Synthesis and In Vitro Binding of N,N-Dialkyl-2-phenylindol-3-ylglyoxylamides for the Peripheral Benzodiazepine Binding Sites

T. P. Homes
University of Wollongong, taryn_homes@uow.edu.au

F. Mattner
ANSTO Radiopharmaceuticals

Paul A. Keller
University of Wollongong, keller@uow.edu.au

A. Katsifis
ANSTO Radiopharmaceuticals

Publication Details
This article was originally published as Homes, TP, Mattner, F, Keller, PA & Katsifis, A, Synthesis and In Vitro Binding of N,N-Dialkyl-2-phenylindol-3-ylglyoxylamides for the Peripheral Benzodiazepine Binding Sites, Bioorganic and Medicinal Chemistry, 14(11), 2006, 3938-3946. Original journal article available [here](#)
Synthesis and In Vitro Binding of N,N-Dialkyl-2-phenylindol-3-ylglyoxylamides for the Peripheral Benzodiazepine Binding Sites

Abstract
A series of N,N-dialkyl-2-phenylindol-3-ylglyoxylamides bearing the halogens iodine and bromine were synthesised and their binding affinity for the peripheral benzodiazepine binding sites (PBBS) in rat kidney mitochondrial membranes were evaluated using [3H]-PK11195. Central benzodiazepine receptor (CBR) affinities were also evaluated in rat cortices using 3H-flumazenil to determine their selectivity for PBBS over CBR. The tested compounds had PBBS binding affinities (IC50) ranging from 7.86 nM to 618 nM, with all compounds showing high selectivity over the CBR (CBR IC50 > 5000 nM). Among the 12 compounds tested, those with a diethylamide group were the most potent. The highest affinity iodinated PBBS ligand, N,N-diethyl-[5-chloro-2-(4-iodophenyl)indol-3-yl]glyoxylamide (4c), was radiolabelled with iodine-123. This high affinity and selective radioligand may be useful for imaging neurodegeneration, inflammation and tumours using single photon emission computed tomography (SPECT).

Keywords
Peripheral Benzodiazepine Binding Sites, N, N-dialkyl-2-phenylindol-3-ylglyoxylamides, SPECT, Radioiodination, neurodegeneration, Radiopharmaceuticals, inflammation, tumours, indole, CMMB

Disciplines
Life Sciences | Medicine and Health Sciences | Organic Chemicals | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details
This article was originally published as Homes, TP, Mattner, F, Keller, PA & Katsifis, A, Synthesis and In Vitro Binding of N,N-Dialkyl-2-phenylindol-3-ylglyoxylamides for the Peripheral Benzodiazepine Binding Sites, Bioorganic and Medicinal Chemistry, 14(11), 2006, 3938-3946. Original journal article available here
Synthesis and In Vitro Binding of N,N-Dialkyl-2-phenylindol-3-ylglyoxylamides for the Peripheral Benzodiazepine Binding Sites

Taryn P. Homesa, Filomena Mattnerb, Paul A. Kellera and Andrew Katsifisb*

aDepartment of Chemistry, University of Wollongong, NSW 2500, Wollongong, Australia
bRadiopharmaceutical Research Institute, Australian Nuclear Science & Technology Organisation, Menai NSW 2234, Sydney, Australia

Abstract
A series of N,N-dialkyl-2-phenylindol-3-ylglyoxylamides bearing the halogens iodine and bromine were synthesised and their binding affinity for the peripheral benzodiazepine binding sites (PBBS) in rat kidney mitochondrial membranes were evaluated using $[^3H]$-PK11195. Central benzodiazepine receptor (CBR) affinities were also evaluated in rat cortices using $[^3H]$-flumazenil to determine their selectivity for PBBS over CBR. The tested compounds had PBBS binding affinities (IC_{50}) ranging from 7.86 nM to 618 nM, with all compounds showing high selectivity over the CBR (CBR $IC_{50} > 5000$ nM). Among the 12 compounds tested, those with a diethylamide group were the most potent. The highest affinity iodinated PBBS ligand, N,N-diethyl-[5-chloro-2-(4-iodophenyl)indol-3-yl]glyoxylamide (4c), was radiolabelled with iodine-123. This high affinity and selective radioligand may be useful for imaging neurodegeneration, inflammation and tumours using single photon emission computed tomography (SPECT).

Keywords
Peripheral Benzodiazepine Binding Sites, N,N-dialkyl-2-phenylindol-3-ylglyoxylamides, SPECT, Radioiodination.

1. Introduction
The Peripheral Benzodiazepine Binding Sites (PBBS) (also termed the Peripheral Benzodiazepine Receptors or PBR) are multimeric protein complexes localised mainly on the outer mitochondrial membranes of cells in peripheral organs such as the kidney, heart, and steroid producing cells of the adrenals, testes and ovaries.1,2 The PBBS are pharmacologically and anatomically different to the central benzodiazepine receptors (CBR). Within the normal central nervous system, PBBS are expressed at low levels mainly on the choroid plexus, ependymal lining of the ventricles and the olfactory bulb.3 Dramatic upregulation of PBBS has been reported in such diverse neuropathologic states including Huntington's and Alzheimer's diseases and multiple sclerosis.4,5 Significantly enhanced PBBS expression has also been observed in melanoma, breast, prostate, ovarian and glial tumours.6,7,8,9
The development of specific radiotracers for the PBBS has not only contributed to the elucidation of the receptor’s biochemical functions, but when imaged with positron emission tomography (PET) and single photon emission computed tomography (SPECT), provide a means by which these changes can be monitored and correlated to disease.10,11,12,13 A diverse range of chemical structures has been shown to bind to various components of the PBBS. The isoquinoline carboxamide ligand PK 11195, the classical 1,4-benzodiazepine, Ro 5-4864 and the imidazopyridine Alpidem (Figure 1) have been shown to bind to various binding domains of the PBR. [11C]PK 11195 has been used to study the PBBS \textit{in vivo} using PET to detect brain inflammation in humans and to image early Alzheimer's disease.14

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Structures of PBBS ligands}
\end{figure}

More recently, imidazopyridines15 and pyridazines16 and indoles such FGIN-1-2717,18 (Figure 1) have all been reported to bind to the PBBS. Several of these ligands have been radiolabelled with iodine-123, for potential imaging using SPECT.16,19,20

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Structure of N,N-dialkyl-2-phenylindol-3-ylglyoxylamides}
\end{figure}

\textit{N,N}-Dialkyl-2-phenylindolyl-3-glyoxylamides (Figure 2) represent a new class of potent PBBS ligands, whose development was based on conformationally constrained analogues of 2-phenylindole-3-acetamides.21 These compounds offer the potential for radiolabelling with radionuclides for both PET and SPECT imaging. In this investigation we synthesised and tested several of halogenated derivatives of these systems with the aim of radiolabelling with iodine-123 for studying PBBS using SPECT.
2. Chemistry

The N,N-dialkyl-2-phenylindol-3-ylglyoxylamides 4a-l were synthesised following literature methods\(^\text{21}\) for similar compounds and is outlined in scheme 1. Briefly, 2-(4-bromophenyl)indole 2d was synthesised in one step, from 4-bromoacetophenone and phenylhydrazine with polyphosphoric acid,\(^\text{22}\) while indoles 2a-c were synthesised in two steps via their phenylhydrazone derivatives 1a-c.\(^\text{23}\) The phenylhydrazones were formed by reacting 4-bromo or 4-iodo acetophenone with phenylhydrazine or 4-chlorophenylhydrazine hydrochloride, followed by cyclisation by the Fischer indole synthesis using polyphosphoric acid. Subsequent acylation using oxalyl chloride gave the indolylglyoxylyl chlorides 3a-d, which were aminated using the appropriate amines eg dihexylamine, di-\textit{n}-propylamine, diethylamine, or dimethylamine giving the final N,N-dialkyl-2-phenylindolyl-3-glyoxamides 4a-l in good overall yields.

![Scheme 1](image)

Scheme 1. Reagents and conditions (i) Ph-NHNH\(_2\) or 4-Cl-PhNHNH\(_2\).HCl, ethanol, CH\(_3\)CO\(_2\)H; (ii) To synthesis 2a-c, polyphosphoric acid; (iii) To synthesise 2d, Ph-NHNH\(_2\), polyphosphoric acid; (iv) CICOCOCI, anhydrous ether; (v) NH(alkyl)\(_2\), triethylamine, anhy. toluene.

To prepare the \([^{123}\text{I}]\)radiolabelled analogue of 4c, the trimethylstannyl precursor 5, was prepared from its corresponding bromo derivative 4k, using hexamethylditin in the presence of a catalytic amount of tetrakis(triphenylphoshine)palladium(0) in anhydrous toluene. The radioiodination was achieved by an oxidative iododestannylation reaction of 5, and Na\(^{123}\text{I}\) using per-acetic acid as an oxidising agent (Scheme 2). The radioligand, \([^{123}\text{I}]\)-N,N-diethyl-[5-chloro-2-(4-iodophenyl)indol-3-ylglyoxylyl]amide was purified and characterised by reverse phase HPLC. The radiochemical yield was in the range of 55-60% (n = 3).
Reagents and conditions (i) $(\text{Sn(CH}_3)_3)_2$, Pd(PPh$_3$)$_4$, anhydrous toluene, reflux, 8 h; (ii) Na123I, per-acetic acid, ethanol, acetic acid

3. Results and Discussion

The binding affinities (IC$_{50}$) of the 12 new compounds for the PBBS were determined by measuring the displacement of $[^3H]$PK11195 bound to rat kidney mitochondrial membranes. To determine the selectivity of the compounds for PBBS versus CBR, CBR binding affinities were determined using $[^3H]$Flumazenil on rat cortical membranes. The results of the binding affinities of compounds 4a-l for the PBBS and the CBR are shown in Table 1. The compounds examined displayed a medium to high affinity for the PBBS, ranging from 7.86 nM to 618 nM. All compounds had high selectivity for PBBS over CBR, with all CBR IC$_{50}$ > 5000 nM. The effects of chemical modification to groups R$_1$ to R$_4$ on the binding to PBBS was studied, including the length of the alkyl chains (R$_1$ and R$_2$), the presence of a chloro substituent on position 5 of the indole (R$_4$), and halogen substitution (bromine or iodine) on the phenyl ring (R$_3$). The most potent ligands for the PBBS were compounds 4c and 4k, both displaying IC$_{50}$ of <10 nM. Decreasing the length of the alkyl chains from hexyl to propyl to ethyl, increased the binding affinity for the PBBS. However, compounds with R$_1$ and R$_2$ as methyl groups had a lower affinity than the compounds with ethyl groups. The compounds with a bromo substituent on R$_3$, 4i-l, had higher PBBS affinities than their respective iodo analogues 4a-c, and 4e. This suggests that the smaller the halogen on R$_3$, the better the binding affinity. Although no direct comparison can be made, compounds reported previously21 with smaller halogen (fluorine and chlorine) substituents on R$_3$ appeared to have a higher PBBS binding affinity than compounds presented here. It was also reported21 that the optimum alkyl chain length (R$_1$ and R$_2$) for compounds with no chloro substituent on R$_4$ were hexyl groups, whereas with the chloro substituent, the optimum length was propyl. In this work it was found that compounds with hexyl groups had the lowest affinities, with and without a chloro substituent. It was also found that affinities increased with the addition of a chloro substituent in compounds containing propyl, ethyl or methyl groups.21 Compounds 4e and 4l containing hexyl groups showed higher PBBS affinity than compounds 4a and 4i with a chloro group in the R$_4$. This suggests that it is more difficult to accommodate the sterically more demanding hexyl groups on molecules with R$_4$ = Cl than in compounds with R$_4$ = H, suggesting different molecular orientations are possible.
Table 1. Binding affinities for PBBS and CBR, measured and calculated Log P of compounds 4a-l

<table>
<thead>
<tr>
<th>Compd</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>Log P^a</th>
<th>Calcd. Log P^b</th>
<th>PBBS IC$_{50}$ (nM)c</th>
<th>CBR IC$_{50}$ (nM)d</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>hexyl</td>
<td>hexyl</td>
<td>I</td>
<td>Cl</td>
<td>> 6</td>
<td>8.29</td>
<td>169 ± 35</td>
<td>18786 ± 1634</td>
</tr>
<tr>
<td>4b</td>
<td>propyl</td>
<td>propyl</td>
<td>I</td>
<td>Cl</td>
<td>4.71 ± 0.19</td>
<td>5.78</td>
<td>37.4 ± 6.1</td>
<td>16156 ± 579</td>
</tr>
<tr>
<td>4c</td>
<td>ethyl</td>
<td>ethyl</td>
<td>I</td>
<td>Cl</td>
<td>4.00 ± 0.16</td>
<td>4.81</td>
<td>8.23 ± 2.2</td>
<td>15652 ± 45</td>
</tr>
<tr>
<td>4d</td>
<td>methyl</td>
<td>methyl</td>
<td>I</td>
<td>Cl</td>
<td>3.36 ± 0.13</td>
<td>4.13</td>
<td>17.5 ± 4.3</td>
<td>10146 ± 1967</td>
</tr>
<tr>
<td>4e</td>
<td>hexyl</td>
<td>hexyl</td>
<td>I</td>
<td>H</td>
<td>> 6</td>
<td>7.73</td>
<td>115 ± 22</td>
<td>13803 ± 137</td>
</tr>
<tr>
<td>4f</td>
<td>propyl</td>
<td>propyl</td>
<td>I</td>
<td>H</td>
<td>4.00 ± 0.16</td>
<td>5.22</td>
<td>43.6 ± 1.8</td>
<td>14662 ± 127</td>
</tr>
<tr>
<td>4g</td>
<td>ethyl</td>
<td>ethyl</td>
<td>I</td>
<td>H</td>
<td>3.27 ± 0.13</td>
<td>4.25</td>
<td>19.1 ± 2.5</td>
<td>13197 ± 2975</td>
</tr>
<tr>
<td>4h</td>
<td>methyl</td>
<td>methyl</td>
<td>I</td>
<td>H</td>
<td>2.69 ± 0.11</td>
<td>3.58</td>
<td>618 ± 39</td>
<td>5939 ± 815</td>
</tr>
<tr>
<td>4i</td>
<td>hexyl</td>
<td>hexyl</td>
<td>Br</td>
<td>Cl</td>
<td>> 6</td>
<td>7.76</td>
<td>138 ± 35</td>
<td>13115 ± 3212</td>
</tr>
<tr>
<td>4j</td>
<td>propyl</td>
<td>propyl</td>
<td>Br</td>
<td>Cl</td>
<td>4.56 ± 0.18</td>
<td>5.25</td>
<td>16.7 ± 4.7</td>
<td>10463 ± 2817</td>
</tr>
<tr>
<td>4k</td>
<td>ethyl</td>
<td>ethyl</td>
<td>Br</td>
<td>Cl</td>
<td>3.89 ± 0.15</td>
<td>4.28</td>
<td>7.86 ± 1.2</td>
<td>11045 ± 1909</td>
</tr>
<tr>
<td>4l</td>
<td>hexyl</td>
<td>hexyl</td>
<td>Br</td>
<td>H</td>
<td>> 6</td>
<td>7.20</td>
<td>54.7 ± 22.6</td>
<td>16348 ± 716</td>
</tr>
<tr>
<td>PK 11195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.30</td>
<td>3.7 ± 1.2</td>
<td>>1,000</td>
<td></td>
</tr>
</tbody>
</table>

a Estimated by Chem Draw Ultra.

b The concentration of tested compounds that inhibited $[^3]$H]PK11195 binding to rat kidney mitochondrial membranes (IC$_{50}$) by 50% was determined with 6 concentrations of the test compounds, each performed in triplicate. c The concentration of tested compounds that inhibited $[^3]$H]Flumazenil binding to rat cortex membranes (IC$_{50}$) by 50% was determined with 6 concentrations of the displacers, each performed in triplicate.

IC$_{50}$ values are the mean ± SEM derived from at least 2 independent experiments.

To perform radiolabelling, the corresponding trimethyl stannane 5 was prepared by treatment of the bromo derivative 4k with hexamethylditin and palladium tetrakistriphenylphosphine in refluxing toluene. $[^{123}]$-4c was prepared by electrophilic iododestannylation in the presence of per-acetic acid as the oxidant in 55-60% radiochemical yield and above 98% radiochemical purity.
Lipophilicity measurements of all compounds were assessed in order to explain their in vivo properties. As expected the presence of bulky alkyl groups (R₁ and R₂) greatly influenced the overall lipophilicity of the molecules resulting in compounds 4a, 4e, 4i, and 4l having log \(P \) values greater than 6 and molecules with propyl groups 4b, 4f, 4j greater than 4. In addition, incorporating a chloro substituent on R₄ increased the log \(P \) values from 3.27 in 4g and 2.69 in 4h to 4.0 in 4c and 3.36 in 4d respectively. However, the presence of small alkyl groups such as ethyl and methyl in the R₁ and R₂ positions and hydrogen in the R₄ positions can yield compounds with log \(P \) values between 2 and 4.

4. Conclusion
A series of \(N,N \)-dialkyl-2-(4'-iodo- and 4'-bromo-phenylindol-3-ylglyoxylamides 4a-l were synthesised and their binding affinity for the PBBS and CBR determined using \[^{3} \text{H}] \text{PK11195} \) and \[^{3} \text{H}] \text{Flumazenil} \) on rat kidney mitochondrial and cortical membranes respectively. The brominated and iodinated compounds 4c and 4k bearing a chloro-substituent on R₄ and ethyl groups at R₁ and R₂ displayed the highest affinity for the PBBS. All compounds displayed low affinity for the CBR (IC₅₀ > 5000 nM). Compound 4c was radiolabelled with iodine-123 by electrophilic iododestannylation using per-acetic acid as the oxidant in 55-60% radiochemical yield and > 98% radiochemical purity.

5. Experimental
Melting points were determined on a Gallenkamp melting point apparatus and were uncorrected. Elemental analyses were performed on a Carlo Erba 1106 Elemental analyser at the Campbell Microanalytical Laboratory, University of Otago (Dunedin, New Zealand), and their results are within ±0.4% of theoretical values. \(^{1}\text{H} \) and \(^{13}\text{C} \) nuclear magnetic resonance (NMR) spectra were recorded using a Bruker 400 MHz spectrometer. Chemical shifts (\(\delta \)) are expressed in ppm, and the coupling constants (\(J \)) in Hz. Signals are recorded as singlet (s), doublet (d), triplet (t), quartet (q) and multiplet (m). Mass spectra (MS) were obtained using either a VG Quattro triple quadrupole system or an Autospec high-resolution mass spectrometer. Analytical thin layer chromatography (TLC) was performed on Merck Kieselgel 60 F₂₅₄ precoated polyester plates with a thickness of 250 \(\mu \)m. Column chromatography was performed on Merck Keiselgel 60 (220-440 mesh). Reagents and solvents were purchased from commercial sources and were used without further purification. Petroleum ether of boiling point range 30-60 °C was used. Yields refer to purified products and are not optimised. Chromatographic separation of radiolabelled product was carried out on a Phenomenex bondclone semi-preparative RP C-18 column (10 \(\mu \), 7.8 mm x 300 mm) using a Waters 510 pump, an Activon Linear UV detector set at 254 nm, and an in-line NaI-Berthold
radioactivity detector. Carrier free Na123I in 0.1M NaOH was obtained from Australian Radioisotopes and Industrials (ARI), Australia.

\[^{3}H\]-PK11195 and \[^{3}H\]-Flumazenil were purchased from Perkin-Elmer Life Sciences (Boston, MA, USA). PK11195 and Flumazenil were purchased from Sigma-RBI. For binding studies, male Sprague Dawley rats were purchased from Animal Resources Centre (Perth, WA, Australia). All procedures were carried out in compliance with Australian laws governing animal experimentation.

5.1. 4-Iodoacetophenone 4-chlorophenylhydrazone (1a)
A mixture of 4-iodoacetophenone (4.15 g, 16.9 mmol), 4-chlorophenylhydrazine hydrochloride (3.00 g, 16.8 mmol), and a few drops of glacial acetic acid in ethanol (40 mL) was stirred and heated at reflux for 45 min. A precipitate that formed was filtered and washed with dilute HCl followed by cold 95% ethanol (10 mL). The product was recrystallised in ethanol to yield 1a (3.34 g, 54%) as yellow crystals: mp 130-132 °C. \(^1\)H NMR (CDCl\textsubscript{3}) \(\delta\) 2.21 (s, 3H, CH\textsubscript{3}), 7.11 (d, 2H, \(J = 8.9, 2\text{ArH}\)), 7.24 (d, 2H, \(J = 8.9, 2\text{ArH}\)), 7.34 (bs, 1H, NH), 7.51 (d, 2H, \(J = 8.6, 2\text{ArH}\)), 7.71 (d, 2H, \(J = 8.6, 2\text{ArH}\)). \(^1\)C NMR (CDCl\textsubscript{3}) \(\delta\) 12.0, 94.2, 114.8, 125.4, 127.7, 129.6, 137.8, 138.8, 141.0, 144.0. MS (EI) \(m/z\) 370 (M+, 33%). Anal. Calcd for C\textsubscript{14}H\textsubscript{12}ClIN\textsubscript{2}: C, 45.37; H, 3.26; N, 7.56. Found: C, 45.67; H, 3.37; N, 7.47.

5.2. 4-Iodoacetophenone phenylhydrazone (1b)
In similar manner, 4-iodoacetophenone (5.00 g, 20.3 mmol) and phenylhydrazine (2.0 mL, 20.3 mmol) in ethanol (30 mL) gave 1b (4.38 g, 64%) as orange crystals. \(^1\)H NMR (CDCl\textsubscript{3}) \(\delta\) 2.19 (s, 3H, CH\textsubscript{3}), 6.89 (t, 1H, \(J = 7.2, \text{ArH}4\)), 7.16 (d, 2H, \(J = 7.8, 2\text{ArH}\)), 7.28 (m, 2H, 2ArH), 7.52 (d, 2H, \(J = 8.6, 2\text{ArH}\)), 7.68 (d, 2H, \(J = 8.6, 2\text{ArH}\)). MS (EI) \(m/z\) 336 (M+, 100%).

5.3. 4-Bromoacetophenone 4-chlorophenylhydrazone (1c)
In a similar manner, 4-bromoacetophenone (6.89 g, 34.6 mmol) and 4-chlorophenylhydrazine hydrochloride (6.20 g, 34.6 mmol) in ethanol (60 mL) gave 1c (8.38 g, 75%) as pale yellow crystals: mp 132-134 °C. \(^1\)H NMR (CDCl\textsubscript{3}) \(\delta\) 2.20 (s, 3H, CH\textsubscript{3}), 6.89 (t, 1H, \(J = 7.2, \text{ArH}4\)), 7.16 (d, 2H, \(J = 7.8, 2\text{ArH}\)), 7.28 (m, 2H, 2ArH), 7.52 (d, 2H, \(J = 8.6, 2\text{ArH}\)), 7.68 (d, 2H, \(J = 8.6, 2\text{ArH}\)). \(^1\)C NMR (CDCl\textsubscript{3}) \(\delta\) 12.1, 114.8, 122.6, 125.4, 127.5, 129.6, 130.2, 131.8, 138.1, 144.0. MS (EI) \(m/z\) 324 (M+, 74%), 126 (M+ - 198, 100%). Anal. Calcd for C\textsubscript{14}H\textsubscript{12}N\textsubscript{2}ClBr: C, 51.96; H, 3.74; N, 8.66. Found: C, 52.07; H, 3.59; N, 8.88.

5.4. 5-Chloro-2-(4-iodophenyl)indole (2a)
A mixture of 1a (3.10 g, 8.4 mmol) and polyphosphoric acid (20 g) was stirred for 30 min at 110 °C. Ice water (250 mL) was added and the mixture was stirred. The precipitate was filtered, washed with water, and recrystallised from 95% ethanol, to yield 2a (1.66 g, 56%) as a white solid: mp 210-
211 °C. 1H NMR (DMSO-\textit{d}_6) \delta 6.92 (s, 1H, H3), 7.10 (dd, 1H, \textit{J}_{6,7} = 8.6, \textit{J}_{6,4} = 2.0, H6), 7.39 (d, 1H, \textit{J}_{7,6} = 8.6, H7), 7.57, (d, 1H, \textit{J}_{4,6} = 1.9, H4), 7.66 (d, 2H, J = 8.4, 2ArH), 7.83 (d, 2H, J = 8.4, 2ArH), 11.77 (s, 1H, NH). 13C NMR (DMSO-\textit{d}_6) \delta 95.4, 100.6, 114.5, 120.9, 123.5, 125.7, 128.8, 131.3, 132.9, 137.3, 139.4, 139.9. MS (CI) \textit{m/z} 354 (M+, 34%), 228 (M+ - 126, 100%). Anal. Calcd for C\textsubscript{14}H\textsubscript{9}ClIN: C, 47.56; H, 2.57; N, 3.96. Found: C, 47.56; H, 2.36; N, 4.18.

5.5. 2-(4-Iodophenyl)indole (2b)23

Treatment of a mixture of 1b (3.09 g, 9.19 mmol) and polyphosphoric acid (15 g) at 60-70 °C as above gave 2b (1.70 g, 58%) as a white solid. 1H NMR (CDCl\textsubscript{3}) \delta 6.82 (s, 1H, H3), 7.12 (t, 1H, H5 or H6), 7.21 (t, 1H, H6 or H5), 7.38 (d, 3H, 2ArH and H7), 7.62 (d, 2H, J = 7.8, H4), 7.76 (d, 2H, J = 10.8, 2ArH), 8.27 (bs, 1H, NH). 13C NMR (DMSO-\textit{d}_6) \delta 94.1, 100.5, 112.5, 120.7, 121.4, 123.1, 128.1, 129.7, 132.9, 137.7, 138.4, 138.8. MS (EI) \textit{m/z} 319 (M+, 100%).

5.6. 2-(4-Bromophenyl)-5-chloroindole (2c)

Treatment of a mixture of 1c (5.12 g, 15.8 mmol) and polyphosphoric acid (30 g) as above gave 2c (3.35 g, 69%) as a pale yellow solid: mp. 206-207 °C. 1H NMR (DMSO-\textit{d}_6) \delta 6.91 (s, 1H, H3), 7.11 (dd, 1H, \textit{J}_{6,7} = 8.6, \textit{J}_{6,4} = 2.0, H6), 7.40 (d, 1H, \textit{J}_{7,6} = 8.6, H7), 7.57 (d, 1H, \textit{J}_{4,6} = 1.9, H4), 7.66 (d, 2H, J = 8.5, 2ArH), 7.80 (d, 2H, J = 8.7, 2ArH), 7.56 (d, 2H, J = 8.5, 2ArH), 11.79 (s, 1H, NH). 13C NMR (DMSO-\textit{d}_6) \delta 99.0, 112.8, 119.2, 120.8, 121.8, 124.1, 127.1, 129.7, 130.9, 131.9, 135.7, 138.1. MS (CI) \textit{m/z} 308 (M+, 79%), 228 (M+ - 79, 100%). Anal. Calcd for C\textsubscript{14}H\textsubscript{10}BrClN: C, 54.85; H, 2.96; N, 4.57. Found: C, 54.93; H, 3.11; N, 4.50.

5.7. 2-(4-Bromophenyl)indole (2d)22

To a mixture of 4-bromoacetophenone (6.89 g, 34.6 mmol) and phenylhydrazine (3.4 mL, 34.6 mmol) was added polyphosphoric acid (40 g) . The reaction mixture was heated at 110 °C, stirring occasionally until the mixture turned a deep reddish brown colour. The reaction mixture was worked up the same as 2a to yield 2d (5.41 g, 58%) as a white solid. 1H NMR (CDCl\textsubscript{3}) \delta 6.82 (s, 1H, H3), 7.13 (t, \textit{J} = 7.9, H5 or H6), 7.21 (t, 1H, J = 8.2, H6 or H5), 7.39 (d, 1H, J = 8.0, H7), 7.51 (d, 2H, J = 8.7, 2ArH), 7.56 (d, 2H, J = 8.7, 2ArH), 7.62 (d, 1H, J = 8.0, H4), 8.27 (bs, 1H, NH). MS (EI) \textit{m/z} 271 (79BrM+, 100%), 273 (81BrM+, 98%). HRMS-EI+ calculated for C\textsubscript{14}H\textsubscript{10}NBr: 270.9997, found 270.9995.

5.8. [5-Chloro-2-(4-iodophenyl)indol-3-yl]glyoxylyl chloride (3a)

To a partially dissolved solution of indole 2a (0.65 g, 1.84 mmol) in anhydrous diethyl ether at 0 °C, was added dropwise oxalyl chloride (0.22 mL, 2.57 mmol) and the mixture stirred for 6 h at room temperature. The precipitate was collected by filtration and washed with a small portion of diethyl ether to yield 3a (0.72 g, 88%) which was directly used to synthesise 4a-d. 1H NMR
(DMSO-d_6) δ 7.33 (d, 1H, $J_{6,7}$ = 8.6, H6), 7.38 (d, 2H, J = 8.1, 2 x ArH), 7.54 (d, 1H, $J_{7,6}$ = 8.6, H7), 7.89 (d, 2H, J = 8.1, 2 x ArH), 8.08 (s, 1H, H4).

5.9. [2-(4-Iodophenyl)indol-3-yl]glyoxylyl chloride (3b)

Treatment of 2b (0.39 g, 1.22 mmol) and oxalyl chloride (0.15 mL, 1.70 mmol) in diethyl ether (6.5 mL) for 1 h as above gave 3b (0.34 g, 68%). 1H NMR (DMSO-d_6) δ 7.25 – 7.35 (m, 2H, H5 and H6), 7.39 (d, 2H, J = 8.2, 2 x ArH), 7.52 (d, 1H, $J_{7,6}$ = 7.6, H7), 7.89 (d, 2H, J = 8.2, 2 x ArH), 8.09 (d, 1H, $J_{6,5}$ = 7.4, H4), 12.83 (s, 1H, NH).

5.10. [2-(4-Bromophenyl)-5-chloroindol-3-yl]glyoxylyl chloride (3c)

Reaction of 2c (1.55 g, 5.06 mmol) and oxalyl chloride (0.62 mL, 7.08 mmol) in diethyl ether (14 mL) for 4 h gave 3c (1.96 g, 98%). 1H NMR (DMSO-d_6) δ 7.34 (dd, 1H, $J_{6,7}$ = 8.6, $J_{6,4}$ = 2.1, H6), 7.38 (d, 2H, J = 8.3, 2 x ArH), 7.54 (d, 1H, $J_{7,6}$ = 8.6, H7), 7.90 (d, 2H, J = 8.3, 2 x ArH), 8.08 (d, 1H, $J_{4,6}$ = 2.0, H4), 12.84 (s, 1H, NH).

5.11. [2-(4-Bromophenyl)indol-3-yl]glyoxylyl chloride (3d)

Reaction of 2d (2.00 g, 7.35 mmol) and oxalyl chloride (0.90 mL, 10.3 mmol) in diethyl ether (20 mL) for 1 h gave 3d (1.75 g, 66%). 1H NMR (CDCl$_3$) δ 7.37-7.41 (m, 2H, H5 and H6), 7.42 (d, 2H, J = 8.5, 2 x ArH), 7.44-7.49 (m, 1H, H7), 7.66 (d, 2H, J = 8.5, 2 x ArH), 8.24-8.29 (m, 1H, H4), 8.92 (bs, 1H, NH).

5.12. N,N-Dihexyl-[5-chloro-2-(4-iodophenyl)indol-3-yl]glyoxylamide (4a)

To a solution of the chloride 3a (0.30 g, 0.67 mmol) and triethylamine (0.11 mL, 0.81 mmol) in anhydrous toluene (30 mL) at 0 °C was added dropwise a solution of dihexylamine (0.17 mL, 0.74 mmol) in anhydrous toluene (20 mL). The solution was stirred at room temperature for 24 h. The solution was filtered and the filtrate was washed sequentially with 0.5 M HCl, saturated NaHCO$_3$, and water. The combined organic extracts were dried with MgSO$_4$, filtered, and the solvent was evaporated. The crude product was purified by column chromatography (methanol/chloroform, 1:19 v/v), then recrystallised (ethyl acetate/petroleum ether, 1:9 v/v) to give 4a (0.12 g, 30%) as a white solid: mp 108–110 °C. 1H NMR (DMSO-d_6) δ 0.75 (t, 3H, CH$_3$), 0.88 (t, 3H, CH$_3$), 1.00-1.20 (m, 10H, 5CH$_2$), 1.21-1.35 (m, 4H, 2CH$_2$), 2.94-3.08 (m, 4H, 2NCH$_2$), 7.32 (dd, 1H, $J_{6,7}$ = 8.7, $J_{6,4}$ = 1.8, H6), 7.37 (d, 2H, J = 8.1, 2 x ArH), 7.50 (d, 1H, $J_{7,6}$ = 8.7, H7), 7.88 (d, 2H, J = 8.1, 2 x ArH), 8.04 (s, 1H, H4), 12.68 (bs, 1H, NH). 13C NMR (DMSO-d_6) δ 15.4, 15.6, 23.5, 23.7, 27.2, 27.9, 28.1, 29.3, 32.3, 32.8, 45.4, 48.9, 98.7, 111.0, 115.5, 121.7, 125.3, 128.9, 129.5, 131.4, 133.5, 136.0, 138.6, 148.9, 168.6, 188.6. MS (EI) m/z 592 (M$^+$, 3%), 380 (M$^+$ - 212, 100%). HRMS-ES calculated for C$_{28}$H$_{35}$ClIN$_2$O$_2$: 593.1432, found 593.1470. Anal. Calcd for C$_{28}$H$_{34}$ClIN$_2$O$_2$: C, 56.72; H, 5.78; N, 4.72. Found: C, 56.49; H, 5.75; N, 4.72.
5.13. **N,N-Di-n-propyl-[5-chloro-2-(4-iodophenyl)indol-3-yl]glyoxylamide (4b)**

Reaction of 3a (0.72 g, 1.62 mmol) and di-n-propylamine (0.25 mL, 1.78 mmol) for 7 h as above gave after trituration with petroleum ether, 4b (0.47 g, 57%) as an off-white solid: mp 148-150 °C.

\[^1H\text{NMR}\] (DMSO-\(d_6\)) \(\delta\) 0.69 (t, 3H, \(J = 7.4\), CH\(_3\)), 0.78 (t, 3H, \(J = 7.4\), CH\(_3\)), 1.12-1.28 (m, 2H, CH\(_2\)), 1.40-1.50 (m, 2H, CH\(_2\)), 2.95 (t, 2H, \(J = 7.8\), NCH\(_2\)), 3.01 (t, 2H, \(J = 7.7\), NCH\(_2\)), 7.31 (dd, 1H, \(J_{6,7} = 8.6, J_{6,4} = 2.1\), H6), 7.35 (d, 2H, \(J = 8.3\), 2 x ArH), 7.51 (d, 1H, \(J_{7,6} = 8.6\), H7), 7.87 (d, 2H, \(J = 8.3\), 2 x ArH), 8.02 (d, 1H, \(J_{6,6} = 1.9\), H4).

\[^{13}C\text{NMR}\] (DMSO-\(d_6\)) \(\delta\) 12.5, 13.1, 21.6, 22.8, 47.2, 50.8, 98.6, 111.1, 115.5, 121.6, 125.3, 128.9, 129.5, 131.4, 133.4, 136.0, 138.6, 149.0, 168.8, 188.5.

MS (ES) \text{m/z} 509 (M+1, 88%), 106 (100%). HRMS-ES calculated for C\(_{22}\)H\(_{23}\)ClIN\(_2\)O\(_2\): 509.0493, found 509.0524. Anal. Calcd for C\(_{22}\)H\(_{22}\)ClIN\(_2\)O\(_2\): C, 51.94; H, 4.36; N, 5.51. Found: C, 52.14; H, 4.58; N, 5.53.

5.14. **N,N-Diethyl-[5-chloro-2-(4-iodophenyl)indol-3-yl]glyoxylamide (4c)**

Reaction of 3a (0.36 g, 0.80 mmol) and diethylamine (0.09 mL, 0.88 mmol) for 19 h yielded after column chromatography (ethyl acetate/ petroleum ether, 1:1 v/v) 4c (0.14 g, 36%) as colourless crystals: mp 221-222 °C.

\[^1H\text{NMR}\] (DMSO-\(d_6\)) \(\delta\) 0.83 (t, 3H, \(J = 7.1\), CH\(_3\)), 1.02 (t, 3H, \(J = 7.0\), CH\(_3\)), 3.07 (q, 2H, \(J = 7.1\), CH\(_2\)), 3.15 (q, 2H, \(J = 7.0\), CH\(_2\)), 7.32 (dd, 1H, \(J_{6,7} = 8.6, J_{6,4} = 2.1\), H6), 7.37 (d, 2H, \(J = 8.3\), 2 x ArH), 7.51 (d, 1H, \(J_{7,6} = 8.6\), H7), 7.88 (d, 2H, \(J = 8.3\), 2 x ArH), 8.05 (d, 1H, \(J_{6,6} = 2.0\), H4).

\[^{13}C\text{NMR}\] (DMSO-\(d_6\)) \(\delta\) 12.5, 14.1, 38.4, 42.2, 97.4, 109.8, 114.3, 120.5, 124.1, 127.7, 128.4, 130.3, 132.3, 134.8, 137.3, 147.9, 167.1, 187.4. MS (ES) \text{m/z} 478 (M-1, 100%). HRMS-ES calculated for C\(_{20}\)H\(_{19}\)ClIN\(_2\)O\(_2\): 481.0180, found 481.0180. Anal. Calcd for C\(_{20}\)H\(_{18}\)ClIN\(_2\)O\(_2\): C, 49.97; H, 3.77; N, 5.83. Found: C, 50.27; H, 4.05; N, 5.85.

5.15. **N,N-Dimethyl-[5-chloro-2-(4-iodophenyl)indol-3-yl]glyoxylamide (4d)**

Dimethylamine (30 mL, 40% wt/vol in water) was gently heated and under constant N\(_2\) pressure bubbled through NaOH pellets into a solution of 3a (0.65 g, 1.46 mmol) in toluene. After purification by column chromatography (ethyl acetate/ petroleum ether, 1:1 v/v) and trituration with ethyl acetate/ petroleum ether, 3:7 v/v, 4d (65 mg, 10%) was obtained as a solid: mp 238 °C (decomposed).

\[^1H\text{NMR}\] (DMSO-\(d_6\)) \(\delta\) 2.45 (s, 3H, NCH\(_3\)), 2.79 (s, 3H, NCH\(_3\)), 7.32 (d, 2H, \(J = 8.3\), 2 x ArH), 7.33 (dd, 1H, \(J_{6,7} = 8.6\), H6), 7.52 (d, 1H, \(J_{7,6} = 8.6\), H7), 7.91 (d, 2H, \(J = 8.3\), 2 x ArH), 8.11 (d, 1H, \(J = 2.0\), H4).

\[^{13}C\text{NMR}\] (DMSO-\(d_6\)) \(\delta\) 33.7, 37.4, 97.9, 110.6, 114.8, 121.1, 124.7, 128.3, 128.8, 130.6, 132.5, 135.3, 137.7, 148.8, 167.5, 188.1. MS (ES) \text{m/z} 453 (M+1, 21%), 338 (M-114, 100%). HRMS-ES calculated for C\(_{18}\)H\(_{14}\)ClIN\(_2\)O\(_2\): 452.9867, found 452.9872. Anal. Calcd for C\(_{18}\)H\(_{14}\)ClIN\(_2\)O\(_2\): C, 47.76; H, 3.12; N, 6.19. Found: C, 47.54; H, 3.39; N, 5.89.
5.16. \textit{N,N-Dihexyl-2-(4-iodophenyl)indol-3-ylglyoxylamide (4e)}

Reaction of \textit{3b} (0.23 g, 0.56 mmol) and dihexylamine (0.15 mL, 0.62 mmol) for 18 h followed by column chromatography (ethyl acetate/ petroleum ether, 2:3 v/v) and recrystallisation (ethanol/ water) gave \textit{4e} (0.10 g, 32%) as a white solid: mp 120-122 °C. 1H NMR (DMSO-d_6) δ 0.74 (t, 3H, $J = 7.0$, CH$_3$), 0.84 (t, 3H, $J = 6.9$, CH$_3$), 1.00-1.45 (m, 16H, 8CH$_2$), 2.95-3.07 (m, 4H, 2NCH$_2$), 7.21-7.31 (m, 2H, H5 and H6), 7.37 (d, 2H, $J = 8.3$, 2 x ArH), 7.48 (d, 1H, $J = 7.7$, H7), 7.87 (d, 2H, $J = 8.3$, 2 x ArH), 8.04 (d, 1H, $J = 7.7$, H4). 13C NMR (DMSO-d_6) δ 13.8, 14.0, 21.8, 22.1, 25.6, 26.2, 26.4, 27.5, 30.6, 31.1, 43.7, 47.3, 96.7, 109.8, 112.1, 120.9, 122.5, 123.6, 126.7, 130.2, 131.9, 135.8, 136.8, 146.0, 167.3, 187.1. MS (EI) m/z 558 (M$^+$, 4%), 346 (M$^+$ - 212, 100%). HRMS-EI calculated for C$_{28}$H$_{35}$N$_2$O$_2$I: 558.1743, found 558.1747.

5.17. \textit{N,N-Di-n-propyl-2-(4-iodophenyl)indol-3-ylglyoxylamide (4f)}

Reaction of \textit{3b} (0.23 g, 0.56 mmol) and di-n-propylamine (0.09 mL, 0.62 mmol) for 20 h, followed by column chromatography (ethyl acetate/ petroleum ether, 1:1 v/v) and trituration with ethyl acetate/ petroleum ether, 3:7, v/v, gave \textit{4f} (58.2 mg, 22%) as an off-white solid: mp 159-161 °C. 1H NMR (DMSO-d_6) δ 0.69 (t, 3H, $J = 7.4$, CH$_3$), 0.79 (t, 3H, $J = 7.4$, CH$_3$), 1.13-1.25 (m, 2H, CH$_2$), 1.41-1.52 (m, 2H, CH$_2$), 2.96 (t, 2H, $J = 7.9$, NCH$_2$), 3.03 (t, 2H, $J = 7.7$, NCH$_2$), 7.21-7.33 (m, 2H, H5 and H6), 7.37 (d, 2H, $J = 8.4$, 2 x ArH), 7.48 (d, 1H, $J = 7.3$, H7), 7.88 (d, 2H, $J = 8.4$, 2 x ArH), 8.03 (d, 1H, $J = 7.3$, H4). 13C NMR (DMSO-d_6) δ 11.9, 12.4, 20.9, 22.2, 46.5, 50.2, 97.6, 110.8, 113.1, 121.8, 123.5, 124.5, 127.6, 131.3, 132.9, 136.8, 137.8, 147.0, 168.4, 188.0. MS (EI) m/z 474 (M$^+$, 6%), 346 (M$^+$ - 128, 100%). HRMS-EI calculated for C$_{22}$H$_{23}$N$_2$O$_2$I: 474.0804, found 474.0795.

5.18. \textit{N,N-Diethyl-[2-(4-iodophenyl)indol-3-yl]glyoxylamide (4g)}

Reaction of \textit{3b} (0.14 g, 0.34 mmol) and diethylamine (0.05 mL, 0.47 mmol) for 3 h gave after recrystallisation (ethyl acetate/ petroleum ether, 1:1 v/v) \textit{4g} (60 mg, 40%) as off-white crystals: mp 169-171 °C. 1H NMR (DMSO-d_6) δ 0.85 (t, 3H, $J = 7.1$, CH$_3$), 1.02 (t, 3H, $J = 7.0$, CH$_3$), 3.07 (q, 2H, $J = 7.1$, NCH$_2$), 3.15 (q, 2H, $J = 7.0$, NCH$_2$), 7.22-7.32 (m, 2H, H5 and H6), 7.37 (d, 2H, $J = 8.3$, 2 x ArH), 7.49 (d, 1H, $J = 7.3$, H7), 7.87 (d, 2H, $J = 8.3$, 2 x ArH), 8.06 (d, 1H, $J = 7.2$, H4). 13C NMR (DMSO-d_6) δ 13.8, 15.3, 39.5, 43.5, 98.3, 111.5, 113.8, 122.5, 124.2, 125.3, 128.4, 131.9, 133.6, 137.3, 138.4, 147.7, 168.7, 188.8. MS (ES) m/z 445 (M$^-$, 100%). HRMS-EI calculated for C$_{20}$H$_{19}$N$_2$O$_2$: 446.0491, found 446.0489. Anal. Calcd for C$_{20}$H$_{19}$N$_2$O$_2$: C, 53.83; H, 4.29; N, 6.28. Found: C, 53.50; H, 4.41; N, 6.11.

5.19. \textit{N,N-Dimethyl-[2-(4-iodophenyl)indol-3-yl]glyoxylamide (4h)}

Dimethylamine (30 mL, 40% wt/vol in water) was gently heated and under constant N$_2$ pressure bubbled through NaOH pellets into a solution of \textit{3b} (0.30 g, 0.73 mmol) in toluene. After column
chromatography (ethyl acetate/petroleum ether, 1:1 v/v), 4h was obtained (14 mg, 5%) as an off-white solid: mp 231-232 °C. 1H NMR (DMSO-d_6) δ 2.49 (s, 3H, NCH$_3$), 2.79 (s, 3H, NCH$_3$), 7.20-7.30 (m, 2H, H5 and H6), 7.34 (d, 2H, $J = 8.1$, 2 x ArH), 7.48 (d, 1H, $J = 7.0$, H7), 7.89 (d, 2H, $J = 8.3$, 2 x ArH), 8.07 (d, 1H, H4). 13C NMR (DMSO-d_6) δ 34.4, 38.1, 98.0, 111.3, 114.0, 122.5, 124.3, 125.2, 128.2, 130.5, 133.3, 138.2, 168.8, 187.2. MS (EI) m/z 418 (M$^+$, 6%), 346 (M$^+$ - 72, 100%). HRMS-EI calculated for C$_{18}$H$_{15}$N$_2$O$_2$I: 418.0178, found 418.0161. Anal. Calcd for C$_{18}$H$_{15}$IN$_2$O.H$_2$O: C, 49.56; H, 3.93; N, 6.42. Found: C, 49.70; H, 3.46; N, 6.29.

5.20. N,N-Dihexyl-[2-(4-bromophenyl)-5-chloroindol-3-ylglyoxylamide (4i)

Reaction of 3c (0.46 g, 1.16 mmol) and dihexylamine (0.30 mL, 1.27 mmol) for 7 h, followed by purification by column chromatography (ethyl acetate/petroleum ether, 2:3 v/v) and recrystallisation (ethyl acetate/petroleum ether, 1:9 v/v) gave 4i (0.20 g, 32%) as a white solid: mp 103-105 °C. 1H NMR (DMSO-d_6) δ 0.77 (t, 3H, $J = 7.0$, CH$_3$), 0.87 (t, 3H, $J = 6.8$, CH$_3$), 1.00 – 1.46 (m, 16H, 8CH$_2$), 2.95 – 3.09 (m, 4H, 2NCH$_2$), 7.32 (dd, 1H, $J_{6,7} = 8.6$, $J_{6,4} = 2.0$, H6), 7.51 (d, 1H, $J_{7,6} = 8.7$, H7), 7.54 (d, 2H, $J = 8.4$, 2 x ArH) 7.72 (d, 2H, $J = 8.3$, 2 x ArH), 8.03 (s, 1H, H4). 13C NMR (DMSO-d_6) δ 14.7, 14.9, 22.8, 23.0, 26.5, 27.1, 27.4, 28.6, 31.6, 32.0, 44.7, 48.2, 110.4, 114.8, 121.0, 124.5, 124.6, 128.1, 128.7, 130.4, 132.0, 132.9, 135.3, 148.0, 167.9, 187.8. MS (EI) m/z 546 (M$^+$, 1%), 334 (M$^+$ - 212, 100%). HRMS-EI calculated for C$_{28}$H$_{34}$BrClN$_2$O$_2$: 548.1442, found 548.1442. Anal. Calcd for C$_{28}$H$_{34}$BrClN$_2$O$_2$: C, 61.60; H, 6.28; N, 5.13. Found: C, 61.35; H, 6.02; N, 5.06.

5.21. N,N-Di-n-propyl-[2-(4-bromophenyl)-5-chloroindol-3-ylglyoxylamide (4j)

Reaction of 3c (0.41 g, 1.03 mmol) and di-n-propylamine (0.16 mL, 1.13 mmol) for 24 h, followed by purification by column chromatography (ethyl acetate/petroleum ether, 1:1 v/v) and recrystallisation (diethyl ether/petroleum ether) gave 4j (0.25 g, 53%) as a white solid: mp 128-129 °C. 1H NMR (DMSO-d_6) δ 0.69 (t, 3H, $J = 7.0$, CH$_3$), 0.77 (t, 3H, $J = 6.8$, CH$_3$), 1.15-1.25 (q, 2H, $J = 7.8$, CH$_2$), 1.40-1.50 (q, 2H, $J = 7.6$, CH$_2$), 2.96 (t, 2H, $J = 7.8$, NCH$_2$), 3.02 (t, 2H, $J = 7.7$, NCH$_2$), 7.31 (dd, 1H, $J_{6,7} = 8.6$, $J_{6,4} = 2.1$, H6), 7.51 (d, 1H, $J_{7,6} = 8.7$, H7), 7.52 (d, 2H, $J = 8.5$, 2 x ArH), 7.70 (d, 2H, $J = 8.5$, 2 x ArH), 8.00 (dd, 1H, $J_{4,6} = 1.74$, H4). 13C NMR (DMSO-d_6) δ 11.5, 12.0, 20.6, 21.8, 46.2, 49.9, 110.1, 114.6, 120.6, 124.2, 124.3, 127.9, 128.4, 130.1, 131.7, 132.5, 135.0, 147.8, 167.8, 187.4. MS (ES) m/z 463 (81Br M+1, 61%), 106 (M - 357, 100%). HRMS-ES calculated for C$_{29}$H$_{34}$BrClN$_2$O$_2$: 548.1442, found 548.1442. Anal. Calcd for C$_{29}$H$_{34}$BrClN$_2$O$_2$: C, 61.60; H, 6.28; N, 5.13. Found: C, 61.35; H, 6.02; N, 5.06.

5.22. N,N-Diethyl-[2-(4-bromophenyl)-5-chloroindol-3-ylglyoxylamide (4k)

To a solution 3c (0.72 g, 1.81 mmol) in anhydrous toluene (40 mL) at 0 °C was added dropwise a solution of triethylamine (0.30 mL, 2.18 mmol) and diethylamine (0.21 mL, 1.99 mmol) in
anhydrous toluene (10 mL). The reaction mixture was stirred at room temperature for 18 h. A white precipitate that formed was filtered, washed with water (25 mL) and extracted into dichloromethane (2 x 40 mL). The combined organic extracts were dried with MgSO₄, filtered, and the solvent evaporated in vacuo. After recrystallisation (ethyl acetate/ petroleum ether, 1:1 v/v) 4k (0.462 g, 59%) was obtained as a white solid: mp 216-217 °C. ¹H NMR (DMSO-d₆) δ 0.84 (t, 3H, J = 7.1, CH₃), 1.02 (t, 3H, J = 7.0, CH₃), 3.07 (q, 2H, J = 6.9, NCH₂), 3.15 (q, 2H, J = 6.8, NCH₂), 7.32 (d, 1H, J = 8.6, H6), 7.47-7.56 (m, 3H, 2 x ArH and H7), 7.72 (d, 2H, 2 x ArH), 8.05 (s, 1H, H4). ¹³C NMR (DMSO-d₆) δ 13.0, 14.6, 38.9, 42.7, 110.4, 114.9, 121.0, 124.5, 124.6, 128.1, 128.9, 130.1, 132.0, 132.9, 135.3, 148.5, 167.7, 188.0. MS (EI) m/z 434 (M⁺, 4%), 334 (M⁺ - 100, 100%). Anal. Calcd for C₂₀H₁₈BrClN₂O₂: C, 55.38; H, 4.18; N, 6.46. Found: C, 55.37; H, 4.36; N, 6.40.

5.23. N,N-Dihexyl-[2-(4-bromophenyl)indol-3-yl]glyoxylamide (4l)

Reaction of 3d (0.96 g, 2.65 mmol) and dihexylamine (0.68 mL, 2.91 mmol) for 24 h gave after purification by column chromatography (methanol/ dichloromethane, 1:19 v/v) and recrystallisation (ethanol/ water), 4l (0.62 g, 46%) as a white solid: mp 106–110 °C. ¹H NMR (DMSO-d₆) δ 0.74 (t, 3H, J = 7.0, CH₃), 0.88 (t, 3H, J = 6.9, CH₃), 1.00-1.20 (m, 10H, 5CH₂), 1.20-1.30 (m, 4H, 2CH₂), 1.35-1.47 (m, 2H, CH₂), 2.95-3.08 (m, 4H, 2NCH₂), 7.21-7.32 (m, 2H, H₅ and H₆), 7.48 (d, 1H, J = 7.6, H₇), 7.53 (d, 2H, J = 8.4, 2 x ArH), 7.70 (d, 2H, J = 8.4, 2 x ArH), 8.05 (d, 1H, J = 7.8, H₄), 12.49 (s, 1H, NH). ¹³C NMR (DMSO-d₆) δ 15.4, 15.6, 23.5, 23.7, 27.2, 27.8, 28.1, 29.4, 32.3, 32.7, 45.4, 49.0, 111.5, 113.8, 122.6, 124.2, 124.9, 125.3, 128.3, 131.6, 132.6, 133.7, 137.4, 147.4, 168.9, 188.8. MS (CI) m/z 511 (⁷⁹Br M⁺, 4%), 513 (⁸¹Br M⁺, 3%), 298 (⁷⁹Br M⁺ - 213, 100%), 300 (⁸¹Br M⁺ - 213, 80%). HRMS-ES calculated for C₂₈H₃₅BrN₂O₂: 510.1882, found 510.1874. Anal. Calcd for C₂₈H₃₅BrN₂O₂: C, 65.75; H, 6.90; N, 5.48. Found: C, 65.64; H, 6.78; N, 5.49.

5.24. N,N-Diethyl-[2-(4-trimethylstannyl)-5-chloroindol-3-y]glyoxylamide (5)

To a solution of 4k (112 mg, 0.259 mmol) in anhydrous toluene (8 mL) was added hexamethylditin (230 μg, 0.702 mmol) and a catalytic amount of Pd(0)(PPh₃)₄. The reaction mixture was heated at reflux under a nitrogen atmosphere for 8 hours. The reaction mixture was passed through celite and the solvent evaporated. The product was purified by column chromatography (ethyl acetate: petroleum ether, 1:1 v/v) to yield ¹²³I-4c as a white solid (42.7 mg, 32%). ¹H NMR (CD₃OD) δ 0.36 (s, 9H, Sn(CH₃)₃), 0.79 (t, 3H, J = 7.2, CH₃), 1.15 (t, 3H, J = 7.2, CH₃), 3.07 (q, 2H, J = 7.2, NCH₂), 3.24 (q, 2H, J = 7.2, NCH₂), 7.32 (dd, 1H, J₆,₇ = 8.4, J₆,₄ = 2.0, H₆), 7.47 (d, 1H, J₆,₇ = 8.4, H₇), 7.54 (d, 2H, J = 8.0, 2ArH), 7.65 (d, 2H, J = 8.0, 2ArH), 8.27 (d, 1H, J₄,₆ = 2.0, H₄). MS-ES m/z 517 (M-1, 70%). HRMS-ES calculated for C₂₃H₂₈N₂O₂Cl⁷⁶Sn: 515.0857, found 515.0903.

5.25. [¹²³I]-N,N-Diethyl-[5-chloro-2-(4-iodophenyl)indol-3-yl]glyoxylamide
To a solution of stannane, 5 (125 μg in ethanol (50 μL) and acetic acid (200 μL)) was added Na123I (311 – 544 MBq) and per-acetic acid (30%, 25 μL). After 5 min at room temperature, the reaction was quenched with Na\textsubscript{2}S\textsubscript{2}O\textsubscript{5} (51 mg/mL, 100 μL) and NaHCO\textsubscript{3} (48 – 51 mg/mL, 100 μL). Mobile phase (acetonitrile/0.01M ammonium acetate, 3:2 v/v, 350 μL) was added and the solution was injected onto a semi-preparative C-18 RP HPLC column. The retention time at a flow rate of 3 mL/min was 16 min. The radiochemical purity was > 96% after formulation in saline.

5.26. Lipophilicity Measurements

Samples were analysed using a C18 column (X-Terra, 5μ, 4.6 x 250 mm) and a mobile phase of methanol and 0.1M phosphate buffer (65:35 v/v, pH = 7.5) with a flow rate of 1 mL/min.24 The log \(P \) values were estimated by comparing HPLC retention times (RT) of test compounds with retention times of standards having known log \(P \) values. The standards used were aniline, benzene, bromobenzene, ethylbenzene and trimethylbenzene. A calibration curve of log \(P \) vs. ln RT was generated. The equation was linear with an \(r^2 \) of 0.9969. Calculated log \(P \) values were found using Chem Draw Ultra.

5.27. In vitro Binding Studies

5.27.1. Peripheral Benzodiazepine Binding Sites. Mitochondrial membranes were prepared from kidney extracts sourced from male Sprague Dawley rats. The kidneys were removed, rinsed with ice-cold 50 mM Tris-HCl buffer (pH 7.4), weighed and finely cut. After the addition of 20 volumes of ice-cold buffer, the preparation was homogenised and the suspension was centrifuged at 49,000 g for 15 min at 4 °C. The pellets were resuspended in buffer to achieve a protein concentration of 4 mg/mL. Membranes were stored at -80 °C until required.25,26 Protein content in the membrane suspensions was measured according to a colorimetric method.27 For determination of the inhibition constant (IC\textsubscript{50}), assays were run in triplicate with concentrations of test compounds ranging from 10-5 to 10-10 M in 50 mM Tris-HCl at pH 7.4 in the presence of [3H]-PK11195 (2 nM) at a final protein concentration of 250 μg/mL in a final volume of 0.5 mL. Non-specific binding was determined using PK11195 (10 μM), a selective PBBS ligand. Samples were incubated for 1 h at 4 °C then filtered under reduced pressure on glass fibre filters (Whatman GF/B) pre-soaked in 50 mM Tris-HCl. After incubation, filters were immediately washed 4 times with 4 mL ice-cold Tris/HCl buffer and the radioactivity remaining on the filters was measured in a β-scintillation counter (Packard). IC\textsubscript{50} values were calculated using an iterative non-linear least squared curve fitting program (Kell Radioligand).

5.27.2. Central Benzodiazepine Receptor. Cortical membranes were extracted from male Sprague Dawley rats. The cortex was removed, rinsed with ice-cold 50 mM Tris-HCl buffer (pH 7.4),
weighed and finely cut. After the addition of 20 volumes of ice-cold buffer, the preparation was homogenised and the suspension was centrifuged at 20,000 g for 20 min at 4 °C. The pellets were resuspended in buffer and centrifuged as above. The pellet was resuspended in 50 mM Tris-HCl, 0.32 M sucrose buffer (pH 7.4) to achieve a protein concentration of 4 mg/mL, and the membranes were stored at -80 °C until required. For determination of the inhibition constant (IC50), assays were run as for PBBS binding but using [3H]Flumazenil (2 nM) and cortex membranes at a final concentration of 250 µg/mL. Samples were incubated for 45 min at 25 °C. Non-specific binding was determined using Flumazenil (20 µM), a selective CBR ligand.

Acknowledgments
The authors would like to thank the Australian Institute of Nuclear Science and Engineering for partial support of the above work. We would also like to thank Tim Jackson for conducting lipophilicity measurements.

References and Notes