where the dividend payment happens after the com-

pound option has expired but before the expiry date of the underlying option it acts upon

(see Figure 6.3).

0 T1 t−d
td t+d T2

Figure 6.3: The dividend is paid on the date td after T1, which is past the lifetime of the
compound option but still before the expiry of the underlying option.

In this formulation, the underlying option will need to be expressed piecewise in contrast

to the piecewise compound option (6.15). Once again working backwards from T2 to t+d ,
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we define w2 to be

w2(x, t) =
∫

∞

0

1
y
K

(
x
y
, t,T2

)
φ2(y)dy, t+d ≤ t ≤ T2.

The jump condition (6.11) gives

w2

(
St−d

, t−d
)
= w2

(
St+d

, t+d
)
= w2

(
(1−qd)St−d

, t+d
)
.

Then for T1 ≤ t ≤ t−d , we have

v2(x, t) =
∫

∞

0

1
y
K

(
x
y
, t, t−d

)
w2
(
(1−qd)y, t+d

)
dy.

Therefore v2 is given by

v2(x, t) =


∫

∞

0

1
y
K

(
x
y
, t, t−d

)
w2
(
(1−qd)y, t+d

)
dy if T1 ≤ t ≤ t−d ,∫

∞

0

1
y
K

(
x
y
, t,T2

)
φ2(y)dy = w2(x, t) if t+d ≤ t ≤ T2.

(6.16)

Now for 0≤ t ≤ T1, the compound option v1 will be

v1(x, t) =
∫

∞

0

1
y
K

(
x
y
, t,T1

)
φ1(v2(y,T1))dy. (6.17)

6.4.3 Case 3: 0 < td = T1 < T2

The last possible case is when the dividend payment is issued on the expiry date of the

compound option (see Figure 6.4). As we will see, this unfolds to be quite an easy solu-

tion.

0 t−d td = T1 t+d T2

Figure 6.4: The dividend is paid on the date the compound option expires, which implies
that td = T1.
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Working backwards from T2 to t+d , we have

v2(x, t) =
∫

∞

0

1
z
K

(
x
z
, t,T2

)
φ2(y)dy, t+d ≤ t ≤ T2. (6.18)

Using (6.11) to match the boundaries, we get

v2

(
St−d

, t−d
)
= v2

(
St+d

, t+d
)
= v2

(
(1−qd)St−d

, t+d
)
,

which gives us

v1(x, t) =
∫

∞

0

1
y
K

(
x
y
, t, t−d

)
v2((1−qd)y, t+d )dy, 0≤ t ≤ t−d . (6.19)

6.4.4 Example: Call-on-a-call for 0 < td < T1 < T2

We will now demonstrate how to apply one of the aforementioned general formulas in a

discrete dividend setting to a European call-on-a-call compound option assuming Case 1.

Using (6.15), for t+d ≤ t ≤ T1, we just have a standard call-on-a-call since the dividend has

been paid. We define a function wcc to represent this and it gives

wcc(x, t) =
∫

∞

y∗c

∫
∞

K2

1
y
K

(
x
y
, t,T1

)
K

(
y
z
,T1,T2

)
dzdy

−K2

∫
∞

y∗c

∫
∞

K2

1
y
K

(
x
y
, t,T1

)
1
z
K

(
y
z
,T1,T2

)
dzdy−K1

∫
∞

y∗c

1
y
K

(
x
y
, t,T1

)
dy,

recalling the integral expression before (6.3), where y∗c is the associated critical value and

ρ∗ is defined in (6.4). For notational simplicity, we define α = 1−qd . Then for 0≤ t ≤ t−d ,
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we use the first part of (6.15) to get

vcc(x, t) =
∫

∞

0

1
y
K

(
x
y
, t, t−d

)
wcc
(
αy, t+d

)
dy

=
∫

∞

0

∫
∞

y∗c

∫
∞

K2

1
y
K

(
x
y
, t, t−d

)
1
z
K

(
αy
z
, t+d ,T1

)
K
( z

w
,T1,T2

)
dwdzdy

−K2

∫
∞

0

∫
∞

y∗c

∫
∞

K2

1
y
K

(
x
y
, t, t−d

)
1
z
K

(
αy
z
, t+d ,T1

)
1
w

K
( z

w
,T1,T2

)
dwdzdy

−K1

∫
∞

0

∫
∞

y∗c

1
y
K

(
x
y
, t, t−d

)
1
z
K

(
αy
z
, t+d ,T1

)
dzdy

= I1 + I2 + I3.

Looking at I1, the triple integral is in fact iterated. Therefore we arrange the order of

integration with respect to y first, then

I1 =
∫

∞

y∗c

∫
∞

K2

1
z
K
( z

w
,T1,T2

)∫ ∞

0

1
y
K

(
x
y
, t, t−d

)
K

(
αy
z
, t+d ,T1

)
dydwdz

=
∫

∞

y∗c

∫
∞

K2

1
z
K
( z

w
,T1,T2

)
Kd

(
αx
z
, t, t−d , t+d ,T1

)
dwdz,

where (2.44) was implemented to simplify the innermost integral. Now using (2.53) in

conjunction with (2.36), we obtain

I1 = αxe
−
∫ t−d

t q(τ)dτ−
∫ T2

t+d
q(τ)dτ

N2

(
y1

(
αx
y∗c

, t, t−d , t+d ,T1

)
,y1

(
αx
K2

, t, t−d , t+d ,T2

)
;ρ
∗
d

)
,

where

ρ
∗
d =


∫ t−d

t σ(τ)2 dτ +
∫ T1

t+d
σ(τ)2 dτ∫ t−d

t σ(τ)2 dτ +
∫ T2

t+d
σ(τ)2 dτ

 .
For I2, we do a similar process but incorporate (2.52) with (2.36) to give

I2 =−K2

∫
∞

y∗c

∫
∞

K2

1
zw

K
( z

w
,T1,T2

)∫ ∞

0

1
y
K

(
x
y
, t, t−d

)
K

(
αy
z
, t+d ,T1

)
dydwdz

=−K2

∫
∞

y∗c

∫
∞

K2

1
w

K
( z

w
,T1,T2

) 1
z
Kd

(
αx
z
, t, t−d , t+d ,T1

)
dwdz

=−K2e
−
∫ t−d

t r(τ)dτ−
∫ T2

t+d
r(τ)dτ

N2

(
y2

(
αx
y∗c

, t, t−d , t+d ,T1

)
,y2

(
αx
K2

, t, t−d , t+d ,T2

)
;ρ
∗
d

)
.
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Lastly for I3, we swap the order of integration and use (2.51) with (2.36) to yield

I3 =−K1e
−
∫ t−d

t r(τ)dτ−
∫ T1

t+d
r(τ)dτ

N
(

y2

(
αx
y∗c

, t, t−d , t+d ,T1

))
.

Putting this together, we arrive at the European call-on-a-call compound option for when

the underlying asset pays a discrete dividend:

vcc = αxe
−
∫ t−d

t q(τ)dτ−
∫ T2

t+d
q(τ)dτ

N2

(
y1

(
αx
y∗c

, t, t−d , t+d ,T1

)
,y1

(
αx
K2

, t, t−d , t+d ,T2

)
;ρ
∗
d

)

−K2e
−
∫ t−d

t r(τ)dτ−
∫ T2

t+d
r(τ)dτ

N2

(
y2

(
αx
y∗c

, t, t−d , t+d ,T1

)
,y2

(
αx
K2

, t, t−d , t+d ,T2

)
;ρ
∗
d

)

−K1e
−
∫ t−d

t r(τ)dτ−
∫ T1

t+d
r(τ)dτ

N
(

y2

(
αx
y∗c

, t, t−d , t+d ,T1

))
.

(6.20)

It should be highlighted that (6.20) is identical in form to (6.3) except the accompanying

coefficients (e.g., αx instead of just x) have different arguments inside the N2 to represent

the discrete dividend payment. Note that when there is no discrete dividend payment (i.e.,

qd = 0), we get α = 1 and (6.20) recovers (6.3).

6.5 Conclusion

In this chapter, we have presented an alternative technique to pricing European compound

options with a general payoff. The power of this result stems from the Black-Scholes ker-

nel, which provides us exact integral expressions for any possible financial payoff for both

the compound and underlying option. The identities derived here provide a foundation

to price every possible combination of vanilla compound options, and this was demon-

strated extensively. Interestingly, three pseudo-put-call-parity expressions were also as-

certained which highlights a unique symmetry between the standard vanilla compound

options. These results also resemble the standard put-call-parity identity. Furthermore,

we extended the formulas to encompass the possibility of discrete dividends. The analy-

sis presented could be extended to accommodate for multiple discrete dividends, but the
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illustration with one discrete dividend already yielded favourable results. Namely for a

European call-on-a-call compound option, the pricing formula for discrete dividends is

extremely similar to the expression for an underlying asset possessing a continuous div-

idend yield. Additionally, the results are all exact. In terms of potential future research,

we aim to investigate the scenario of jump-diffusion dynamics in the underlying stock

and perhaps extend the generalised results to American compound options. There is also

promise in analysing compound options when the SDE governing the underlying asset

accounts for a discrete dividend as a fixed cash payment rather than a proportional yield.

The analysis presented in this work provides a good foundation for pursuing similar pric-

ing problems in compound options.
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Appendix A

Derivation of useful lemmas from the

preliminaries

A.1 Proof of Lemma 1

To prove the result, the Mellin transform will need to be evaluated directly. Using the

definition of the Mellin transform and (2.34), the left-hand side becomes

M
{

N′(a logx+b)
}
=
∫

∞

0
xξ−1N′(a logx+b)dx =

1√
2π

∫
∞

0
xξ−1e−(a logx+b)2/2 dx.

Using ω = a logx+b, the integral becomes

M
{

N′(a logx+b)
}
=

e−bξ/a

a
√

2π

∫
∞

−∞

e−ω2/2+ωξ/a dω.

Upon completing the square inside the exponential with respect to ω , this simplifies to

M
{

N′(a logx+b)
}
=

e−bξ/aeξ 2/(2a2)

a
√

2π

∫
∞

−∞

e−(ω−ξ/a)2/2 dω =
e−bξ/aeξ 2/(2a2)

a
,

where we used the standard identity
∫

∞

−∞
e−(ω−y)2/2 dω =

√
2π for y ∈R. This completes

the proof.
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A.2 Proof of Lemma 2

To begin, we let I equal

I =
∫

∞

0

1
z

N′(a1 logz+b1)N′
(

a2 log
(

1
z

)
+b2

)
dz.

Setting ρ = a2 log(1/z)+b2, the integral becomes

I =
1
a2

∫
∞

−∞

N′
(

a1b2

a2
+b1−

a1

a2
ρ

)
N′(ρ)dρ =

1
a2

∫
∞

−∞

N′
(

γ− a1

a2
ρ

)
N′(ρ)dρ,

where we write γ = a1b2/a2 +b1. Using (2.34) to replace the N′ terms, we get

I =
1

2πa2

∫
∞

−∞

e−((γ−a1ρ/a2)
2+ρ2)/2 dρ

=
e−γ2/2e(a1γ)2/(2(a2

1+a2
2))

2πa2

∫
∞

−∞

e−
(
((a2

1+a2
2)/a2

2)(ρ−(a1a2γ)/(a2
1+a2

2))
2
)
/2 dρ,

Now setting

ω =

√
a2

1 +a2
2

a2
2

(
u− a1a2γ

a2
1 +a2

2

)
,

we obtain

I =
e−γ2/2e(a1γ)2/(2(a2

1+a2
2))

2π

√
a2

1 +a2
2

∫
∞

−∞

e−ω2/2 dω.

To finish off, we use (2.34) to replace the exponential term with N′, integrate, and arrive

at

I =
1√

a2
1 +a2

2

N′

 γa2√
a2

1 +a2
2

=
1√

a2
1 +a2

2

N′

a1b2 +a2b1√
a2

1 +a2
2

 ,

where we substituted the expression for γ back in. This completes the proof.
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A.3 Proof of Lemma 3

The first step is to let I be equal to the integral. Setting ρ = a2 log(1/z)+b2 gives

I =
1
a2

∫ a2 log(1/c)+b2

−∞

N′
(

a1b2

a2
+b1−

a1

a2
ρ

)
N′(ρ)dρ

=
1
a2

∫ a2 log(1/c)+b2

−∞

N′
(

γ− a1

a2
ρ

)
N′(ρ)dρ,

when we have assigned γ = a1b2/a2 +b1. The N′ terms now become replaced with their

exponential expressions via (2.34), which changes I to be

I =
1

2πa2

∫ a2 log(1/c)+b2

−∞

e−((γ−a1ρ/a2)
2+ρ2)/2 dρ

=
e−γ2/2e(a1γ)2/(2(a2

1+a2
2))

2πa2

∫ a2 log(1/c)+b2

−∞

e−
(
((a2

1+a2
2)/a2

2)(ρ−(a1a2γ)/(a2
1+a2

2))
2
)
/2 dρ,

Now we make another substutition

ω =

√
a2

1 +a2
2

a2
2

(
u− a1a2γ

a2
1 +a2

2

)
,

and this gives

I =
e−γ2/2e(a1γ)2/(2(a2

1+a2
2))

2π

√
a2

1 +a2
2

∫ d

−∞

e−ω2/2 dω,

with

d =
√

a2
1 +a2

2

(
log(1/c)+

b2

a2
− a1γ

a2
1 +a2

2

)
.

Finally, we use (2.34) to replace the exponential term with N′, integrate, and arrive at

I =
1√

a2
1 +a2

2

N′

 γa2√
a2

1 +a2
2

N(d) =
1√

a2
1 +a2

2

N′

a1b2 +a2b1√
a2

1 +a2
2

N(d),

Thus, the proof is concluded.
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A.4 Proof of Lemma 4

The proof for this lemma is nearly identical to the proof for lemma 3. Therefore we will

only provide a sketch of the proof. We once first let I be equal to the integral. Making the

substitution ρ = a2 log(1/z)+b2 gives

I =
1
a2

∫
∞

a2 log(1/c)+b2

N′
(

γ− a1

a2
ρ

)
N′(ρ)dρ,

where the quantity γ is equal to a1b2/a2 +b1. Using (2.34) to replace the N′ terms with

their expontential counterparts and then using the substitution

ω =

√
a2

1 +a2
2

a2
2

(
u− a1a2γ

a2
1 +a2

2

)
,

it follows that

I =
e−γ2/2e(a1γ)2/(2(a2

1+a2
2))

2π

√
a2

1 +a2
2

∫
∞

d
e−ω2/2 dω,

with

d =
√

a2
1 +a2

2

(
log(1/c)+

b2

a2
− a1γ

a2
1 +a2

2

)
.

The final step now is to use (2.34) to allow N′ in place of the exponential term, integrate,

and use the properties of the normal CDF N to get

I =
1√

a2
1 +a2

2

N′

a1b2 +a2b1√
a2

1 +a2
2

N(−d),

A.5 Proof of Lemma 5

The proof of the first expression is simple. We denote the left-hand side integral to be I.

By setting u = a1 log(1/y)+b1, we get

I =
1
a1

∫ a1 log(1/a)+b1

a1 log(1/b)+b1

N′(u)du =
1
a1

(
N(a1 log(1/a)+b1)−N(a1 log(1/b)+b1)

)
.
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For the second expression, we perform the exact same step as we did for the first expres-

sion to begin with. We first obtain

I =
eb1/a1

a1

∫ a1 log(1/a)+b1

a1 log(1/b)+b1

N′(u)e−u/a1 du =
eb1/a1

a1
√

2π

∫ a1 log(1/a)+b1

a1 log(1/b)+b1

e−u2/2−u/a1 du,

where we used (2.34) to convert N′ to its integral form. Looking at the power of the

exponential term, we complete the square and arrive at

I =
eb1/a1+1/(2a2

1)

a1
√

2π

∫ a1 log(1/a)+b1

a1 log(1/b)+b1

e−(u+1/a1)
2/2 du

=
eb1/a1+1/(2a2

1)

a1

∫ a1 log(1/a)+b1

a1 log(1/b)+b1

N′ (u+1/a1) du

=
eb1/a1+1/(2a2

1)

a1

(
N(a1 log(1/a)+b1 +1/a1)−N(a1 log(1/b)+b1 +1/a1)

)
.

This equals the right-hand side of the second expression and concludes the proof.



Appendix B

Proof of the lemmas pertaining to

compound options

B.1 Proof of Lemma 6

From (2.35), we have

∂

∂x
∂

∂y
N2(x,y;ρ) =

∂

∂x
∂

∂y

[
1

2π
√

1−ρ2

∫ x

−∞

∫ y

−∞

e−(u
2−2ρuv+v2)/(2(1−ρ2)) dvdu

]

=
1

2π
√

1−ρ2
e−(x

2−2ρxy+y2)/(2(1−ρ2)).

Completing the square inside the exponential gives

x2−2ρxy+ y2 = x2−2ρxy+ y2 +ρ
2x2−ρ

2x2 = x2(1−ρ
2)+(y−ρx)2,

and therefore

∂

∂x
∂

∂y
N2(x,y;ρ) =

1

2π
√

1−ρ2
e−x2/2e−

(
(y−ρx)/

√
1−ρ2

)2
/2

=
1√

1−ρ2
N′(x)N′

(
y−ρx√
1−ρ2

)
,

using (2.34).
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B.2 Proof of Lemma 7

For the left-hand side of (2.38), we use the (2.24) for both K terms to get

1
y
K

(
x
y
, t1, t2

)
1
z
K

(
y
z
, t2, t3

)
=

e−
∫ t3

t1
r(τ)dτN′ (z2 (x/y, t1, t2))N′ (z2 (y/z, t2, t3))

yz
[∫ t2

t1 σ(τ)2 dτ

]1/2 [∫ t3
t2 σ(τ)2 dτ

]1/2 .

Now for the right-hand side of (2.38), using Lemma 6 and the chain rule gives

∂

∂y
∂

∂ z

[
e−

∫ t3
t1

r(τ)dτN2

(
z2

(
x
y
, t1, t2

)
,z2

(
x
z
, t1, t3

)
;ρ

)]
=

e−
∫ t3

t1
r(τ)dτN′ (z2 (x/y, t1, t2))

yz
[∫ t2

t1 σ(τ)2 dτ

]1/2 [∫ t3
t1 σ(τ)2 dτ

]1/2√
1−ρ2

N′
(

z2 (x/z, t1, t3)−ρz2 (x/y, t1, t2)√
1−ρ2

)
.

Choosing the correlation coefficient ρ to be the same as in (2.40) yields

1√
1−ρ2

=

[∫ t3
t1 σ(τ)2 dτ∫ t3
t2 σ(τ)2 dτ

]1/2

,
ρ√

1−ρ2
=

[∫ t2
t1 σ(τ)2 dτ∫ t3
t2 σ(τ)2 dτ

]1/2

.

Using these results, we obtain

∂

∂y
∂

∂ z

[
e−

∫ t3
t1

r(τ)dτN2

(
z2

(
x
y
, t1, t2

)
,z2

(
x
z
, t1, t3

)
;ρ

)]
=

e−
∫ t3

t1
r(τ)dτN′ (z2 (x/y, t1, t2))N′ (z2 (y/z, t2, t3))

yz
[∫ t2

t1 σ(τ)2 dτ

]1/2 [∫ t3
t2 σ(τ)2 dτ

]1/2 ,

which equals the left-hand side of (2.38). Thus we have proved equality for (2.38).

For (2.39), the proof will be omitted as the procedure is identical to the derivation for

(2.38). However, you would use (2.25) for the K terms and (2.6) for z1 to show equality.
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B.3 Proof of Corollary 1

To prove equality in (2.41), we use (2.28) and apply the fundamental theorem of calculus

to give

∫ b1

a1

1
y
K

(
x
y
, t,T1

)
dy =

∫ b1

a1

∂

∂y

[
−e−

∫ T1
t r(τ)dτN

(
z2

(
x
y
, t,T1

))]
dy

=−e−
∫ T1

t r(τ)dτ

[
N
(

z2

(
x
b1

, t,T1

))
−N

(
z2

(
x
a1

, t,T1

))]
,

For (2.42), we substitute (2.38) for the integrand and once again apply the fundamental

theorem of calculus to get

∫ b1

a1

1
y
K

(
x
y
, t,T1

)∫ b2

a2

1
z
K

(
y
z
,T1,T2

)
dzdy

=
∫ b1

a1

∫ b2

a2

∂

∂y
∂

∂ z

[
e−

∫ T2
t r(τ)dτN2

(
z2

(
x
y
, t,T1

)
,z2

(
x
z
, t,T2

)
;ρ

)]
dzdy

= e−
∫ T2

t r(τ)dτ

[
N2

(
z2

(
x
b1

, t,T1

)
,z2

(
x
b2

, t,T2

)
;ρ

)
−

N2

(
z2

(
x
b1

, t,T1

)
,z2

(
x
a2

, t,T2

)
;ρ

)
−N2

(
z2

(
x
a1

, t,T1

)
,z2

(
x
b2

, t,T2

)
;ρ

)
+

N2

(
z2

(
x
a1

, t,T1

)
,z2

(
x
a2

, t,T2

)
;ρ

)]
.

Similarly for (2.43), we replace the integrand with (2.39) and thus

∫ b1

a1

1
y
K

(
x
y
, t,T1

)∫ b2

a2

K

(
y
z
,T1,T2

)
dzdy

=
∫ b1

a1

∫ b2

a2

∂

∂y
∂

∂ z

[
xe−

∫ T2
t q(τ)dτN2

(
z1

(
x
y
, t,T1

)
,z1

(
x
z
, t,T2

)
;ρ

)]
dzdy

= xe−
∫ T2

t q(τ)dτ

[
N2

(
z1

(
x
b1

, t,T1

)
,z1

(
x
b2

, t,T2

)
;ρ

)
−

N2

(
z1

(
x
b1

, t,T1

)
,z1

(
x
a2

, t,T2

)
;ρ

)
−N2

(
z1

(
x
a1

, t,T1

)
,z1

(
x
b2

, t,T2

)
;ρ

)
+

N2

(
z1

(
x
a1

, t,T1

)
,z1

(
x
a2

, t,T2

)
;ρ

)]
.
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B.4 Proof of lemma 8

We commence with proving the equality (2.44) using (2.24) for both K terms. This gives

∫
∞

0

1
y
K

(
x
y
, t1, t2

)
K

(
cy
z
, t3, t4

)
dydz =

e−
∫ t2

t1
r(τ)dτ−

∫ t4
t3

r(τ)dτ[∫ t2
t1 σ(τ)2 dτ

∫ t4
t3 σ(τ)2 dτ

]1/2

∫
∞

0

1
y

N′
(

z2

(
x
y
, t1, t2

))
N′
(

z2

(
cy
z
, t3, t4

))
dy.

Now using z2 from (2.7), we simplify the integral using Lemma 2 and choosing

a1 =
1[∫ t4

t3 σ(τ)2 dτ

]1/2 , b1 =

∫ t4
t3 [r(τ)−q(τ)−σ(τ)2/2]dτ[∫ t4

t3 σ(τ)2 dτ

]1/2 ,

a2 =
1[∫ t2

t1 σ(τ)2 dτ

]1/2 , b2 =

∫ t2
t1 [r(τ)−q(τ)−σ(τ)2/2]dτ[∫ t2

t1 σ(τ)2 dτ

]1/2 ,

the integral becomes

∫
∞

0

1
y
K

(
x
y
, t1, t2

)
K

(
cy
z
, t3, t4

)
dydz =

e−
∫ t2

t1
r(τ)dτ−

∫ t4
t3

r(τ)dτ[∫ t2
t1 σ(τ)2 dτ +

∫ t4
t3 σ(τ)2 dτ

]1/2 ×

N′

 log((cx)/z)+
∫ t2

t1 [r(τ)−q(τ)−σ(τ)2/2]dτ +
∫ t4

t3 [r(τ)−q(τ)−σ(τ)2/2]dτ[∫ t2
t1 σ(τ)2 dτ +

∫ t4
t3 σ(τ)2 dτ

]1/2

 .

Then using the definition for y2 in (2.47), our final result is

∫
∞

0

1
y
K

(
x
y
, t1, t2

)
K

(
cy
z
, t3, t4

)
dydz =

e−
∫ t2

t1
r(τ)dτ−

∫ t4
t3

r(τ)dτ[∫ t2
t1 σ(τ)2 dτ +

∫ t4
t3 σ(τ)2 dτ

]1/2 ×

N′
(

y2

(
cx
z
, t1, t2, t3, t4

))
= Kd

(
cx
z
, t1, t2, t3, t4

)
,

corresponding to the first expression for Kd in (2.45).

Alternatively, if we had selected (2.25) for both K terms and repeated the process,
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we would obtain

∫
∞

0

1
y
K

(
x
y
, t1, t2

)
K

(
cy
z
, t3, t4

)
dydz =

cxe−
∫ t2

t1
q(τ)dτ−

∫ t4
t3

q(τ)dτ

z
[∫ t2

t1 σ(τ)2 dτ +
∫ t4

t3 σ(τ)2 dτ

]1/2 ×

N′
(

y1

(
cx
z
, t1, t2, t3, t4

))
= Kd

(
cx
z
, t1, t2, t3, t4

)
,

which aligns with the second expresion in (2.45) for Kd . This completes the derivation.

B.5 Proof of Lemma 9

We will prove equality for (2.49). For the left-hand side, we use K and Kd from (2.25)

and the second identity in (2.45), respectively. This gives

1
z
Kd

(
cx
z
, t1, t2, t3, t4

)
K
( z

w
, t4, t5

)
=

cxe−
∫ t2

t1
q(τ)dτ−

∫ t5
t3

q(τ)dτN′(y1((cx)/z, t1, t2, t3, t4))N′ (z1 (z/w, t4, t5))

zw
[∫ t2

t1 σ(τ)2 dτ +
∫ t4

t3 σ(τ)2 dτ

]1/2 [∫ t5
t4 σ(τ)2 dτ

]1/2 .

For the right-hand side, we apply Lemma 6 and get

∂

∂ z
∂

∂w

[
cxe−

∫ t2
t1

q(τ)dτ−
∫ t5

t3
q(τ)dτN2

(
y1

(
cx
z
, t1, t2, t3, t4

)
,y1

(cx
w
, t1, t2, t3, t5

)
;ρd

)]
=

cxe−
∫ t2

t1
q(τ)dτ−

∫ t5
t3

q(τ)dτ

zw
[∫ t2

t1 σ(τ)2 dτ +
∫ t4

t3 σ(τ)2 dτ

]1/2 [∫ t2
t1 σ(τ)2 dτ +

∫ t5
t3 σ(τ)2 dτ

]1/2√
1−ρ2

d

×

N′(y1((cx)/z, t1, t2, t3, t4))N′

y1 ((cx)/w, t1, t2, t3, t5)−ρdy1((cx)/z, t1, t2, t3, t4)√
1−ρ2

d

 .

Now using ρd from (2.50), this implies

1√
1−ρ2

d

=

[∫ t2
t1 σ(τ)2 dτ +

∫ t5
t3 σ(τ)2 dτ∫ t5

t4 σ(τ)2 dτ

]1/2

,
ρd√

1−ρ2
d

=

[∫ t2
t1 σ(τ)2 dτ +

∫ t4
t3 σ(τ)2 dτ∫ t5

t4 σ(τ)2 dτ

]1/2

.
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Substituting these into the right-hand side of (2.49) and recognising the form of z1 from (2.6),

this simplifies to

∂

∂ z
∂

∂w

[
cxe−

∫ t2
t1

q(τ)dτ−
∫ t5

t3
q(τ)dτN2

(
y1

(
cx
z
, t1, t2, t3, t4

)
,y1

(cx
w
, t1, t2, t3, t5

)
;ρd

)]
=

cxe−
∫ t2

t1
q(τ)dτ−

∫ t5
t3

q(τ)dτN′(y1((cx)/z, t1, t2, t3, t4))N′ (z1 (z/w, t4, t5))

zw
[∫ t2

t1 σ(τ)2 dτ +
∫ t4

t3 σ(τ)2 dτ

]1/2 [∫ t5
t4 σ(τ)2 dτ

]1/2 .

Thus completing the proof. The exact same steps can be applied to proving equality

for (2.48) but using (2.24) for K and the first identity for Kd in (2.45).

B.6 Proof of Corollary 2

We will prove (2.51), but will only sketch the proof for the other two results as their

derivation is identical to Corollary 1. We begin by denoting the left-hand side of (2.51)

by I. Then using the first expression for Kd from (2.45) gives

I =
e−

∫ t2
t1

r(τ)dτ−
∫ t4

t3
r(τ)dτ[∫ t2

t1 σ(τ)2 dτ +
∫ t4

t3 σ(τ)2 dτ

]1/2

∫ b1

a1

N′
(

y2

(
cx
z
, t1, t2, t3, t4

))
dz.

From (2.47), we know the form of the argument for the N′ term. Thus, we do the substi-

tution v = y2((cx)/z, t1, t2, t3, t4) and this yields

I = e−
∫ t2

t1
r(τ)dτ−

∫ t4
t3

r(τ)dτ

∫ y2((cx)/a1,t1,t2,t3,t4)

y2((cx)/b1,t1,t2,t3,t4)
N′(v)dv

= e−
∫ t2

t1
r(τ)dτ−

∫ t4
t3

r(τ)dτ

[
N(v)

]y2((cx)/a1,t1,t2,t3,t4)

y2((cx)/b1,t1,t2,t3,t4)

= e−
∫ t2

t1
r(τ)dτ−

∫ t4
t3

r(τ)dτ

[
N
(

y2

(
cx
a1

, t1, t2, t3, t4

))
−N

(
y2

(
cx
b1

, t1, t2, t3, t4

))]
,

which equals the right-hand side of (2.51). For (2.52) and (2.53), we replace the integrand

in each expression with (2.48) and (2.49) respectively. Then we apply the fundamental

theorem of calculus to obtain the desired result and equality. This approach is similar to

that for Corollary 1.



Appendix C

MATLAB code used throughout the

thesis

C.1 Code to output Black-Scholes’ standard diffusion and

Merton’s jump-diffusion option profiles

function optionComp

%% Financial parameters %%

K = 100;

r = 0.05;

q = 0.00;

T = 0.5;

sigma = 0.3;

S0 = 20:0.5:500;

%% Jump parameters %%

lambda = 0.5;

mu = -0.90;

delta = 0.45;

iter = 100;

160
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alpha = exp(mu + 0.5*deltaˆ2) - 1;

lambdaF = lambda*(1+alpha);

%% Useful functions %%

N = @(x) 0.5 + 0.5*erf(x/sqrt(2));

z1 = @(x,t,u) (log(x) + (r-q+0.5*sigmaˆ2).*(u-t)) ./ (sigma*sqrt(u-t));

z2 = @(x,t,u) (log(x) + (r-q-0.5*sigmaˆ2).*(u-t)) ./ (sigma*sqrt(u-t));

call = @(x,t) -K.*exp(-r.*(T-t)).*N(z2(x./K,t,T)) ...

+ x.*exp(-q.*(T-t)).*N(z1(x./K,t,T));

%% Computing the jump-diffusion European call option price %%

Cj = zeros(length(S0),1);

for i = 1:length(S0)

sum = 0;

for n = 0:iter

rF = r - lambda*alpha + (n*log(1+alpha))/T;

sigmaF = sqrt(sigmaˆ2 + (n*deltaˆ2)/T);

d1 = (log(S0(i)./K) + (rF - q + 0.5*sigmaFˆ2)*T)/(sigmaF*sqrt(T));

d2 = d1 - sigmaF*sqrt(T);

JF = ((lambdaF*T)ˆn/factorial(n))*exp(-lambdaF*T);

CBSM = S0(i).*exp(-q*T)*N(d1) - K*exp(-rF*T)*N(d2);

sum = sum + JF*CBSM;

end

Cj(i) = sum;

end

C = call(S0(:),0);

%% Plotting the results %%

set(gca,'FontSize',18,'fontWeight','bold')

set(findall(gcf,'type','text'),'FontSize',18,'fontWeight','bold')

figure (1);

plot(S0,C,'r',S0,Cj,'b--');

legend('Black-Scholes','Lognormal jumps',4);

axis([0 500 0 max(Cj)]);
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title('Black-Scholes versus Merton''s model with lognormal jumps');

xlabel('Asset price (S 0)');

ylabel('Call option value (V 0(S 0,0))');

grid on;

figure (2);

plot(S0,Cj-C);

title('Difference between Merton`s model and Black-Scholes');

xlabel('Asset price (S 0)');

ylabel('Call option difference (v M - v)');

grid on;

end

C.2 Code to compute the implied volatility in a jump-

diffusion model

C.2.1 Implied volatility using theoretical data

function impvolJumpTheo

%% Input parameters

S = 15;

K = linspace(10ˆ(-6),8*S,500);

r = 0.05;

q = 0.03;

sigma = 0.30;

T = 0.25;

t = 0.0;

%% Jump parameters

lambda = 0.1;

mu = -0.9;

delta = 0.45;
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%% Number of iterations

iter = 30;

%% Parameters for log-normal jump

alpha = exp(mu + 0.5*deltaˆ2) - 1;

%% Modified EU B-S option price

N = @(x) 0.5 + 0.5*erf(x/sqrt(2));

lambdaF = lambda*(1+alpha);

E = @(x) exp(mu.*x + 0.5.*(delta.*x).ˆ2);

%% Computing options prices with jumps for varying strike prices

V = zeros(1,length(K));

for j = 1:length(K)

sum = 0;

for n = 0:iter

rF = r - lambda*alpha + (n*log(1+alpha))/(T-t);

sigmaF = sqrt(sigmaˆ2 + (n*deltaˆ2)/(T-t));

d1 = (log(S./K(j)) + (rF - q + 0.5*sigmaFˆ2)*(T-t))/...

(sigmaF*sqrt(T-t));

d2 = d1 - sigmaF*sqrt(T-t);

JF = ((lambdaF*(T-t))ˆn/factorial(n))*exp(-lambdaF*(T-t));

CBSM = S*exp(-q*(T-t))*N(d1) - K(j)*exp(-rF*(T-t))*N(d2);

sum = sum + JF*CBSM;

end

V(j) = sum;

end

%% Computing the Mellin transform

ksi = 1.0:0.25:5.0;

sigmaNum = zeros(1,length(ksi));

phi = @(x) (S.ˆ(x+1))./(x.*(x+1));

for i = 1:length(ksi)
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xi = ksi(i);

Y = K(:).ˆ(xi-1).*V(:);

euroint = trapz(K,Y);

A = (log(euroint./phi(xi)))./(xi*(xi+1)*(T-t));

B = (r - q - alpha*lambda)/(xi+1);

C = ((q + alpha*lambda) - lambda*(E(xi+1)-1))/(xi*(xi+1));

sigmaNum(i) = sqrt(2*(A - B + C));

end

%% Plotting

set(gca,'FontSize',12)

plot(ksi,sigmaNum);

axis([1 5.0 0 0.31]);

grid on;

xlabel('\xi value');

ylabel('Implied volatility');

title('Implied volatility estimation for options in a jump-diffusion model');

end

C.2.2 Implied volatility estimation using pseudo-market data

function impvolJumpPseu

%% Input parameters

S = 15;

K = linspace(5,25,20);

r = 0.05;

q = 0.03;

sigma = 0.30;

T = 0.25;

t = 0.0;
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%% Jump parameters

lambda = 0.1;

mu = -0.9;

delta = 0.45;

%% Number of iterations

iter = 30;

%% Parameters for log-normal jump

alpha = exp(mu + 0.5*deltaˆ2) - 1;

%% Modified EU B-S option price

N = @(x) 0.5 + 0.5*erf(x/sqrt(2));

lambdaF = lambda*(1+alpha);

E = @(x) exp(mu.*x + 0.5.*(delta.*x).ˆ2);

V2 = zeros(1,length(K));

for j = 1:length(K)

sum = 0;

for n = 0:iter

rF = r - lambda*alpha + (n*log(1+alpha))/(T-t);

sigmaF = sqrt(sigmaˆ2 + (n*deltaˆ2)/(T-t));

d1 = (log(S./K(j)) + (rF - q + 0.5*sigmaFˆ2)*(T-t))/...

(sigmaF*sqrt(T-t));

d2 = d1 - sigmaF*sqrt(T-t);

JF = ((lambdaF*(T-t))ˆn/factorial(n))*exp(-lambdaF*(T-t));

CBSM = S*exp(-q*(T-t))*N(d1) - K(j)*exp(-rF*(T-t))*N(d2);

sum = sum + JF*CBSM;

end

V2(j) = sum;

end

%% Extrapolation

% Make sure jump terms are 0



APPENDIX C. MATLAB CODE FOR THE THESIS 166

% Head

beta = (S.*exp(-q*(T-t)) - V2(1))./K(1);

head = @(x) S.*exp(-q*(T-t))-beta.*x;

KHead = linspace(10ˆ(-6),K(1),10);

VHead = head(KHead);

% Tail

KL = 8*S;

D = log((V2(end-1)*(KL-K(end)))./(V2(end)*(KL-K(end-1)))) ./ ...

(log(K(end)) - log(K(end-1)));

gamma2 = (V2(end).*K(end).ˆD)./(K(end)-KL);

gamma1 = -KL.*gamma2;

tail = @(x) gamma1./(x.ˆD) + gamma2./(x.ˆ(D-1));

KTail = linspace(K(end),KL,10);

VTail = tail(KTail);

% Recombining everything

V3 = [VHead(1:end-1) V2 VTail(2:end)];

K3 = [KHead(1:end-1) K KTail(2:end)];

%figure;

%plot(K3,V3);

%% Computing the Mellin transform

ksi = 1.0:0.25:5.0;

sigmaNum = zeros(1,length(ksi));

phi = @(x) (S.ˆ(x+1))./(x.*(x+1));

for i = 1:length(ksi)

xi = ksi(i);

func = pchip(K3,V3);
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euroint = quadgk(@(x) (x.ˆ(xi-1)).*ppval(func,x),K3(1),K3(end));

A = (log(euroint./phi(xi)))./(xi*(xi+1)*(T-t));

B = (r - q - alpha*lambda)/(xi+1);

C = ((q + alpha*lambda) - lambda*(E(xi+1)-1))/(xi*(xi+1));

sigmaNum(i) = sqrt(2*(A - B + C));

end

figure;

set(gca,'FontSize',12)

plot(ksi,sigmaNum);

axis([1 5.0 0 0.31]);

grid on;

xlabel('\xi value');

ylabel('Implied volatility');

title('Implied volatility estimation for options in a jump-diffusion model');

end

C.2.3 Newton’s method

function impvoln(K)

%% Input parameters

S0 = 15;

r = 0.05;

q = 0.03;

sigma = 0.30;

T = 0.25;

%% Setting up EU call price function parameters

N = @(z) 0.5 + 0.5.*erf(z./sqrt(2));

d1 = @(sig) (log(S0./K)+(r-q+0.5*sig.ˆ2).*T)./(sig.*sqrt(T));
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d2 = @(sig) (log(S0./K)+(r-q-0.5*sig.ˆ2).*T)./(sig.*sqrt(T));

%% Computing the observed option price to use in the imp. vol. method

C obs = S0.*exp(-q.*T).*N(d1(sigma)) - K.*exp(-r.*T).*N(d2(sigma));

%% Initial seed for Newton's method (using critical value of sigma)

sigma0 = sqrt(abs((2./T)*(log(S0./K) + (r-q)*T)));

%% Error tolerance

epsilon = 10ˆ(-6);

%% Initial error (> epsilon)

error = 1.0;

%% First value for Newton's method

sNow = sigma0;

%% Loop for Newton's method

while (error > epsilon)

fprintf('We"re in\n');

D1 = d1(sNow);

D2 = d2(sNow);

f = S0.*exp(-q.*T).*N(D1) - K.*exp(-r.*T).*N(D2) - C obs;

vega = S0.*exp(-q.*T).*sqrt(T)*(1./sqrt(2*pi))*exp(-D1.ˆ2 / 2);

sNext = sNow - (f ./ vega);

error = abs(sNext - sNow);

sNow = sNext;

end

%% Final value from loop = implied volatility

sigmaImp = sNow;

disp([K C obs sigmaImp]);

end
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C.2.4 Brenner-Subrahmanyam

function impvolBS

%% Parameters and functions

S0 = 15;

K = 5;

r = 0.05;

q = 0.03;

sigma = 0.3;

T = 0.25;

t = 0.0;

N = @(x) 0.5 + 0.5*erf(x/sqrt(2));

d1 = (log(S0./K) + (r - q + 0.5*sigmaˆ2)*(T-t))/(sigma*sqrt(T-t));

d2 = (log(S0./K) + (r - q - 0.5*sigmaˆ2)*(T-t))/(sigma*sqrt(T-t));

V = S0.*exp(-q*(T-t))*N(d1)-K*exp(-r*(T-t))*N(d2);

sigmaBrenner = sqrt(2*pi/T).*(V./S0);

end

C.2.5 Corrado-Miller

function impvolCM

%% Parameters and functions

S0 = 15;

K = 5;

r = 0.05;

q = 0.03;

sigma = 0.3;

T = 0.25;
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t = 0.0;

N = @(x) 0.5 + 0.5*erf(x/sqrt(2));

d1 = (log(S0./K) + (r - q + 0.5*sigmaˆ2)*(T-t))/(sigma*sqrt(T-t));

d2 = (log(S0./K) + (r - q - 0.5*sigmaˆ2)*(T-t))/(sigma*sqrt(T-t));

V = S0.*exp(-q*(T-t))*N(d1)-K*exp(-r*(T-t))*N(d2);

%% Corrado and Miller

sigmaCorrado = (1./(S0+K)).*sqrt(2*pi/T).* ...

(V - (S0-K)./2 + sqrt((V - (S0-K)/2).ˆ2 - ((S0-K).ˆ2)/pi));

end

C.3 Code to aid in pricing an American put option sub-

jected to jump-diffusion dynamics

C.3.1 FDM to solve Merton’s PIDE

function [S,v] = fdmPIDEAmerPut

%% Numerical Parameters

I = 101;

% # of nodes in asset price domain

N = 501;

% # of nodes in time domain

%% Financial parameters

T = 0.5;

% Time to expiry

K = 5;

% Strike price

r = 0.05;

% Interest rate

q = 0.0;
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% Continuous dividend yield

sigma = 0.3;

% Volatility

S0 = 10ˆ(-3);

Smax = 4*K;

S = linspace(S0,Smax,I);

t = linspace(0,T,N);

dT = abs(t(2)-t(1));

%% Jump parameters (lognormal)

mu = 0.90;

delta = 0.45;

lambda = 0.1;

%% Some simplifications to make life easier

sig2 = sigma.ˆ2;

del2 = delta.ˆ2;

%% Computing kappa = E[Y-1]

kappa = exp(mu+0.5.*del2) - 1;

%% Lognormal PDF

f = @(y) 1./(y.*sqrt(2*pi*del2)).*exp(-0.5.*((log(y)-mu).ˆ2./(del2)));

%% Initializing matrix

v = zeros(N,I);

%% Setting the boundary conditions (S --> 0 and S --> Smax)

v(:,1) = K;

v(:,I) = 0;

%% Setting the terminal (final) condition

v(N,:) = max(K-S,0);

for n=N:-1:2
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for i=2:(I-1)

sum = 0;

for j=1:I

sum = sum + v(n,j).*f(j./i);

end

u1 = v(n,i) + 0.5.*dT.*sig2.*(i.ˆ2).*(v(n,i-1)-2.*v(n,i)+v(n,i+1)) ...

+ 0.5.*dT.*i.*(r-q-kappa*lambda).*(v(n,i+1)-v(n,i-1)) ...

- dT.*(r+lambda).*v(n,i) + dT.*lambda/i.*sum;

u2 = max(K-S(i),0);

v(n-1,i) = max(u1,u2);

end

end

end

C.3.2 Code to solve for the American put option in jump-diffusion

dynamics using S∗ from Appendix C.3.2.

function [Va] = amerPutJ2(Sf)

%% Financial parameters

T = 0.5;

% Time to expiry

t = 0.0;

% Time-zero

K = 5;

% Strike price

%S0 = [K 2*K 3*K 4*K 5*K 6*K 7*K 8*K]/4;

% Value of asset at time zero

%S = [90 92 94 96 98 100 106 112 118];

S = linspace(10ˆ-3,4*K,101);

%S = 100;

r = 0.05;

% Interest rate

q = 0.00;

% Continuous dividend yield
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sigma = 0.3;

% Volatility

%% Jump parameters (lognormal)

mu = 0.90;

delta = 0.45;

lambda = 0.1;

%% Some simplifications to make life easier

sig2 = sigma.ˆ2;

del2 = delta.ˆ2;

alpha = lambda.*exp(-mu-sig2./2);

kappa = exp(mu+0.5.*del2)-1;

lambdaF = lambda*(1+alpha);

%% Numerical parameters

I = length(Sf);

time = linspace(t,T,I);

iter = 30;

%% Useful functions

N = @(x) normcdf(x);

Np = @(x) 1./(sqrt(2*pi)).*exp(-x.ˆ2/2);

z2n = @(x,t,u,n) (log(x) + n.*mu + (r-q-kappa*lambda-0.5*sig2).*(u-t)) ...

./(sqrt(n*del2 + sig2.*(u-t+eps)));

z1n = @(x,t,u,n) (log(x) + n.*mu + n.*del2 + (r-q-kappa*lambda+0.5*sig2) ...

.*(u-t))./(sqrt(n*del2 + sig2.*(u-t+eps)));

C = @(x,p,u,n,t) sqrt((n+1).*del2 + sig2.*(u-t))./ ...

(delta.*sqrt(n.*del2+sig2.*(u-t+eps)))...

.*(log(x) - n.*mu - (r-q-kappa.*lambda-sig2/2).*(u-t) ...

+ (sqrt(n*del2 + sig2.*(u-t))./((n+1).*del2 + sig2.*(u-t))) ...

.*(log(1./(x.*p)) + (n+1).*mu + (r-q-kappa*lambda-sig2/2).*(u-t)));

%% Standard EU put without jumps as an estimate we'll use
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Pe = @(x,t,u) K.*exp(-r.*(u-t)).*N(-z2n(x./K,t,u,0)) - ...

x.*exp(-q.*(u-t)).*N(-z1n(x./K,t,u,0));

%% Computing the American put option with jumps

P = zeros(1,length(S));

Va = zeros(1,length(S));

for m = 1:length(S)

for n = 0:iter

rF = r - lambda*alpha + (n*log(1+alpha))/(T-t);

sigmaF = sqrt(sigmaˆ2 + (n*deltaˆ2)/(T-t));

d1 = (log(S(m)./K) + (rF - q + 0.5*sigmaFˆ2)*(T-t))/(sigmaF*sqrt(T-t));

d2 = d1 - sigmaF*sqrt(T-t);

JF = ((lambdaF*(T-t))ˆn/factorial(n))*exp(-lambdaF*(T-t));

PBSM = K*exp(-rF*(T-t))*N(-d2) - S(m).*exp(-q*(T-t))*N(-d1);

P(m) = P(m) + JF*PBSM;

end

end

%% Computing the early exercise premium.

%% I could have it under one loop, but this is easier to see

for m = 1:length(S)

rTerm = @(u) 0;

qTerm = @(u) 0;

jTerm = 0;

for n = 0:iter

if n==0

Y1 = @(u) exp(-(r+lambda).*(u-t)).*N(-z2n(S(m)./Sf,t,u,n));

Y2 = @(u) exp(-(q+lambda+kappa*lambda).*(u-t)).*N(-z1n(S(m)./ ...

Sf,t,u,n));

else

Y1 = @(u) ((lambda.*(u-t)).ˆn)./(factorial(n))...

.*exp(-(r+lambda).*(u-t)).*N(-z2n(S(m)./Sf,t,u,n));

Y2 = @(u) ((lambda.*(u-t)).ˆn)./(factorial(n))...

.*exp(-(q+lambda+kappa*lambda).*(u-t)).*N(-z1n(S(m)./ ...

Sf,t,u,n));



APPENDIX C. MATLAB CODE FOR THE THESIS 175

end

rTerm = @(u) rTerm(u) + Y1(u);

qTerm = @(u) qTerm(u) + Y2(u);

F = zeros(1,length(Sf));

for j=1:length(Sf)

B = ((lambda.ˆ(n+1)).*(time(j)-t).ˆn)./(factorial(n).*sqrt((n+1)* ...

del2 + sig2.*(time(j)-t+eps)));

val = @(p) (1./p).*(Pe(Sf(j).*p,t,time(j))-(K-Sf(j).*p)).* ...

Np(z2n(S(m)./(Sf(j).*p),t,time(j),n+1))...

.*N(C(Sf(j)./S(m),p,time(j),n,t));

F(j) = B.*exp(-(r+lambda).*(time(j)-t)).*quadgk(val,1,Inf);

end

intY3 = trapz(time,F);

jTerm = jTerm + intY3;

end

Y1 = rTerm(time);

Y2 = qTerm(time);

Va(m) = P(m) - r.*K.*trapz(time,Y1) + q.*S(m).*trapz(time,Y2) + jTerm;

end

end



Appendix D

Proof that Fn in (3.14) exists for all n≥ 2

D.1 Setting up the proof

First, let us recall the definition of Fn from (3.14)

Fn(x) =



δ (x−1) n = 0,

1
x

f
(

1
x

)
n = 1,

∫
∞

0

1
z

F1(z)Fn−1

(
x
z

)
dz n≥ 2.

To show Fn exists for all n ≥ 2, we must first make a few assumptions. First, we assume

that E[Y−ξ ] is finite and convergent for a nonnegative continuous random variable Y with

f as its PDF. Next, we define Aξ to be the following space [71]:

Aξ =
{

f | f : R+→ C ;
∥∥∥ f (x)xξ−1

∥∥∥ ∈ L1(R+)
}
,

for some ξ ∈ C and its associated norm given as

‖ f‖Aξ
=
∥∥∥ f (x)xξ−1

∥∥∥
L1(R+)

=
∫

∞

0
| f (x)|xξ−1 dx < ∞.

It should be noted that the norm of Aξ is nearly identical to the definition of the Mellin

transform except with the addition of an absolute value. Furthermore if we use the defini-

176



APPENDIX D. EXISTENCE OF THE JUMP RECURSION FORMULA 177

tion of the Mellin convolution from (2.30), for n≥ 2 we can define Fn to be

Fn(x) = (F1 ∗Fn−1)(x) for all x≥ 0. (D.1)

We also need to make use of the following lemma [71]:

Lemma 10. Suppose f ,g ∈ Aξ . Then the convolution f ∗ g exists almost everywhere on

R+ and belongs in Aξ .

Thus to prove that Fn exists for all n ≥ 2, we need to show that F1 and Fn−1 both

belong in Aξ . This can be achieved via an induction argument.

D.2 Base case: n = 2 and showing both F1,F2 ∈ Aξ

First we generate a base case by setting n = 2 in (3.14). This gives

F2(x) =
∫

∞

0

1
z

F1(z)F1

(
x
z

)
dz = (F1 ∗F1)(x).

To prove that F2 exists, we need to establish that F1 ∈ Aξ . To do this, we just have to show

that the norm of F1 in Aξ is finite. That is,

‖F1‖Aξ
=
∥∥∥F1(x)xξ−1

∥∥∥
L1(R+)

=
∫

∞

0
|F1(x)|xξ−1 dx < ∞.

Using the definition of F1 from (3.14) and substituting it into the integral yields the ex-

pression

‖F1‖Aξ
=
∫

∞

0

∣∣∣∣1x f
(

1
x

)∣∣∣∣xξ−1 dx =
∫

∞

0

1
x

f
(

1
x

)
xξ−1 dx,

where the absolute value disappears since f is the PDF of a nonnegative continuous ran-

dom variable Y . Next we set y = 1/x to simplify the integral to be

‖F1‖Aξ
=
∫

∞

0
y−ξ f (y)dy = E

[
Y−ξ

]
< ∞,
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where we use one of the assumptions earlier on that E
[
Y−ξ

]
is finite and convergent.

Hence we have shown that F1 ∈ Aξ and since F2 is the convolution of two F1 terms, by

Lemma 10 we automatically have F2 existing almost everywhere on R+ and belonging in

Aξ .

D.3 Induction hypothesis: assume true for n = k−1

To proceed, we now assume our statement is true for n = k−1. That is for n = k−1, we

assume that Fk−1 exists almost everywhere on R+ and belongs in Aξ . Now we let n = k

and from (3.14), we get

Fk(x) =
∫

∞

0

1
z

F1(z)Fk−1

(
x
z

)
dz = (F1 ∗Fk−1)(x).

Recall from showing the existence of F2 that we proved that F1 ∈ Aξ . We also asserted

by our induction hypothesis that Fk−1 exists almost everywhere on R+ and belongs in Aξ .

Therefore, since Fk is the convolution of F1 and Fk−1, we must have Fk ∈ Aξ and existing

nearly everywhere on R+ by Lemma 10. Thus proving the existence of Fn in (3.14) for

all n≥ 2.
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