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ABSTRACT 

 

This study considered the use of various inherently conducting 

polymer (ICP)-based devices for utilisation with the cochlear implant. 

Investigations centred on the use of polypyrrole (PPy) to produce a 

mechanical sensor, actuators and controlled release devices. The 

development of a novel force sensor using the electrodes that are an 

integrated part of the cochlear implant itself was also investigated. 

Investigation into mechanically induce electrical signals using PPy-

based mechanical sensors showed that the polarity of the voltage output 

was dependent on the dopant ion in the conducting polymer. In addition, it 

was found that the signal amplitude was related to the redox state of the 

PPy and the concentration of mobile dopant ions within the PPy. This led 

to the “stress induced ion flux” mechanism being proposed for the first 

time to explain such observations.  

Actuator systems developed in this study included a PPy trilayer 

bending actuator, a PPy microfluidic pump and a PPy-coated hollow fibre. 

The study of PPy trilayer actuators led to several findings including a high 

amplitude harmonic vibration using a PPy/TFSI trilayer actuator, the first 

time that such behaviour has been observed for ICP-based mechanical 

actuators. A study of the blocking forces generated using such actuators in 

ionic liquid electrolytes suggested that switching from cathodic contraction 

to cathodic expansion occurs under the application of reducing potentials. 

This switching behaviour was found to depend on the amplitude and time 

of the electrochemical stimulation employed. It was shown that the 

expulsion of the dopant anion (PF6
-) from the reduced polymer (- 0.8 V vs. 

Ag/Ag+) did not support the previously claimed cathodic expansion model. 
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An ion diffusion controlled mechanism was proposed to explain the results 

obtained. 

Investigations into the novel “tube in tube actuator nodule” (TITAN) 

microfluidic pump based on PPy had led to the significant finding that, for 

the first time, the intrinsic resistance of PPy can be utilised to carry out 

peristaltic actuation for the purpose of fluid transport. 

The electrochemically controlled release of a model anion from the 

internal volume of a PPy-coated platinised PVDF hollow fibre was 

successfully demonstrated. Such controlled release was ascribed to the 

electrochemically activated incorporation / expulsion of small anions upon 

redox switching of polypyrrole resulting in enhanced ion transport across 

the concentration gradient from the internal volume of the hollow fibre to 

the receiving solution. The experimental findings suggested that 

electrochemically controlled release of anionic drugs is a real possibility 

using a device configuration consisting of a reservoir coated with an ICP 

membrane.  

By studying the electrochemical impedance changes in response to 

impact forces on the tip of a cochlear implant in artificial perilymph 

solution, it was found that the cochlear implant electrode itself can be used 

to detect impact forces. The findings were significant because such an 

approach provides a simple and safe method for the detection of possible 

dangers during surgical implantation of the cochlear implant. Factors 

influencing the response were investigated and these included solution 

composition and the orientation of the impact forces encountered.
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