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Abstract 
Locust swarms hit subsistence-staple-crop-growing households at random and are not 

privately controllable. A regional aerial-spraying scheme that supports these 

households’ livelihood at the least cost is proposed. The properties of this scheme are 

analysed and two steady states are identified. The saddle one is socio-economically 

superior to the stable spiral. Simulations reveal that the respective stationary 

probability of a household’s crop being devoured by the swarm diminishes with the 

number of households, yield per household, staple crop’s replacement price and 

spraying efficacy, but rises with the spraying cost coefficient, locusts’ multiplication 

rate and public planner’s discount rate.   
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1. Introduction 

From time immemorial the growing of essential crops in large parts of North 

and West Africa and other less developed areas inhibited by indigenous people 

pursuing a traditional way of life has been impeded by swarms of locusts.1 Due to the 

large size and high mobility of the locust swarms and the random nature of the timing 

and target of their raids, on the one hand, and due to insufficient private capital, skill, 

coordination, cooperation and willingness to share common-control costs, on the other 

hand, the locust plague has not been effectively dealt with by small, traditional, 

staple-crop-growing households. A locust swarm’s survival and regeneration depend 

on cultivation size and type. A drastic change in the scale and types of farming 

activities and technology, such as in California during the Gold-Rush period, can 

reduce the number and size of locust swarms. However, a drastic change in the 

farming activities, practices and scale can also adversely affect the well being of the 

indigenous farming households which; for ethnic, cultural and human capital reasons; 

are not willing to give up their traditional way of life and relocate. As is the case in 

North and West Africa, the mean for supporting crop production and the traditional 

way of life of the indigenous population in regions raided by locust swarms is a 

regionally and internationally coordinated and financed aerial spraying of 

organophosphate pesticides with relatively short environmental persistence.2 3 

The locusts’ lifecycle is six weeks, during which they are transformed from 

albino crawlers to green walkers and hopers, to pink flyers and, finally, to yellow 

                                                 
1 An early reference to this problem appears in Exodus, chapter 10, where it is respectfully ordered as 
the seventh plague—the fourth one from the last and most painful plague inflicted on Egypt. 
2 See Cowan and Gunby (1996) for an explanation to why chemical control of agricultural pests 
remains the dominant technology.  
3 The severe outburst of this plague in North and West Africa in the second half of the 1980s is due, in 
part, to the public complacency over a period of thirty years following the initial high control obtained 
with the application highly toxic, but environmentally persistent, dieldrin in the 1950s.  
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mating insects. They dwell in equal life-phase groups clearly identifiable by their 

colours. The principal crop-devastating one is that of the flying pink locusts—the 

swarm. Unlike many other groups of much smaller and better-camouflaged 

agricultural pests the pink-locust swarms are highly visible and their impact is 

immediately noticeable.  

The locust swarm-control model constructed in the second and third sections 

and calibrated and simulated in the fourth section of this paper is socioeconomic. It 

considers a locust alley, such as those in North and West Africa, dominated by a 

perpetuated swarm and housing a large, stable number of similar, infinitely lived, 

traditional, farming households endowed with small fields for self-sustaining staple-

crop production. The proposed model differs from the existing agricultural and 

environmental economic pest-control models for technologically advanced cash-crop 

farms4 by its design to stabilise the production and supply of staple crops in less 

developed areas, and thereby support the native inhabitants’ traditional way of life, at 

the least cost for the public planner. The model takes into account that, due to the high 

level of mobility of the pink locusts and variations in air temperature and currents, the 

swarm moves quickly and erratically and hence hits clusters of staple-crop-growing 

households at random. It also takes into account that, due to an immediately and 

highly noticeable presence and adverse impact, the swarm’s location and density are 

accurately assessed and reported by the affected farming households. In view of the 

standard practice of scheduling the aerial spraying to the time when the swarm’s is 

most vulnerable—the dawn that follows a reporting of the swarm’s location and 

density by the affected households—the efficacy of the aerial spraying is also taken to 

                                                 
4 See Shoemaker (1973) for an early agricultural pest-control modelling and Saphores (2000) for a brief 
survey of agricultural and environmental pest control models and a recent modification.  
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be certain.5 However, the large size of the swarm and the convexity of the spraying 

costs prevent the eradication of the swarm. As is commonly the case, it is further 

taken that the crop of the raided households is completely devoured. Hence, 

previously sprayed fields are not revisited by the locust swarm during a growing 

season and, in turn, the number and timing of pesticide applications (cf. Hall and 

Norgaard, 1973; Saphores, 2000) and reentry (cf. Lichtenberg, Spear and Zilberman, 

1993) are not relevant issues. 

 

2. Locust-control model 

Consider a topographically and climatically homogeneous locust alley with: 

)(tN  indicating the size of the swarm (i.e., number of pink locusts) at t; 

))(( tNF  the swarm natural multiplication at t, 0,0 ≤> NNN FF ; 

L  the time-invariant number of farming households; 

)(tϕ  the probability of a household’s field being raided by the swarm at t; 

)(ty  the yield (in physical units) of a household field at t; 

)(ts  the quantity of pesticide aerially sprayed against the swarm at t; 

))(),(( tNtsR  the number of members of the swarm exterminated by aerial spraying at 

t, ,0>sR ,0≤ssR ,0,0 ≤> NNN RR  and 0>sNR ; 

))(( tsC  the cost (including the environmental damage) of aerial spraying at t, 

0,0 >> sss CC ; and 

))(),(())(()( tNtsRtNFtN −=        (1) 

the instantaneous change in the swarm size. 

                                                 
5 See Feder (1979) for an analysis of pest management with a random pesticide effect. 
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Due to the long-range mobility of the pink locusts and variations in air 

temperature and currents, fields are hit by the swarm at random and independently of 

their particular location. Carlson and Wetzstein (1993) have argued that the likelihood 

of a crop getting eaten by pests is a function of cultivation size and is given by the 

entropy distribution. In the present case of small, numerous, identical and sharing 

similar climate and topography staple-crop-growing households, each household field 

has, ex ante, an equal probability of being hit by the swarm. It is assumed that this 

probability diminishingly increases with the ratio of the swarm size to the number of 

household fields in the locust alley: )/)(( LtNϕ , 0>′ϕ , 0<′′ϕ , 0lim
0

=
→
ϕ

L
N

 and 

1lim =
∞→
ϕ

L
N

. It is further assumed that in the event of being hit the household’s crop is 

completely devoured by the swarm. The yield of a household field spared by the 

swarm is a positive, time-invariant (due to traditional cultivation methods) scalar y . 

Under these assumptions the yield of a household field in the locust alley at t is 

binomially distributed: 

⎩
⎨
⎧

−
=

)/)((1
)/)((0

)(
LtNy

LtN
ty

ϕ
ϕ

.        (2) 

In turn, the expected aggregate loss of yield in the locust alley at t is yLLtN )/)((ϕ . 

The proposed swarm-control model is based on the following premises. There 

is a trade-off between the instantaneous cost of aerial spraying and the instantaneous 

yield salvaged. The livelihood of households hit by the swarm depends on a free-of-

charge public aid. The public aid fully compensates affected households for the loss 

of yield with purchased and delivered quantities of the staple crop. The public planner 

is risk neutral and farsighted and selects the aerial spraying trajectory, subject to the 

swarm-density motion equation, which minimizes the sum of the discounted 
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instantaneous expected cost caused by the swarm—the instantaneous expected cost of 

compensating for the aggregate loss of yield plus the instantaneous cost of spraying.  

The public planner’s problem is formally expressed as 

 dttsCyLLtNtpe t

S
))](()/)(()([min

0}{
+∫

∞
− ϕρ        (3) 

subject to the state-equation 1, where p  denotes the crop-replacement price (i.e., the 

full price of delivering the staple crop grown in the locust alley to the affected 

households) and 10 << ρ  the public planner’s instantaneous, fixed discount rate. The 

solution to this problem implies that the optimal instantaneous change in the intensity 

of aerial spraying is given by   

]/[

)]([

ssssss

ss
s

sN
NN

RRCC

yRpCRF
R
R

RF
s

−

′−−++−
=

ϕρ
.                (4) 

(See Appendix A for details.) 

Since 0,, >ssss RCC  and ,0≤ssR  the denominator in the above expression is positive. 

Consequently, a rise in the intensity of aerial spraying from one instance to another is 

supported by the planner’s discount rate, by the positive swarm-density effect on the 

locust-extermination capacity ( NR ) and by the swarm’s instantaneous net growth 

( RF − ). Likewise, a decline in the intensity of aerial spraying from one instance to 

another is supported by the marginal regeneration of locusts, by a marginal rise in the 

probability of a household field being raided, by the replacement cost for the planer of 

a devoured household yield ( py ) and by the efficacy of spraying ( sR ). In any case, 

the change in the intensity of aerial spraying from one instance to another is 

moderated by the level of convexity of the aerial-spraying costs, but the effect of the 

marginal cost of aerial spraying on the instantaneous change in the spraying intensity 

is not clear. 
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3. Phase-plane portrait of a special case 

In steady state (SS),          

),()( SSSSSS NsRNF =         (5) 

and  

),()/()()],()([ SSSSsSSSSsSSSSNSSN NsyRLNpsCNsRNF ϕρ ′=+− .   (6) 

The computation of the steady-state swarm size and aerial-spraying intensity and the 

analysis of their asymptotic stability properties consider a case with the following 

computationally convenient specifications:  

2csC =            (7) 

LN /1
11
μ

ϕ
+

−=           (8) 

NF α=            (9) 

and  

sNR β=                     (10)  

where c, μ , α  and β   are positive scalars indicating the spraying cost coefficient, 

the hit-probability coefficient, the locusts’ multiplication rate and the aerial spraying 

efficacy coefficient, respectively.  

 On the one hand, this case takes into account the worst-case scenario of 

exponentially multiplying locusts ( 0=NNF ). On the other hand, it considers a linearly 

increasing marginal extermination power of spraying in the swarm size ( 0=NNR ). 

These specifications are plausible when the locust alley is vast; which is typically the 

case due to the high and long-range mobility of locusts; and inhibited by numerous 

farming households. The carrying capacity of such an alley is very large relatively to 

the swarm size. Hence, locust congestion is insignificant and the decline in the 

swarm’s marginal growth ( NNF ) is negligible. With regard to 0=NNR  we may argue 
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that the larger the swarm the better the monitoring of its whereabouts in a vast alley. 

The increase in the accuracy of aerial spraying compensates for the diminishing stock 

effect on the spraying extermination power.  

 By substituting specifications 7-10 into equation 4 we obtain 

2]/1[2 LNc
yNpss

μ
μβρ
+

−= .                      (11) 

In turn, 0
]/1[2

)}/(]{[)/(
2

<

>
=

+
+−

−=
LNcs

NLNLyp
dN

ssd
μ

μμμβ  as μ/LN
<

>
= . As long as the 

swarm size is lower (greater) than the ratio of the number of farming households to 

the coefficient of the probability of being raided, a slight increase in the swarm size 

decelerates (accelerates) pesticide spraying.   

 

 N 0 

s 

ds/dt=0 

dN/dt=0 

    Nss1  Nss2L/μ  

      Figure 1. Phase-plane diagram of the swarm size and aerial spraying  

 

As displayed by the phase-plane diagram there are two steady states: a saddle 

point and an asymptotically stable spiral. (See Appendix B for details.) The stationary 
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aerial-spraying intensity is, however, unique and equal to the ratio of the locusts’ 

multiplication rate to the aerial-spraying efficacy coefficient: 

βα /=SSs .                    (12) 

This result is due to NNNN RF == 0 . If NNF  is rather negative, the steady-state aerial 

spraying is less intensive. For instance, when locusts multiply in the alley in 

accordance with the logistic function )/1( maxNNNF −=α , the stationary spraying 

intensity is moderated by the ratio of the stationary number of locusts to the alley’s 

carrying capacity ( maxN ). Namely, 
β
α)1( maxN

N
s SS

SS −= .6 Conversely, if NNR  is rather 

negative, the steady-state aerial spraying is more intensive. For example, when 

γβsNR =  with 10 << γ , the stationary aerial spraying is given by γ

β
α −= 1)( SS

ss Ns . 

In the combined case, where )/1( maxNNNF −=α  and γβsNR = , the stationary 

aerial spraying is given by 
β
αγ−−= 1

max ))(1( SS

ss

SS N
N
Ns  and it is not clear whether it 

is greater than, equal to, or larger than βα / . Hence, the computationally convenient 

case of NNNN RF == 0  is not a bad compromise. 

The stationary swarm sizes are  

⎪⎭
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⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠
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6 The alley’s carrying capacity might be proportional to the aggregate potential yield (i.e., 

LyN ∝max ). 
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The steady state with 1SSN  can be approached along two trajectories: the north-

eastern arm displays a gradual reduction in spraying as the swarm size decreases 

whereas the south-western arm displays intensifying spraying as the swarm size 

increases. The steady state with 2SSN  is approachable along a spital trajectory.  

From the perspectives of the farming households and the public planner, the 

probability of an individual household’s crop being devoured is a meaningful 

indicator of the prevalence of the locust plague. By virtue of equation 8 and the 

stability of the number of farming households, a positive association between the 

stationary swarm size and the stationary probability of an individual household’s crop 

being devoured exists. Hence, ),( 1SSSS Ns  is preferred to ),( 2SSSS Ns  by the farming 

households. As the stationary pesticide spraying level (and hence the stationary cost 

of spraying) is unique, ),( 1SSSS Ns  is also preferred to ),( 2SSSS Ns  by public planner. 

The following numerical simulations of the model parameter effects are therefore 

focused on 1SSN  and employ equation 13. Equation 8 is subsequently used for 

computing the respective stationary probability of an individual household’s crop 

being devoured by the swarm.  

 

4. Effects of the model parameters 
 

4.1 Parameters’ benchmark values 

The benchmark computations of the model parameter effects on the stationary 

swarm size and probability of an individual household’s crop being devoured are 

conducted for a large locust alley with 10,000,000 traditional farming households, 

each potentially producing 1,000 kilograms of the traditional staple crop, whose 

replacement price is one dollar per kilogram, in a growing season. Due to harsh 
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climate and soil conditions (e.g., on the edges of the Sahara, but not along the lower 

Nile) a single growing season a year is assumed. 

The setting of the benchmark value of the natural growth rate α  takes into 

account that a mating female locust lays, on the average, 35 eggs protected by cells 

made in the soil. Assuming gender balance in the group of the mating (yellow) 

locusts, these 35 eggs represent a 1750 percent of preliminary reproduction (i.e., a 

17.5 initial reproduction rate). However, the four phases of locust life and the natural 

attrition rates during these phases moderate the (pink) swarm natural growth rate. The 

crop-growing season in the locust alley (in North Africa) is roughly three months. 

Since locusts dwell in life-phase groups and their life cycle is six weeks there are two 

full cycles of locust life and two waves of (flying, pink locust) swarms during a crop-

growing season. The following chart displays the evolution of locusts during a crop-

growing season in the locust alley from an initial cohort of 0N  crawling (albino) 

locusts and for the case where the rate of natural attrition of locusts is assumed, for 

simplicity and lack of information, to remain the same over the four life-phases, 

10 << δ . 

Table 1. The locust population growth in a crop-growing season 
Crawling→  Walking→  Flying→  Mating →  

0N  0)1( Nδ−  
0

2)1( Nδ−  0
3)1( Nδ−  

Crawling→  Walking→  Flying→  Mating→  
0

4)1(5.17 Nδ−  0
5)1(5.17 Nδ− 0

6)1(5.17 Nδ− 0
7)1(5.17 Nδ−  

 
The natural rate of growth of the swarm during the crop-growing season can be 

computed by considering the sizes of the two consecutive groups of flying locusts:  

1)1(101
)1(
)1(10 4

0
2

0
6

−−=−
−

−
= δ

δ
δ

α
N
N .                 (15) 

Assuming that the natural rate of attrition in each phase is 0.5, 1.0≅α . 
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The setting of the benchmark value of the aerial-spraying efficacy coefficient 

β  is consistent with a stationary volume of pesticide sprayed during a growing 

season of 1,000 cubic meters and with 1.0=α . Recalling equation 12,  

0001.01000/1.0 ==β .                    (16) 

The benchmark value of the cost coefficient c is set by assuming that the price 

(including an implicit tax for environmental damage) of a cubic metre of pesticides is 

$ 4,000 and hence the costs of the aforementioned 1,000 cubic meters of pesticides 

used in a crop-growing season is $ 4,000,000 and by assuming that the costs of 

monitoring the swarm managing, and operating the fleet of aerial sprayers in the 

locust alley is taken to be $ 6,000,000. Recalling equation 7, 

10000,1/)000,000,6000,000,4(/ 22 =+== sCc .              (17) 

The benchmark value of the probability coefficient μ  was set by assuming 

that prior to implementing an aerial spraying campaign N/L=1,000 and the probability 

of an individual household field being raided by the swarm during the crop-growing 

season is 0.25. By substituting these figures into equation 8 

)]10001/(1[125.0 μ+−=                 (18) 

and subsequently 000333.0=μ . 

Assuming that there is only one crop-growing season a year and that farming 

is the main economic activity, the benchmark figure for the discount rate is taken to 

be five percent ( 05.0=ρ ) for the growing season of the regional staple crop—roughly 

the current interest rate in the financial global market.  
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4.2 Simulation results 

Table 2 summarizes the simulation results of the model parameter effects on 

1SSN  and 1SSϕ  obtained by using equations 13 and 8. The benchmark model 

parameters and the associated computational results are reported in the central 

column. The off-central column cells in each row report the simulation results 

obtained by gradually changing the value of one parameter from a very much below 

its benchmark value to a very much above its benchmark value while holding the rest 

at their benchmark levels.  

The simulation results suggest that the probability of an individual 

household’s crop being devoured by the swarm diminishes with the number of 

farming households, with the yield of a farming household, with the replacement price 

of the staple crop and with the aerial-spraying efficacy, but rises with the spraying 

cost coefficient, with the locusts’ multiplication rate and with the public planner’s 

discount rate.   
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Table 2. Parameters’ effects on 1SSN  and 1SSϕ  
Parameter 
level→  
 

Very much 
below 
benchmark 

Below 
benchmark 

Benchmark Above 
benchmark 

Very much 
above 
benchmark 

L 
1SSN  

1SSϕ  

1,000,000 
30,646,079 
0.010102 

5,000,000 
30,150,754 
0.002004 

10,000,000 
30,090,241 
0.001001 

15,000,000 
30,070,137 
0.000667 

20,000,000 
30,060,098 
0.000500 

y (kg/season) 
1SSN  

1SSϕ  

500 
60,301,508 
0.002004 

750 
40,147,171 
0.001335 

1,000 
30,090,241 
0.001001 

1,250 
24,062,540 
0.000801 

1,500 
20,046,758 
0.000667 

μ  

1SSN  
1SSϕ  

0.000111 
90,270,722 
0.001001 

0.000222 
45,135,361 
0.001001 

0.000333 
30,090,241 
0.001001 

0.000444 
22,567,680 
0.001001 

0.000555 
18,054,144 
0.001001 

α (per season) 
1SSN  

1SSϕ  

0.0333 
10,006,666 
0.000333 

0.0666 
20,026,684 
0.000666 

0.1000 
30,090,241 
0.001001 

0.1333 
40,137,107 
0.001335 

0.1666 
50,197,428 
0.001669 

β  

1SSN  
1SSϕ  

0.0000333 
276,000,000 

0.009101 

0,0000666 
68,009,911 

0.00226 

0.0001 
30,090,241 
0.001001 

0.0001333 
16,919,390 
0.000563 

0.0001666 
10,827,268 
0.000360 

c ($) 
1SSN  

1SSϕ  

5 
15,030,049 

0.0005 

7.5 
22,556,370 
0.000751 

10 
30,090,241 
0.001001 

12.5 
37,631,676 
0.001252 

15 
45,180,689 
0.001502 

p ($ per kg) 

1SSN  

1SSϕ  

0.5 
60,301,508 
0.002004 

0.75 
40,147,171 
0.001335 

1 
30,090,241 
0.001001 

1.25 
24,062,540 
0.000801 

 

1.5 
20,046,758 
0.000667 

ρ (per season) 

1SSN  
1SSϕ  

0.01 
6,008,410 

0.0002 

0.03 
18,039,672 

0.0006 

0.05 
30,090,241 
0.001001 

0.07 
42,160,173 
0.001402 

0.09 
54,249,529 
0.001803 
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5. Conclusions   

The paper deals with an agricultural plague affecting many small-scale 

farming households in less developed areas: locust swarms hit clusters of subsistence-

staple-crop-growing households in their passage at random, inflict a complete, 

immediate damage and cannot be controlled by the uncoordinated households. An 

optimal control model is designed in this paper to stabilise the supply of staple crops 

in such areas and to support their inhabitants’ traditional way of life at the least cost 

for the public planner. The solution of the public planner’s optimal control problem 

reveals that a change in the intensity of aerial spraying from one instance to another is 

moderated by the level of convexity of the aerial-spraying costs. It also indicates that 

a rise in the intensity of aerial spraying from one instance to another is supported by 

the planner’s discount rate, the swarm-density effect on the locust-extermination 

capacity and the swarm’s instantaneous net growth; whereas a decline in the intensity 

of aerial spraying from one instance to another is supported by the marginal 

regeneration of locusts, a marginal rise in the probability of a household field being 

raided, the replacement cost for the planer of a devoured household yield and the 

efficacy of spraying.  

The solution of the public planner’s optimal control problem for the special 

case indicates further the existence of two steady states where the socioeconomically 

superior one is a saddle point. This saddle point may optimally be approached from an 

initial position characterised by a relatively large swarm and high pesticide use along 

a unique trajectory displaying a decline in the swarm density and accompanied by a 

decreasing aerial-spraying intensity. It may also be optimally approached from an 

initial position of low swarm density and low spraying level along a trajectory 

displaying increasing swarm density and aerial spraying of pesticides.  
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Numerical computations indicate the direction of the effects of the number of 

farming households, the yield of a farming household, the replacement price of the 

staple crop, the aerial-spraying efficacy, the spraying cost coefficient, the locusts’ 

multiplication rate and the public planner’s discount rate on the stationary probability 

of an individual household’s crop being devoured by the swarm. 
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Appendix 
 

A. Solution of the optimal control problem 

The Hamiltonian associated with this problem is: 

))](),(())(()[())](()/)(()([)( tNtsRtNFttsCLyLtNtpetH t −++= − λϕρ             (A1) 

where the co-state variable )(tλ  can be interpreted as the shadow cost of the locust 

swarm. In addition to the state equation (2), the necessary conditions for minimum 

require that the change in the shadow cost is 

))](),(())(()[()/)(()()( tNtsRtNFtyLtNtpet NN
t −−′−= − λϕλ ρ              (A2) 

and that the intensity of aerial spraying at any instance satisfies the following equality  

0))(),(()())(( =−− tNtsRttsCe ss
t λρ .               (A3) 

Consequently, the singular-control equation is compactly rendered as 

0)( =+−−+− −− NRsRRsCeCe sNsssss
t

s
t λλρ ρρ .              (A4) 

Recalling equations (1), (A2) and (A3) 

0)]()([)( =−+−−+′++− RFRtsR
R
C

RFCyRpsCC sNss
s

s
NNsssss ϕρ            (A5) 

and by rearranging terms the optimal instantaneous change in the intensity of spraying 

is   

]/[

)]([

ssssss

ss
s

sN
NN

RRCC

yRpCRF
R
R

RF
s

−

′−−++−
=

ϕρ
.             (A6) 

 
 
B. Phase-plane diagram 

From equation 1, the isocline 0=N  is given by βα /=s . Since 0<−= N
ds
Nd β , 

0<N  in the region above this isocline and 0>N  in the region below it (as displayed 
by the horizontal arrows in Figure 1). 
 
Recalling equation 11, the isocline 0=s  is given by  
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2]/1[2 LNc
yNps
μρ

μβ
+

=                     (B1) 

 
and its slope  
 

0
]/1[2

)}/(]{[
]/1[2

]}/1[/21{

}]/1[2{
)/(]/1[4]/1[2

22

22

2

0

>

<

=

=
+

+−
=

+
+−

=

+
+−+

=

LNc
NLNLyp

LNc
LNLNyp

LNc
LNLNcypLNcyp

dN
ds

s

μρ
μμμβ

μρ
μμμβ

μρ
μμρμβμρμβ

           .(B2) 

 
Hence, 
 

0
0

>

<=
=

sdN
ds  as μ/LN

<

>
= . Namely, the isocline 0=s  is an inverted parabola. 

 
 
By differentiating equation 11, 
 
 

0
]/1[2

)}/(]{[
2

<

>
=

+
+−

−=
LNc

NLNLyp
dN

sd
μ

μμμβ  as μ/LN
<

>
=  (displayed by the vertical arrows 

in Figure 1). 
 
The stationary levels of N are obtained as follows. By substituting 0=s  and 

βα /=SSs  into equation 11, 
 

2]/1[
/2

LN
yNp

c
ss

ss

μ
μβ

βρα
+

= .                  (B3) 

 
By rearranging terms,  
 

0)/(2)]/)(/(4[)/)(/(2 22 =+−− βαρμβαρμβμβαρ cNLcypNLc SSSS            (B4) 
  
and, in turn, 
  

01)]/(2)2/[()/( 222 =+−− SSSS NLcypNL μραμβμ .             (B5) 
 

1SSN  and 2SSN  are the roots of this second-order polynomial. The real part of the 

eigenvalues of the state-transition matrix (A) of the linearized system of the 
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differential equations 1 and 11 at the vicinity of any of the steady states is equal to 

)1,0())/(()( ∈=+−=+−= ρρβαβαρβα SSstrA               (B6) 

and the directions of the arrows at the vicinity of ( 2, SSSS Ns ) imply  

0det42 <− AtrA .                    (B7) 

Since the eigenvalues of the state-transition matrix constitute a conjugate complex 

pair whose real part is within the unit interval, ( 2, SSSS Ns ) is an asymptotically stable 

spiral.    
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