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ROADWAY SPAN STABILITY IN THICK SEAM MINING - FIELD 

MONITORING AND NUMERICAL INVESTIGATION AT 
MORANBAH NORTH MINE 

 
 

Baotang Shen1, Brett Poulsen1, Michael Kelly1, Jan Nemcik2 & Chris Hanson3 
 
 
ABSTRACT: Comprehensive field monitoring and numerical analyses of roadway span behavior have been 
conducted at Moranbah North Mine as part of an ACARP Project for Rapid Roadway Development. The 
response of the coal roof to roadway development in a 5.5m thick seam was studied. The monitoring program was 
highlighted by successfully measuring the roof stress change prior to, during and after the roadway excavation. 
Roof displacement was also monitored after the installation of roof support.  
 
Measured in situ stresses in the coal seam were much lower than estimated from the overburden depth. The 
monitored vertical stress in the coal roof exhibited a rapid drop immediately after the roadway face passed the 
monitored locations. It however, recovered substantially (up to 50%) in the next 10 hours. Two roadway sections 
60m apart were monitored. The monitored roof displacements and stresses in the two locations showed a 
significant difference. The sites were separated by two normal faults. 
 
The monitored roadways were simulated using fully coupled mechanical-flow models. The numerical results 
suggested that the drainage of gas/water around the roadways was likely to be the main cause of the observed 
stress recovery in the coal roof. It was also found that the presence of high gas/water pressure in the coal seam 
would result in lower stress readings with the stress measurement technique. The measured stress is close to but 
not necessarily equal to the effective stress. 
 
 

INTRODUCTION 
 

A research project sponsored by JCOAL/CSIRO and ACARP is in progress to develop an automated roadway 
development system. The system consists of an Autonomous Conveying/Bolting Machine (ACBM) and a 
continuous miner. The system will enable a continuous and rapid roadway advance. Successful application of the 
system requires stable roadways before full support can be installed. The potential unsupported (or lightly 
supported) span inbye of the system is about 12m. It is important that the stability of unsupported spans in various 
geotechnical conditions are fully understood to assess the applicability of the Rapid Roadway Development 
System in different mines. This paper will focus on the study of coal roof behaviour for the application of the 
ACBM system in thick seam mining.   
 
It is known that the behaviour and failure mechanisms of unsupported spans are complex, affected by many 
factors such as rock strength, roof geology, stress and roadway geometry. Strata Engineering Pty Ltd (Frith, 1998) 
considered that span failure is dominated by beam bending or shearing; Seedsman (2001) suggested that span 
instability often starts from shear failure of the roof bedding planes. Strata Control Technology Pty Ltd (SCT) 
(Gale, 1991) considers the roof to be a yielding material and continuum numerical modelling has been used to 
assess the span stability. Shen and Duncan Fama (1996, 1999) studied the failure mechanisms of unsupported 
spans of highwall mining entries and proposed analytical methods for their stability assessment. 
 
Many Australian longwall mines operate in thick coal seams and leave coal in the roof on development. The 
behaviour of a coal roof differs from that of bedded rocks due to the coal cleating, low coal strength, possible low 
stress environment, and high gas content. The understanding of coal roof behaviour is limited, and requires 
further investigation. 
 

                                                 
1  CSIRO Exploration and Mining 
2  Strata Control Technology Pty Ltd 
3  Moranbah North Coal Pty Ltd. 
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With the support of Moranbah North Mine and help from SCT, CSIRO has conducted a comprehensive field and 
numerical study of coal roof behaviour at Moranbah North. Two sections of the Longwall 104 gate roads at 
Moranbah North were monitored and investigated. The study consisted of the following components: 
 

• Geological and geotechnical investigation of the roof conditions in the monitored area.  
• Determination of the strength of roof materials.  
• Monitoring of the stresses and displacement in the roadway roof strata.  
• 3D mechanical numerical modelling.  
• 2D coupled mechanical and fluid flow modelling, including impact of increased mining depth.  
• Roadway stability assessment for the potential application of the ACBM system.         

 
 

GEOLOGICAL AND GEOTECHNICAL CONDITIONS 
 
Moranbah North Mine is located at the Bowen Basin Coal Field, Central Queensland. The primary mining seam 
is the Goonyella Middle (GM) seam which varies in total thickness across the mining resource from 5.2m to 
6.4m, with a total thickness in the study area of approximately 5.5m. The seam comprises moderately weak coal 
which is dull at the top and grades to dull and bright banded, and is bright banded at the base. The GM seam has 
an estimated gas content of 5m3/t at the depth of current roadway development. 
 
The gateroads at Moranbah North Mine are nominally cut to 5.2m wide and 3.0 – 3.2m high, excavated in the 
lower part of the seam. Current development cuts to the floor of the coal seam and is designed to leave at least 1m 
of coal in the immediate roof.  The stability of the roof is believed to be strongly dependant on the thickness of 
coal left in the immediate roof. The place-change roadway development method is used. The typical cut-out 
distance ranges from 6m to 15m depending upon the local roof conditions and the overburden depth.  
 
A decision was made to monitor roadways in 104 panel. As a preliminary site investigation, five cored boreholes 
were drilled into the roof and coal ribs at 47C/T and 49C/T to investigate the geological and geotechnical 
conditions at the monitored sites. The cores were geologically and geotechnically logged. Samples were selected 
for laboratory testing to determine the strength of coal and rock material.  
 
The geology from the drill holes is generally consistent. The typical roof geology in the monitored area is shown 
in Figure 1. The immediate roof is 1.7m coal. It is of C3 type (40-60% bright) immediately above the roof and 
becomes dull coal with bright bands at the top of the seam. Overlying the coal seam is a weak to very weak 
mudstone unit. The mudstone unit has a thickness of about 1.8m. Above this unit is the Goonylla Rider Seam 
(GMR) which has an average thickness of 0.2m. Above the GMR unit is a sequence of 
mudstone/siltstone/sandstone units. 
 
Also shown in Figure 1 is the Coal Mine Roof Rating (CMRR) for different roof units. The roof coal and the 
mudstone units have a CMRR value ≤ 35 (Figure 1).  According to Mark (1999), unsupported roadway spans 
with a CMRR less than 46 are considered to be unstable in the long term. 
 
Fourteen coal and rock samples selected from the roof cores were tested in uniaxial compression to determine the 
strength and deformability (Cunnington and Boland, 2002). The tested Uniaxial Compressive Strength (UCS) and 
Young’s modulus (E) are also plotted in Figure 1. 
 
The average UCS and Young’s modulus of the roof coal and rocks are summarised in Table 1. 
 

Table 1. Strength and deformability of roof units, based on laboratory tests results 
 

 

Roof unit UCS (MPa) Young’s modulus (GPa) 
Immediate roof coal: 8.0 2.2 

Mudstone: Weak, no samples were recovered 
GM Rider Seam: 10.5 3 

Mudstone/Siltstone 13.0 2.8 
Sandstone (lower part): 19.5 3.7 
Sandstone (upper part): 59.5 14.6 
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FIG. 1 - Roof geology, CMRR, rock strength and Young’s modulus in the monitored holes 

 
 

FIELD MONITORING 
 
Two sections of Roadway A at LW 104 (Figure 2) were monitored in the vicinity of the 51 and 52 C/Ts where 
overburden depth is 220m. The monitoring program included three main components: 
 

• Monitoring of stress change in the roof during roadway development; 
• Monitoring of roof displacements after the excavation of the roadway; and 
• Measurements of in situ stresses in the vicinity of the monitored area. 

 
The stress change monitoring was designed to record the stress change in the roadway roof prior to, during and 
after the roadway excavation. This method overcame the shortcomings of the conventional displacement 
monitoring techniques which can only monitor the roof response after the excavation of the roadway (and usually 
after bolting), missing the period when the crucial roadway reaction is occurring.     
 
Four ANZI stress cells were installed at Site 1 and two at Site 2, see Figure 3. The stress cells were located in 
different roof units and they were installed in boreholes drilled from the cut-throughs prior to the excavation of 
the monitored roadway sections. Figure 4 shows one such arrangement. After the installation of the stress cells, 
the roadways were cut in the sequence marked in Figure 4 i.e. 1→2→3→4. The changes of the stresses in the 
roof were monitored withfrequent data reading (every 30 minutes) when the monitored roadway sections were 
cut. 
 
Four sonic extensometers were installed in the centre of the roadway in the monitored section at each site. The 
extensometers were installed after the completion of the roadway cutting and roof bolting. 
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FIG. 2 - Mining layout and the monitored sections of the roadway heading A. 

 
The in situ stresses in the coal seam and roof rock were measured in the vicinity of the monitoring sites using the 
overcoring technique. The in situ stress measurements were conducted in the pillar between 49 and 50 cut-
throughs (SCT, 2002). 
 
 

 
   (a) Site 1      (b) Site 2 

 
FIG. 3 - Location of stress cells in roof at the two monitoring sites 
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FIG. 4 - Drilling arrangement for stress cell installation and mining steps during monitoring. 
 
In situ stresses 
 
The in situ stress measurement results are given in Table 2.  The in situ stresses in the coal seam are much lower 
than that estimated from overburden depth. The measured vertical stress is only 1.3MPa, compared with the 
calculated vertical stress of 5.5MPa from overburden depth of 220m. It is believed that the measured results have 
been affected by gas/water drainage around the measurement borehole. The measured stress is likely to be close 
(but not necessarily equal) to the effective stress (Shen, Poulsen and Kahraman, 2002) 

 
Table 2  Summary results of the in situ stress measurements 

 
Strata Principal stresses Magnitude (MPa) Dip (degrees) Strike from North 

(degrees) 
σσσσ1 1.83 60 355 
σσσσ2 0.46 10 245 
σσσσ3 -0.27 28 152 

 
 

Coal 
σσσσv 1.3 90 0 
σσσσ1 13.97 6 4 
σσσσ2 7.94 31 271 
σσσσ3 5.95 59 105 

 
Roof sandstone 

σσσσv 6.5 90 0 
 
 
Stress changes in roadway roof 
 
The measured stress changes in the roof coal, mudstone and sandstone during roadway advance are shown on a 
vertical section in Figure 5.  The vertical stress change in the roof coal with time is shown in Figure 6 
 
Stresses in the roof rotated when the roadway face approached and passed the monitored locations (FIG. 5). At 
Site 2, cell 15 in the Rider Seam indicated a change in level and orientation implying shearing along the Rider 
Seam. Vertical stress in the roof dropped sharply immediately after the roadway face passed the monitored 
locations (Figure 6). 
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After the initial stress drop, the vertical stress recovered partially in the next 2-3 hours in the GM Seam (Figure 6) 
and the mudstone unit. The recovery continued in the next 12 hours at a reduced rate. No vertical stress recovery 
was observed in the sandstone roof. 
 
The magnitude of the vertical stress change in the GM Seam at Site 1 was generally consistent with that of in situ 
vertical stress obtained from the overcoring stress measurements. The maximum vertical stress drop is about 1.2-
1.3MPa, while the measured in situ vertical stress in coal was 1.3MPa. This implies a nearly total release of 
vertical stress after roadway excavation. 
 
At Site 2, the maximum vertical stress drop in coal roof is about 2MPa, much higher than that at Site 1 and the in 
situ vertical stress measured in the coal pillar between 49 C/T and 50 C/T. The results suggest that Site 2 had a 
different stress regime from Site 1, and the in situ stresses were higher. The difference might be influenced by 
unknown local geological variations and the existence of geological structures. Two normal faults exist between 
Site 1 and Site 2. The faults are nearly perpendicular to the roadway axis, both dip in an angle of 70 degrees 
inbye. One of the faults has no obvious displacement, and the other has a displacement of 0.2m. The fault 
surfaces are clean and tight. Minor displacement normal faulting of this nature is not uncommon at Moranbah 
North. 
 
Roof displacement 
 
Four sonic extensometers were installed in the monitored roadway roof immediately after roof bolting at each 
site. Displacement data were read as the roadway advanced. The maximum displacement was obtained at the 
monitored location closest to the cut-throughs (Extensometer 1 at Site 1, see Figure 4, and Extensometer 5 at Site 
2). The two extensometers were installed close to the face of previous cut and therefore measured the full roof 
response to the roadway advance. Other extensometers were installed within the length of the full bolted 
roadways where much of roof displacement might have already occurred. They hence measured much less roof 
displacement. The monitored roof displacement from Extensometers 1 and 5 are shown in Figure 7.  
 
A maximum of 18mm roof movement was recorded at Site 1 (Figure 7a). The recorded displacement is relative to 
the upper end of the extensometers (7m into roof). The deformation zone extended about 4m into the roof. It is 
apparent that the bolted roof remained intact as the deformation in the roof coal layer was almost uniform.  
 
The Extensometer 5 at Site 2 recorded a maximum of 50mm roof displacement (Figure 7b), substantially higher 
than that at Site 1. The deformation zone extended at least 6m into the roof, also higher than that at Site 1.  
 
The larger roof movement at Site 2 is consistent with the higher stress change at this location. The roof 
displacement data support the suggestion that a different stress regime existed at Site 2 which is separated from 
Site 1 by two normal faults. 
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FIG. 5 - Monitored stress change in roof coal and rock units versus roadway face position in a vertical 
cross section parallel to the roadway axis. Outward arrow indicates reduction of compressive stresses 
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FIG. 6 - Change of vertical stress in the roof coal at the two monitored sites. 
 

                                  (a)                                                                               (b) 
FIG. 7 - Roof displacement at the two monitored sites.  
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Numerical modelling was conducted using two and three dimensional models. The aim of the numerical 
modelling was to reproduce and interpret the measurements and hence to better understand the roof behaviour at 
the monitored sites.  
 
The three dimensional numerical simulation of the monitored roadway was conducted used FLAC3D (Itasca, 
1997). A 3D numerical model was set up based on the simplified geological log shown in FIG. 1. The true mining 
sequence, including roof and rib bolting, was simulated. The modelled stress change and displacements in the 
roof were investigated and compared with the measurements. The model geometry is shown in figure 8. 
  
 

 
FIG. 8 - A 3D numerical model for roadway stability at Moranbah North 

 
The two dimensional numerical modelling used FLAC with full mechanical-fluid flow coupling (Itasca, 1999). 
Roof and rib bolting were installed 5 hours after the cut of roadway section. The initial gas and water pressure in 
the coal seam was assumed to be 3.0MPa. Fluid flow in the coal seam during roadway excavation was modelled. 
For simplicity, the gas and water were treated as the same fluid medium and hence only single phase fluid was 
modelled. 
 
The predicted stress changes in the coal roof from the 2D and 3D modelling are plotted in Figure 8.. 
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 (a) 3D mechanical modelling results (b) 2D coupled modelling results 

 
FIG. 9 - Modelled vertical stress change (un-marked lines) in roadway roof at Site 1 in comparison with the 
measurements (marked lines). The modelled results are given at different distances into the roof. 
Excavation steps correspond to the roadway sections marked inFgiure 4.  Steps 2a-2d are excavations of 
the 10m section 2 with 2.5m increment, 2e is after roof bolting. Step 5 is further advance of the roadway.   
 
Using the 3D model without considering gas/water pressure, the predicted change of vertical stress in the coal 
roof during roadway excavation was about 5.5MPa, much higher than measured (see Figure 9a). Unlike the 
measurements, the model predictions did not show any recovery of the vertical stress in the coal roof after the 
initial drop. 
 
The 2D model simulated the gas/water pressure and fluid flow in the coal seam during the excavation process. 
Figure 10 shows the modelled pore pressure distribution 5 hours after roadway excavation. The predicted vertical 
stress change in the coal roof was in general agreement with the measurements (Figure 9b). The predicted 
maximum magnitude of the vertical stress change was 2.5-3.0MPa, closer to the measurements of 1.3MPa at Site 
1. More importantly, the modelling results showed a clear stress recovery after the initial stress drop, consistent 
with the measurements. 
 

 
 

FIG. 10 - Pore pressure distribution around roadway, 5 hours after excavation 
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The modelling results demonstrated that, in thick seam mining where gas and water pressure exert an influence on 
the overall properties of the coal seam, the pore pressure and fluid flow could play an important role in the 
behaviour of the roadway. The effects of pore pressure and fluid flow need to be considered in the stability 
assessment of the roadway spans. 
 
Additional modelling was conducted using the 2D coupled mechanical-fluid flow model at different depths. The 
modelled roof displacement at two depths (220m and 300m) are plotted and compared in FIG. 11. The case of 
increased depth will also be relevant to the Site 2 condition where higher in situ stress existed, equivalent to a 
deeper location. 
 
At the current depth of 220m where the measurements were conducted, the predicted maximum roof 
displacement is 19 mm. The predicted roof displacement is in a close agreement with the measurements from roof 
Extensometers 1 (FIG. 7a). The model predictions also show a clear time variation due to the fluid flow after 
excavation. 
 
At the depth of 300m, the predicted maximum roof displacement is 32mm, significantly higher than that at the 
depth of 220m.  
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FIG. 11 - Modelled roof displacements at two different depths. The time dependency is  
caused by fluid flow in the coal seam after roadway excavation. 

 
 

CONCLUSIONS 
 
The main results of the study are summarized below for the site specified conditions at Moranbah North Mine. 
 

• The monitored roadways at a depth of 220m were stable. However, the roadways at the two 
monitoring sites 60m apart showed significantly different roof behaviour. The roadway at the second 
site showed significantly larger roof displacement (50mm) than that at the first site (18mm). The 
monitored stress change in the roof at the second site was also higher than that at the first site.  

• Major geological structures may have affected the roadway roof conditions in the monitored area. The 
two monitored sites were separated by two normal faults, perpendicular to the roadway axis. The 
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faults have up to 0.2m displacement and their surfaces are tight. This type of fault is not uncommon in 
the mine. The monitoring results suggest that the existence of faults has changed the stress regime and 
altered the mining conditions. 

• The measured in situ stresses in the coal seam are much lower than those estimated from the 
overburden depth (the measured vertical stress of 1.3MPa compares with 5.5MPa estimated from 
overburden depth). The gas/water pressure in the coal seam would have affected the measurement 
results. The measured stress is close (but not equal) to the effective stress.   

• The vertical stress in the immediate coal roof is found to drop immediately after roadway excavation. 
The magnitude of the stress drop suggests that the vertical stress in the immediate roof may have 
become tensile immediately after the roadway excavation. It is likely that roof delamination would 
have occurred in the immediate roof before the installation of roof bolts.    

• After its initial drop, the vertical stresses in the coal roof are found to recover substantially (up to 
50%) within 10-12 hours after excavation. Numerical modelling results suggest that the stress 
recovery was caused by the drainage of gas/water and the redistribution of the stresses around the 
roadway. 

• It is geotechnically feasible to apply the ACBM system at the current depth in Moranbah North Mine. 
It is emphasized however, that geotechnical conditions (including in situ stresses) may vary 
significantly, particularly where faults exist. The localized deterioration needs to be considered in 
mining planning and design.    

 
It is emphasized that, when mining in thick seams particularly with high pore pressure, fluid flow has significant 
impact on the stability of the roadways. It is recommended that the effects of pore pressure and fluid flow be 
considered during roadway support design and strata control. The study results also demonstrated the need for a 
better understanding of the stress and stress measurement results in the coal seam. A clear, quantitative relation 
between the measured stress and the effective stress/total stress in the coal seam should be developed for the 
conventional stress monitoring techniques.   
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