
University of Wollongong
Research Online

Centre for Statistical & Survey Methodology
Working Paper Series Faculty of Engineering and Information Sciences

2013

Model-assisted optimal allocation for planned
domains using composite estimation
Wilford Molefe
University of Botswana

Robert Graham Clark
University of Wollongong, rclark@uow.edu.au

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Recommended Citation
Molefe, Wilford and Clark, Robert Graham, Model-assisted optimal allocation for planned domains using composite estimation,
Centre for Statistical and Survey Methodology, University of Wollongong, Working Paper 19-13, 2013, 27.
http://ro.uow.edu.au/cssmwp/109

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/cssmwp
http://ro.uow.edu.au/cssmwp
http://ro.uow.edu.au/eis


Copyright © 2013 by the National Institute for Applied Statistics Research Australia, UOW. 
Work in progress, no part of this paper may be reproduced without permission from the Institute. 
 

National Institute for Applied Statistics Research Australia, University of Wollongong, 
Wollongong NSW 2522. Phone +61 2 4221 5435, Fax +61 2 4221 4845. Email: 

anica@uow.edu.au 

 
 
 
 
 
 

National Institute for Applied Statistics Research 
Australia 

 

The University of Wollongong 
 

 

Working Paper 
 
 

19-13 
 

 
Model-Assisted Optimal Allocation for Planned Domains Using 

Composite Estimation 
   

 
 
 

Wiford B. Molefe and Robert Graham Clark 
 

mailto:anica@uow.edu.au�


MODEL-ASSISTED OPTIMAL ALLOCATION FOR PLANNED DOMAINS

USING COMPOSITE ESTIMATION

Wilford B. Molefe 1 and Robert Graham Clark 2

ABSTRACT

This paper develops allocation methods for stratified sample surveys where small

area estimates are a priority. Small areas are domains of interest with sample sizes

too small to allow traditional direct estimation to be feasible. Composite estimation

may then be used, to balance between using a grand mean estimate and an area-

specific estimate for each small area. In this paper, we assume stratified sampling

where small areas are strata. Similar to Longford (2006), we seek efficient alloca-

tions where the aim is to minimise a linear combination of the mean squared errors

of composite small area estimators and of an estimator of the overall mean. Unlike

Longford, we define mean-squared error in a model-assisted framework, allowing

a more natural interpretation of results using an intra-class correlation parameter.

This optimal allocation is only available analytically for a special case, and has the

unappealing property that some strata may be allocated no sample. Some alterna-

tive allocations, including a power allocation with numerically optimized exponent,

are found to perform nearly as well as the optimal allocation, but with better prac-

tical properties.

Key Words: small area estimation, sample design, sample size allocation, composite

estimation, mean squared error, Taylor approximation.
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1. INTRODUCTION

Sample surveys have long been used as cost-effective means for data collection

but it is also the case that general purpose surveys will often not achieve adequate

precision for statistics for subpopulations of interest (often called domains or areas).

Domains may be geographically based areas such as states. They may also be cross-

classifications of a small geographic area and a specific demographic or social group.

A domain or an area is considered large or major if the domain-specific sample is

sufficiently large to yield direct estimates (using data from just that area) of adequate

precision. On the other hand, a domain is regarded as small if the domain-specific

sample is not large enough to produce a direct estimate with reliable precision. In

the survey sampling literature, areas or domains with small sample are referred to

as small areas. Small areas are also often referred to as small domains, local areas,

subdomain, small subgroup, subprovince and minor domain (Rao, 2003).

Sampling designs and in particular sample sizes are chosen in practice so as to

provide reliable estimates for aggregates of the small areas such as large geographical

regions or broad demographic groups. Budget and other constraints usually prevent

the allocation of sufficiently large samples to each of the small areas. Also, it is often

the case that domains of interest are only specified after the survey has already been

designed and carried out. In practice, it is not possible to anticipate and plan for

all possible areas (or domains) and uses of survey data as “the client will always

require more than is specified at the design stage” (Fuller, 1999).

The increased emphasis on small area estimation raises the question of how best

to design samples when the precision of small area estimates is a priority. If small

area data needs are to be served using survey data then there is a need to develop an
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overall strategy that involves careful attention to satisfy these needs at the planning,

sample design and estimation stages of the survey process (Singh et al., 1994). Singh

et al. (1994) present an illustration of compromise sample size allocation to satisfy

reliability requirements at the provincial level as well as sub-provincial level.

Marker (2001) concludes that it will never be possible to anticipate all survey

uses, or to allocate sufficient sample sizes to all domains of interest, so indirect

estimators will always be needed. But he found that it is possible to make design

choices that will greatly improve the ability of national surveys to support direct

estimation for many small areas and such choices could also improve the ability of

surveys to be used to produce indirect estimates where they are needed.

In this paper, we suppose that small areas can be identified in advance, and

that stratified sampling is used with H strata defined by the small areas, indexed

by h ∈ U1. The population of units, indexed by j, is denoted U , of size N . The

population of Nh units in stratum h is Uh and the sample of nh units selected

by simple random sampling without replacement (SRSWOR) from stratum h is

sh. Let Yj be the value of the characteristic of interest for the jth unit in the

population. The small area population mean is Ȳh and the national mean is Ȳ . The

corresponding sample estimators are ȳh and ȳ, respectively; ȳh = n−1h
∑

j∈sh yj and

ȳ =
∑

h∈U1 Phȳh, where Ph = Nh/N . Let the sampling variances be vh = varp(ȳh)

and v = varp(ȳ).

Longford (2006) considers the problem of optimal sample sizes for small area

estimation for this design. The approach is based on minimizing the weighted sum

of the mean squared errors of the planned small area mean estimates and an overall

estimate of the mean, with the weights specified to reflect the inferential priorities.
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An analytical solution exists for the case where no weight is attached to estimating

the overall mean but it has undesirable practical properties, and may sometimes

result in zero sample sizes for some strata. When the overall mean is also important

Longford does not find an exact or approximate analytical solution to the optimiza-

tion problem. He suggests that the equation can be solved by numerical methods,

such as the Newton method, but this may involve significant computation if there

are a large number of small areas.

The aim of this paper is to find the best allocation to strata for a linear combina-

tion of small area composite estimates and an overall estimator of the mean similar

to Longford. In Section 2 we reformulate the objective in model-assisted terms, and

derive the model-assisted composite estimator. Section 3 is devoted to optimizing

the design. In Subsection 3.1 we derive the optimal allocation for this objective

when national estimation has no priority (G = 0) (similar in form to Longford but

with different interpretation due to the explicit use of a model). Longford (2006)

did not give an analytical solution for the case where both national (overall) and

small area estimates are a priority (G > 0). A numerical algorithm was given but

may be computationally intensive, and its iterative nature makes it harder to see

what the method is doing.

In Subsections 3.2 and 3.3 we derive two different Taylor Series approximations

to the optimum. Unfortunately the optimal allocations (both when G = 0 and

when G > 0) have some undesirable properties, so in Subsection 3.4 we consider

a power allocation with numerically optimized exponent and also suggest several

ad-hoc sample allocations.
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2. COMPOSITE ESTIMATION

Royall (1973), in a discussion of papers by Gonzalez (1973) and Ericksen (1973),

suggested that a choice between direct and synthetic approaches need not be made

but that ‘... a combination of the two is better than either taken alone’. A natural

way to balance the potential bias of a synthetic estimator ȳ for Ȳh against the

instability of a direct estimator ȳh, is to use a composite estimator ỹCh.

Composite estimators for small areas are defined as convex combinations of direct

(unbiased) and synthetic (biased) estimators. A simple example is the composition

ỹCh = (1 − φh)ȳh + φhȳ of the sample mean ȳh for the target area h and the overall

sample mean ȳ of the target variable. The (area-specific) coefficients φh and 1− φh

in this composition are set with the intent to minimise its mean squared error

(MSE), see for example, Schaible (1978); Brock et al. (1980) and Rao (2003). The

coefficients for which minimum MSE would be attained depend on some unknown

parameters which have to be estimated.

The design-based MSE of the composite estimator is given by:

MSEp
(
ỹCh; Ȳh

)
= (1− φh)2vh + φ2

h{v +B2
h}+ 2φh(1− φh)ch

where ch is the sampling covariance of ȳh and ȳ, vh is the sampling variance of the

direct estimator ȳh, v is the sampling variance of the synthetic estimator ȳ for Ȳh

and Bh = Ȳh − Ȳ is the bias of using ȳ to estimate Ȳh. Further,

MSEp
(
ỹCh; Ȳh

)
≈ (1− φh)2vh + φ2

hB
2
h

(1)

because ch � vh and v � vh when number of small areas is large.
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The following model ξ will be assumed:

Eξ[Yj] = µ

varξ[Yj] = σ2

covξ[Yi, Yj] = ρσ2 (i 6= j; i, j ∈ Uh)

covξ[Yi, Yj] = 0 (i ∈ Uh, j ∈ Ug, h 6= g)


(2)

where i and j are units and h and g are small areas.

Under the model (2),

Eξ[vh] = Eξ[varp(ȳh)] = Eξ
[
n−1h S2

hw

]
= n−1h σ2(1− ρ)

and

Eξ[B
2
h] = Eξ

[(
Ȳh − Ȳ

)2] ≈ varξ[Ȳh] = varξ

(
N−1h

∑
j∈Uh

Yj

)
= σ2N−1h [1 + (Nh − 1)ρ].

While the areas may be small in terms of nh, they are of reasonable size in terms of

Nh, so that Eξ[B
2
h] ≈ σ2ρ. Also,

Eξ[v] = Eξ[varp(ȳ)] = Eξ

(∑
h∈U1

P 2
hn
−1
h S2

hw

)
= σ2(1− ρ)

∑
h∈U1

P 2
hn
−1
h .

Substituting for Eξ[vh] and Eξ[B
2
h] into (1) we get the anticipated MSE or approxi-

mate model assisted mean squared error, denoted AMSEh:

AMSEh = EξMSEp
(
ỹCh; Ȳh

)
= (1− φh)2n−1h σ2(1− ρ) + φ2

hσ
2ρ

(
1 +

1− ρ
ρ

∑
h∈U1

P 2
hn
−1
h

)

≈ (1− φh)2n−1h σ2(1− ρ) + φ2
hσ

2ρ

(3)

Optimizing with respect to φh we immediately obtain the optimal weight φh as:

φh(opt) = (1− ρ)
[
1 + (nh − 1)ρ

]−1
. (4)
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We substitute the optimum weight (4) into (3) to obtain the approximate optimum

anticipated MSE:

AMSEh = EξMSEp
(
ỹCh
[
φh(opt)

]
; Ȳh
)

≈
(
nhρ
[
1 + (nh − 1)ρ

]−1)2
n−1h σ2(1− ρ) +

(
(1− ρ)

[
1 + (nh − 1)ρ

]−1)2
σ2ρ

= σ2ρ(1− ρ)
[
1 + (nh − 1)ρ

]−1
.

3. OPTIMIZING THE DESIGN

3.1 Optimal Design When G = 0

Provision of precise survey estimates for domains of interest requires that samples

of adequate sizes be allocated to the domains. Conflicts arise when equal precision is

desired for domains with widely varying population sizes. If estimates are desired at

the same level of precision for all domains, then an equal allocation may be the most

efficient strategy. However, such an allocation can cause a serious loss of efficiency

for national estimates.

One way of measuring the performance of designs for small area estimation is

with a linear combination of the anticipated MSE’s of the small area mean and

overall mean estimates. Following Longford (2006), but using anticipated MSEs

instead of design-based MSEs, we use

F =
∑
h∈U1

N q
hAMSEh +GN

(q)
+ Eξv (5)

where the weights N q
h reflect the inferential priorities for areas h, with 0 ≤ q ≤ 2,

and N
(q)
+ =

∑
h∈U1 N

q
h. The quantity G is a relative priority coefficient. Ignoring the

goal of national estimation corresponds to G = 0 and ignoring the goal of small area

estimation corresponds to large values of G, since when G is very large the second

7



component in (5) is dominant in this case. If G is non-zero, it would typically

be large because v would generally be much smaller than vh, so that G has to be

large if the last term of (5) is to have any influence on the outcome. The factor

N
(q)
+ is introduced to appropriately scale for the effect of the absolute sizes of N q

h

and the number of areas on the relative priority G. Criteria (5) is similar to the

criteria in Longford (2006), however unlike this paper we adopt the model-assisted

approach which treats the design-based inference as the real goal of survey sampling,

but employs models to help choose between valid randomization-based alternatives

(Särndal et al., 1992).

The minimization is subject to a fixed sample size constraint. It would be

straightforward to extend this to a fixed cost constraint with different cost coef-

ficients in different strata.

When national estimation has no priority (G = 0), the solution for the number

of units to be sampled from each strata is found by optimizing (5) subject to a fixed

total sampling cost function. The stationary point for this optimization is

nh,opt. =
n
√
N q
h∑

h∈U1

√
N q
h

+
1− ρ
ρ

( √
N q
h

H−1
∑

h∈U1

√
N q
h

− 1

)
(6)

The expression (6) is a stationary point. It is also the optimal design if it gives

a feasible solution (0 ≤ nh,opt. ≤ Nh for all h); if not the optimal design must be

obtained numerically. An approximate solution can be found by setting the non-

feasible solutions to nh,opt. = 0 when nh,opt. < 0 or nh,opt. = Nh when nh,opt. > Nh

and then reallocating the remaining small areas (Longford, 2006).

In practice it would almost always be appropriate to set 0 ≤ q ≤ 2, with q = 0

corresponding to all areas being equally important regardless of size, and q = 2

being the best choice for national estimation. In many cases q = 1 would be a

8



sensible compromise.

The first term in (6) above is the optimal allocation for the direct estimator and

corresponds to power allocation (Bankier, 1988). The second term will be positive

for more populous areas (large Nh) and negative for less populous areas. Therefore,

the allocation optimal for composite estimation has more dispersed subsample sizes

nh,opt. than the allocation that is optimal for direct estimators.

3.2 First Taylor Series Approximation When G > 0

To incorporate priority for national estimation in optimizing design for small

area estimation, we set the relative priority G to positive values. Unfortunately,

this optimization has no simple closed form solution (Molefe, 2012). The solution

can be expressed as a quartic equation. Analytic solutions can be found to quartic

equations but finding the solution would be convoluted and difficult to interpret.

Also, there are up to 4 real-valued solutions.

Another approach would be to find a Taylor series approximation based on ρ

close to 0 and then minimize this with respect to nh. Instead, we note that the

optimal nh depends on ρ; one could consider nh to be a function of this quantity

and write nh = nh(ρ).The approximation will be

nh ≈ nh(0) + n′h(0)ρ+
1

2
n′′h(0)ρ2

An explicit expression for nh(ρ) does not exist, so we cannot obtain n′h(0) and n′′h(0)

by direct differentiation of nh(ρ) with respect to ρ. Instead, our approach is to

obtain these derivatives indirectly, by differentiating both sides of (7) and (8):

L =
∑
h∈U1

N q
hρ
[
1 + (nh − 1)ρ

]−1
+GN

(q)
+

∑
h∈U1

P 2
hn
−1
h + λ

(∑
h∈U1

nh − n

)
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Now

0 =
∂L

∂nh
= −N q

hρ
2
[
1 + (nh − 1)ρ

]−2 −GN (q)
+ P 2

hn
−2
h + λ (7)

0 =
∂L

∂λ
=
∑
h∈U1

nh − n (8)

We obtain the following results: nh(0) = nPh, n
′
h(0) = 0, n′′h(0) = n3Ph(GN

(q)
+ )−1

{
N q
h−

N−1
∑

h∈U1 N
q+1
h

}
(See Molefe (2012) for details).

Hence when ρ ≈ 0, an approximate stationary point for this optimization is:

nh ≈ nPh

(
1 +

1

2
ρ2n2(GN

(q)
+ )−1

{
N q
h −N

−1
∑
h∈U1

N q+1
h

})

The approximate solution is a function of G, ρ and q. When G approaches ∞ the

approximate solution for nh tends to nh ≈ nPh, which is proportional allocation.

When G is large, priority is given to estimation of the national mean, hence this is

as would be expected, since proportional allocation will be optimal when the focus is

on estimating accurately the overall mean. When G = 0 the approximate solution is

undefined since division by zero is undefined. The approximate solution is therefore

not suitable or appropriate when the only goal is small area estimation. When ρ

approaches 0 the approximate solution is approximately equal to nh ≈ nPh. When

ρ ≈ 0, units within a small area are somewhat similar to each other for the variable

of interest but that the degree of similarity is very very low. When this happens it

is natural for small areas to be represented in proportion to their population sizes.

When q = 1 or 2, it is not clear what the value of the approximate solution will

be. The value of nh depends on the magnitude and whether N q
h −N−1

∑
h∈U1 N

q+1
h

is positive or negative. We obtain large positive and negative values of nh depending

on the population size of the stratum. For relatively smaller strata, the result is
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large negative values which would in practice be truncated at zero and the opposite

is true for relatively large strata.

3.3 Second Taylor Series Approximation When G > 0

The approximate analytical optimal design based on ρ ≈ 0 gave counter-intuitive

results, particularly when G is small or zero. Hence we are now going to approximate

nh based on a different quantity based on both ρ and G rather than on ρ only, say,

nh = nh(α) where α = f(ρ,G) = ρ(GN
(q)
+ )−1N q. Our interest is the case where α is

small. The problem is to minimize

F =
∑
h∈U1

N q
hρ[1 + (nh − 1)ρ]−1 +GN

(q)
+

∑
h∈U1

P 2
hn
−1
h

with respect to nh subject to
∑

h∈U1 nh = n. This is equivalent to minimizing

F = α
∑
h∈U1

P q
h [1 + (nh − 1)ρ]−1 +

∑
h∈U1

P 2
hn
−1
h

The partial derivatives of the corresponding Lagrangian function with respect to nh

and λ are, respectively,

0 =
∂L

∂nh
= −αP q

h [1 + (nh − 1)ρ]−2 − P 2
hn
−2
h + λ (9)

0 =
∂L

∂λ
=
∑
d∈U1

nh − n (10)

Equations (9) and (10) are easily solved when α = 0. As with the first Taylor ap-

proximation, indirect differentiation is used because nh(α) is not available explicitly.

Let nh be the solution of (9) and (10) for any given value of α. We can then

approximate nh(α) by

nh ≈ nh(0) + n′h(0)α
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An approximate stationary point for this optimization problem when α ≈ 0 is

nh ≈ nPh

(
1 +

1

2
ρ2n2(GN

(q)
+ )−1N q

{
P q
h[

1 + (nPh − 1)ρ
]2 −∑

h∈U1

P q+1
h[

1 + (nPh − 1)ρ
]2
})

(11)

(See Molefe, 2012, page 120 Theorem 3.7.1).

In the approximation in 3.2, which was based on ρ ≈ 0, we obtained large

positive or negative values of nh when n was large. Here, as n approaches ∞ the

approximate sample size is equal to:

nh ≈ nPh

(
1 +

1

2
ρ2n2(GN

(q)
+ )−1N q

{
P q
h

(
nPhρ

)−2 −∑
h∈U1

P q+1
h

(
nPhρ

)−2})

= nPh

(
1 +

1

2
(GN

(q)
+ )−1N q

{
P q−2
h −

∑
h∈U1

P q−1
h

})
which seems more reasonable.

When q = 0 and n is large, we get

nh ≈ nPh

(
1 +

1

2
(GH)−1N0

{
P−2h −

∑
h∈U1

P−1h

})

where H = N
(0)
+ =

∑
h∈U1 N0

h .

When q = 1 and n is large, we get

nh ≈ nPh

(
1 +

1

2G

{
P−1h −

∑
h∈U1

P 0
h

})

When q = 2 and n is large, we get

nh ≈ nPh

(
1 +

1

2
(GN

(2)
+ )−1N2

{
P 0
h −

∑
h∈U1

P 1
h

})
= nPh

A priority exponent of q = 2 implies proportional allocation, hence the result is as

expected.

When G approaches ∞ the approximate sample size is equal to nh ≈ nPh. This

result is as expected since very large G implies more priority for national estimation.
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Proportional allocation will be optimal when the focus is on estimating accurately

the overall mean. When G approaches 0, this corresponds to α approaching∞, and

the approximate solution is undefined. This means that the alternative approximate

analytical optimal design for nh breaks down as G approaches zero. Perhaps this is

not surprising, as our approximation is based on small α not large α.

When ρ approaches 0 the approximate analytical design is equal to nh ≈ nPh.

3.4 Power Allocation

Power allocation was considered by Bankier (1988). The within-stratum sample

sizes are proportional to Np
h given by

nh =
nNp

h∑
h∈U1 N

p
h

(12)

for h = 1, . . . , H, where 0 ≤ p ≤ 1. A special case is the square root allocation when

p = 1
2
. The exponent p is called the power of the allocation. Setting p = 1 results

in the Neyman allocation and p = 0 results in equal allocation.

Bankier (1988) proposed choosing p based on perceived relative priorities. How-

ever, this was based on direct estimates being used in each stratum. We are inter-

ested in the case where composite estimation is to be used, and the objective is to

obtain a low value for F in (5).

It appears it is intractable to derive analytically an optimal value of p for F given

by (5). Instead we obtain the best power allocation by numerical optimization.

3.5 Ad-hoc Allocations

We also consider two sensible but ad-hoc allocations that include a design con-

structed as a mix of the optimal design when G = 0 and proportional allocation
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(special case of power allocation when p = 1). The weighting of the two allocations

is based on the relative priority coefficient G.

• Mixed Design

nh =
1

G+ 1

{
n
√
N q
h∑

h∈U1

√
N q
h

+
1− ρ
ρ

( √
N q
h

H−1
∑

h∈U1

√
N q
h

− 1

)}
+

G

G+ 1
nPh

• Logarithmic Mixed design

nh =
1

log(G+ 1) + 1

{
n
√
N q
h∑

h∈U1

√
N q
h

+
1− ρ
ρ

( √
N q
h

H−1
∑

h∈U1

√
N q
h

− 1

)}

+
log(G+ 1)

log(G+ 1) + 1
nPh

4. SAMPLE ALLOCATION

We use data on the 26 cantons of Switzeland (Longford, 2006); their population

sizes range from 15,000 (Appenzell-Innerrhoden) to 1.23 million (Zürich). The pop-

ulation of Switzerland is 7.26 million. Throughout, we assume that n = 10, 000,

ρ = 0.025 and σ2 = 100.

We use Longford’s algorithm (Longford, 2006) to obtain a numerical optimum

sample allocation using data on the 26 cantons of Switzerland.

To compare the efficiency of these designs, we consider the relative efficiency of

the various designs, relative to a standard design, equal allocation, by computing

ratios of the F values for a particular design to the value of a base design, equal

allocation, for priority exponent q = 1, 2 and relative priority coefficients G =

{0, 5, 10, 50, 100, 200}. A ratio less than one implies that a design is more efficient

than the base design, whilst a ratio greater than one implies a design is less efficient

than the base design.
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In Table 1 we see that all the allocations are more efficient than equal allocation

for all G. When G = 0, the area-only optimum (i.e. the optimal design based on G =

0), numerical optimum, optimum power allocation, the mixed design and logarithmic

mixed allocations are the best designs, followed by proportional allocation, with

equal allocation doing the worst.

When G = 5 optimum power allocation is the best design followed by the nu-

merical optimum. The area-only optimum is also not performing badly. The second

Taylor approximation is the worst design. In principle, the numerical optimum

should have been the most efficient algorithm, but in some cases it was very slightly

less efficient than other options, as this algorithm does not perfectly handle the

fixing of values of nh at the boundaries.

When G = 10, the second Taylor approximation performs worse than all the

designs except the base design.The optimum power allocation is the best design

in this case, slightly better than the numerical optimum. However, the area-only

optimum becomes worse than other designs as G increases. The relative efficiencies

of the mixed, logarithmic mixed, optimum power and proportional allocations are

comparable to the numerical optimum and the second Taylor approximation.

When G = 50, the second Taylor approximation, optimum power and logarith-

mic mixed allocations are the best designs.

The other allocations perform as well as the numerical optimum when G ≥ 50

with the exception of area-only optimum.
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Table 1: Relative efficiency of stratified designs for q = 1

Priority Coefficient (G)

Designs 0 5 10 50 100 200

Equal allocation 1.000 1.000 1.000 1.000 1.000 1.000

Proportional allocation 0.887 0.766 0.701 0.562 0.529 0.510

Area-only optimum 0.786 0.718 0.682 0.604 0.585 0.575

Numerical optimum 0.788 0.715 0.670 0.560 0.529 0.510

First Taylor approximation - - - - - -

Second Taylor approximation - 3.392 0.743 0.558 0.528 0.509

Optimum power allocation 0.786 0.712 0.668 0.558 0.528 0.509

Mixed allocation 0.786 0.743 0.691 0.562 0.529 0.509

Logarithmic mixed allocation 0.786 0.726 0.676 0.558 0.528 0.510

In Table 2 we observe that when G = 0 the area-only optimum, mixed and

logarithmic mixed allocations are the best, marginally better than the numerical

optimum. The relative efficiency for numerical optimum, proportional and optimum

power allocation is the same. We also observe that the area-only optimum relative

efficiency worsens as G increases.

In Tables 3 and 4 we present the percentiles of the sample sizes when G = 0 for

q = 1 and 2. The sample allocation for mixed and logarithmic mixed allocations

are the same in this case. We also observe that when q = 2 the area-only optimum,

mixed and logarithmic allocations have nh = 0 for some strata which is undesirable.

The first Taylor and second Taylor approximations are not applicable when G = 0.
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Table 2: Relative efficiency of stratified designs for q = 2

Priority Coefficient (G)

Designs 0 5 10 50 100 200

Equal allocation 1.000 1.000 1.000 1.000 1.000 1.000

Proportional allocation 0.493 0.492 0.491 0.489 0.488 0.488

Area-only optimum 0.488 0.493 0.496 0.502 0.503 0.504

Numerical optimum 0.493 0.492 0.491 0.489 0.488 0.488

First Taylor approximation - - - - - -

Second Taylor approximation - 0.500 0.491 0.489 0.488 0.488

Optimum power allocation 0.493 0.492 0.491 0.489 0.488 0.488

Mixed allocation 0.488 0.491 0.490 0.489 0.488 0.488

Logarithmic mixed allocation 0.488 0.490 0.490 0.489 0.489 0.488
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Table 3: Sample sizes of stratified designs for G = 0 and q = 1

Percentiles of nh

Designs Min 1st Quarter Median 3rd Quarter Max

Equal allocation 384.60 384.60 384.60 384.60 384.60

Proportional allocation 20.66 96.42 285.80 470.00 1693.00

Area-only optimum 72.00 200.50 372.50 489.20 963.00

Numerical optimum 100.50 217.20 373.50 479.40 910.10

First Taylor approximation - - - - -

Second Taylor approximation - - - -

Optimum power allocation 84.82 200.10 366.20 483.50 987.70

Mixed allocation 71.74 200.20 372.40 489.00 963.40

Logarithmic mixed allocation 71.74 200.20 372.40 489.00 963.40
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Table 4: Sample sizes of stratified designs for G = 0 and q = 2

Percentiles of nh

Designs Min 1st Quarter Median 3rd Quarter Max

Equal allocation 384.60 384.60 384.60 384.60 384.60

Proportional allocation 20.66 96.42 285.80 470.00 1693.00

Area-only optimum 0.00 67.50 275.00 478.20 1823.00

Numerical optimum 20.66 96.42 285.80 470.00 1693.00

First Taylor approximation - - - - -

Second Taylor approximation - - - - -

Optimum power allocation 20.67 96.43 285.80 470.00 1693.00

Mixed allocation 0.00 67.04 275.30 477.90 1823.00

Logarithmic mixed allocation 0.00 67.04 275.30 477.90 1823.00

In Tables 5 and 6 we present the percentiles of the sample sizes for G = 10

and G = 100, respectively, for q = 1 which can be interpreted to mean that larger

small areas being are somewhat important. The sample sizes for the least populous

cantons are boosted in relation to proportional allocation at the expense of relatively

larger cantons when G = 10. When G = 100 we observe that the sample size

allocation converges to proportional allocation.
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Table 5: Sample sizes of stratified designs for G = 10 and q = 1

Percentiles of nh

Designs Min 1st Quarter Median 3rd Quarter Max

Equal allocation 384.60 384.60 384.60 384.60 384.60

Proportional allocation 20.66 96.42 285.80 470.00 1693.00

Area-only optimum 72.00 200.50 372.50 489.20 963.00

Numerical optimum 100.50 217.20 373.50 479.40 910.10

First Taylor approximation - - - - -

Second Taylor approximation 62.49 265.20 421.30 483.50 684.30

Optimum power allocation 84.82 200.10 366.20 483.50 987.70

Mixed allocation 71.74 200.20 372.40 489.00 963.40

Logarithmic mixed allocation 71.74 200.20 372.40 489.00 963.40
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Table 6: Sample sizes of stratified designs for G = 100 and q = 1

Percentiles of nh

Designs Min 1st Quarter Median 3rd Quarter Max

Equal allocation 384.60 384.60 384.60 384.60 384.60

Proportional allocation 20.66 96.42 285.80 470.00 1693.00

Area-only optimum 72.00 200.50 372.50 489.20 963.00

Numerical optimum 55.73 139.50 307.50 463.20 1477.00

First Taylor approximation - - - - -

Second Taylor approximation 29.03 130.20 312.90 472.70 1491.00

Optimum power allocation 30.02 117.80 308.80 480.40 1498.00

Mixed allocation 21.66 98.45 287.50 470.40 1679.00

Logarithmic mixed allocation 31.02 117.50 303.40 473.90 1545.00
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Figure 1 shows a graphical display of the sample size distribution by numerical

optimization in R using Longford’s algorithm for various values of G and q. When

G = 0 and q = 0 each canton is allocated the same sample size of nh = 10, 000/26 =

385. When q = 2, the allocation is proportional to the canton’s population size. For

intermediate values of q, sample sizes of the least populous cantons are boosted in

relation to proportional allocation, at the expense of reduced allocation to the most

populous cantons.

As G increases we observe that the distances between the curves that connect

the optimal sample size reduces, especially for smaller cantons. This shows that the

priority exponent q has minimal impact on the sample allocation for very large G.

22



0 200 400 600 800 1000 1400

0
50

0
10

00
15

00

G =  0 

Population (in '000)

S
ub

sa
m

pl
e 

si
ze

 (
ca

nt
on

s)

q = 0

q = 0.5

q = 1

q = 1.5

q = 2

0 200 400 600 800 1000 1400

0
50

0
10

00
15

00

G =  5 

Population (in '000)

S
ub

sa
m

pl
e 

si
ze

 (
ca

nt
on

s)

q = 0

q = 0.5

q = 1

q = 1.5

q = 2

0 200 400 600 800 1000 1400

0
50

0
10

00
15

00

G =  50 

Population (in '000)

S
ub

sa
m

pl
e 

si
ze

 (
ca

nt
on

s)

q = 0
q = 0.5

q = 1

q = 1.5

q = 2

0 200 400 600 800 1000 1400

0
50

0
10

00
15

00

G =  200 

Population (in '000)

S
ub

sa
m

pl
e 

si
ze

 (
ca

nt
on

s)

q = 0
q = 0.5
q = 1

q = 1.5q = 2

Figure 1: Numerical optimum sample distribution by relative priority coefficient
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In Table 7 we show the numerical optimum value of p, the power of the alloca-

tion. For each relative priority coefficient G we observe that as q approaches 2, the

optimum p approaches 1. When G is large, the optimum p is 1 even for small values

of the priority exponent q. Also, when G = 0, the optimum p ≈ q
2
.

Table 7: Numerical optimum value of p

Priority Exponent Priority Coefficient G

q 0 5 10 50 100 200

0.00 0.000 0.192 0.293 0.597 0.730 0.839

0.25 0.138 0.300 0.392 0.677 0.794 0.882

0.50 0.277 0.416 0.500 0.756 0.852 0.917

0.75 0.417 0.537 0.612 0.828 0.899 0.945

1.00 0.557 0.658 0.721 0.887 0.936 0.966

1.25 0.698 0.776 0.823 0.934 0.963 0.981

1.50 0.837 0.886 0.912 0.970 0.983 0.991

1.75 0.975 0.984 0.988 0.996 0.998 0.999

2.00 1.000 1.000 1.000 1.000 1.000 1.000
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5. CONCLUSIONS

The anticipated MSE is a sensible objective criteria for sample design, because

the particular sample which will be selected is not available in advance of the survey.

Hence a criteria which averages over all possible samples is appropriate. Särndal

et al. (1992, Chapter 14) base their optimal designs on the anticipated variance,

which similarly averages over both model realizations and sample selection, although

they consider only approximately design-unbiased estimators.

An analytical solution for the stationary point exists when the only priority is

small area estimation. However, there are difficulties in applying it because when the

strata have disparate population sizes, the stationary point gives negative sample

sizes, so that the optimum must be obtained numerically. The numerical optimum

then has some strata with nh = 0 which is also not desirable.

When priority is given to national estimation as well as to small area estimation

so that G > 0, two approximate solutions were derived, based on ρ ≈ 0, and

α = f(ρ,G) = ρ(GN
(q)
+ )−1N q ≈ 0. Both had undesirable properties, giving very

large positive and negative sample sizes in some cases.

An optimal power allocation, where nh ∝ Np
h , and p is obtained numerically to

minimize the objective function, has much better practical properties, is easier to

calculate and would seem a more natural design by most survey statisticians. It is

only slightly less efficient than the numerical optimum design. The mixed design

and logarithmic mixed design are also found to be efficient and easy to calculate.
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