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ABSTRACT: 

One of the solutions that has been advocated to reduce anthropogenic impacts in the 

marine environment, is the concept of a global representative network of Marine 

Protected Areas (MPAs). The concept seeks to address both conservation and natural 

resource (eg. fisheries) management, and in Australia, the introduction of MPAs is 

guided by comprehensive, adequate and representative (CAR) principles. At a local 

scale however, we face the challenge of identifying areas that collectively fulfil the 

goals of MPAs when we don’t have enough ecological information. This is due to in 

part to limited knowledge, but is also a result of poor translation of knowledge into the 

applied realm of management. Consequently, effective MPAs are difficult to plan and 

balance against diverse stakeholder needs in a political climate. Therefore, it is 

recognised that ecological science must play an integral part in the development of 

effective MPAs. In this study, I used MPA zoning in NSW, Australia, as a large scale 

experiment, to test the effect of no-take zone protection in tidal flat habitat, and also to 

assess whether the conservation management decisions achieved the MPA goal of 

representativeness for tidal flat habitat. As bait-harvesting practices for the crustacean 

Trypaea australiensis (callinassidae) would cease following the zoning of a marine 

protected area, I sought to address four key aims. First, to describe relevant spatial 

patterns of tidal flat biodiversity, to assess the representativeness of the tidal flat in a 

bioregional context, to determine what the impact of bait harvesting was as a structuring 

process, and finally to determine the effectiveness of no-take zoning for tidal flat habitat 

and the potential for recovery of the assemblage. 
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I used a hierarchy of spatially nested scales to sample and test the spatial patterns of 

tidal flat faunal assemblages, and to determine if the macrofaunal diversity of the 

protected tidal flat was representative of other tidal flats in the bioregion.  

This study documents the first recovery trajectory for tidal flat assemblages in a marine 

protected area. There was an increase in abundance and homogeneity of smaller, less 

mobile, suspension and deposit feeding species. In contrast, some of the more mobile, 

predatory and or scavenging species decreased in abundance. This assemblage shift has 

the potential for further trophic or functional effects beyond the boundaries of the tidal 

flat, which are discussed, and thus provides important guidance for future research. 

I also found that macrofaunal assemblages were patchily distributed, being most 

heterogeneous at the scale of 100s m within the tidal flat. For planning and management 

this implies that whole habitat is required in no-take zones, in order to encompass the 

full range of macrofaunal diversity in the habitat. 

In addition to the key findings, the methods used in this study extended asymmetrical 

ANOVA to incorporate temporally and spatially asymmetrical factors simultaneously. 

This extension increases the power and thereby the sensitivity of univariate analysis, to 

detect environmental change for MPA or impact studies. In addition, data manipulations 

(taxonomic resolution, assemblage sub-sets and data transformations) demonstrated 

some dramatic effects on the interpretation of biological pattern.  

This study demonstrate the opportunity of using MPA management decisions as a basis 

on which to test ecological predictions, as well as provide outcomes that can be applied 

to adaptive planning and management for MPA goals. 
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