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Synopsis 
 

Experiments were performed on a Gleeble 3500 Thermomechanical Simulator to study 

the hot ductility behaviour of C-Mn-Al steel and the influence of Nb, Ti and Nb-Ti 

additions. The simple hot tensile test has been shown to correlate well to the problem of 

transverse cracking. Therefore, the principle aim of this research is to gain a greater 

understanding of transverse cracking during the straightening of continuously cast slabs. 

In particular, attention was paid to thin slab casting conditions. 

 

Hot tensile test specimens were either solution treated or melted in-situ (direct cast) and 

cooled to the deformation temperature. Solution treatment tests simulated conventional 

casting, where slabs are cooled to room temperature then reheated prior to rolling. 

Direct cast tests simulated hot direct rolling conditions, where slabs are rolled directly 

after casting without being cooled below the austenite to ferrite transformation. 

Specimens were cooled to the deformation temperature at two cooling rates, 100K/min 

and 200K/min. The cooling rate of 100K/min corresponds to the average cooling rate 

experienced for a conventionally cast slab, 250mm in thickness. The cooling rate of 

200K/min corresponds to the average cooling rate for thin-cast slabs, 50mm in 

thickness. 

 

The development of the combination of thin slab casting with hot direct rolling requires 

hot ductility work to be performed under direct cast conditions and at higher cooling 

rates. Surface quality is of the utmost importance in thin slab casting so the elimination 

of transverse cracking is of prime economic importance. There are significant 

differences between as-cast (direct cast) and reheated (solution treatment) 

microstructures. In particular, changes in precipitate behaviour, austenite grain size, and 

the relationship between segregation and the position of austenite grain boundaries was 

investigated. An attempt has been made to determine what influence these differences in 

microstructure have on hot ductility.  

 

Niobium bearing steels were selected for the reason that there are still problems with Nb 

steels regarding transverse cracking. Furthermore, there have been contradictory reports 

on the effects of Ti additions on the transverse cracking behaviour of Nb steels. There is 
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evidence from commercial practice that indicates that small additions of Ti improve the 

transverse cracking susceptibility of Nb steels. However, laboratory results generally 

show Ti additions have little influence or even a detrimental effect on hot ductility. 

Disparities in the thermal history simulated in laboratory tests to actual conditions near 

the surface of a continuously cast slab is the most likely reason for this discrepancy. 

Therefore, the influence of more closely simulating the thermal history conditions near 

the surface of a continuously cast slab was evaluated for the Nb-Ti steel. 

 

Experimental work involved metallographic and scanning electron microscopy 

examination of the fracture surface. Transmission electron microscopy was used to 

determine precipitation characteristics. Tensile tests were conducted to determine 

mechanical properties, where reduction in area (RA) was used as a measure of ductility. 

The dendritic structure for direct cast and solution treatment specimens was revealed 

using a heat treatment procedure (normalising). Particle size was correlated to reduction 

of area for precipitates in the single-phase austenite temperature region. It was shown 

that particles below 15nm were detrimental to hot ductility. The relationship between 

interparticle spacing and reduction of area was also determined. 

 

Microalloying additions to C-Mn-Al steels significantly widen the ductility trough but 

the depth remains similar. Low ductility was found at higher temperatures in the 

microalloyed steels due to intergranular failure as a result of grain boundary sliding in 

the austenite. Grain boundary sliding was favoured by the slow strain rate and was 

enhanced by fine microalloyed nitrides and/or carbides. Fine particles can pin austenite 

grain boundaries, allowing sufficient time for cracks to link together, ultimately causing 

intergranular fracture. Increasing the cooling rate generally lowered ductility further by 

promoting finer precipitation. The trough depth is similar in all steels as the formation 

of thin ferrite films controls ductility at the minimum trough position. The formation of 

thin films of ferrite allowed strain to concentrate in the softer ferrite phase and 

intergranular failure occurred due to microvoid coalescence.  

 

Direct cast conditions always led to lower ductility compared to solution treatment 

conditions. This is explained in terms of differences in the microstructure, namely, grain 

size, segregation and precipitation. It is recommended that direct cast conditions should 

 xvi



be used to determine hot ductility behaviour as it more accurately simulates continuous 

casting conditions. 

 

It was found that simulating the thermal history near the surface of a continuously cast 

slab, as opposed to cooling directly to the deformation temperature, improved ductility 

of the Nb-Ti steel. This improvement in ductility was attributed to the thermal history 

providing favourable conditions for coarsening of NbTi(C,N).   
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