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Highlights: 

• We review nine alternatives for correcting bias in log-log allometrics. 

• We use simulations to evaluate the ability of these to estimate average biomass. 

• We evaluate their ability to predict biomass of new trees. 

• Methods not commonly used in forest science performed best. 

  



Abstract 

Allometric relationships are commonly used to estimate average biomass of trees of a 

particular size and to predict biomass of individual trees based on an easily measured covariate 

variable such as stem diameter.  They are typically power relationships which, for the purpose of 

data fitting, are transformed using natural logarithms to convert the model to its linear equivalent. 

Implementation of these equations to estimate the relationships and to predict biomass of new 

trees on the natural (i.e., actual) scale requires back-transforming the logarithmic predictions. 

Because these transformations involve non-linearity, care must be taken during this step to avoid 

bias. Several correction factors have been proposed in the literature for removing the gross bias in 

estimates, but their performance as predictors of biomass has not yet been examined. This is a very 

important problem, and here we review nine such correction factors in terms of their abilities to 

estimate biomass and predict biomass for new trees. We compare their performance by examining 

their bias and variability based on large datasets of above-ground biomass and stem diameter for 

eight species of harvested trees and shrubs in the genera Eucalyptus and Acacia (n = 102-365 

individuals per species).  We found that good estimates of average biomass turned out to be good 

predictors of biomass for new trees. The linear model fitted has log of the above-ground biomass as 

the response variable and log of the stem diameter as the covariate.  The only exactly unbiased 

estimate among those considered was the uniform minimum variance unbiased (UMVU) estimate, 

which involves evaluating a confluent hypergeometric function to obtain its correction factor. Three 

alternative correction factors that are easy to compute also performed well.  One of these minimises 

mean squared error and was found to result in low bias, low prediction bias, the lowest mean 

squared error, and the lowest mean squared prediction error among all correction factors examined. 

 

Keywords: allometry, Eucalyptus, Acacia, above-ground biomass, destructive sampling, stem 

diameter 

  



Introduction 

Forests are an important component of the global carbon cycle through the flux and storage of 

carbon in plant biomass and soil. Accurate quantification of forest biomass is therefore important for 

understanding carbon stocks in existing forest ecosystems and the potential for greenhouse 

mitigation from reforestation and afforestation.  A relatively easy, non-destructive evaluation of 

biomass can be obtained from above-ground measurements.   

Allometric relationships are commonly used in this regard.  For trees, such relationships are 

typically power equations of the form, y = a.x
b
, which relate biomass y to a covariate x such as stem 

diameter at breast height. A transformation using natural logarithms converts this equation to its 

linear equivalent, ln(y) = β0 + β1.ln(x), where β0 = ln(a) and β1 = b. Typically, a stochastic version of 

this, namely ln(y) = β0 + β1.ln(x) + ε, is fitted using the standard regression assumptions that the error 

ε has zero mean, constant variance, and is normally distributed. Allometric models may also be 

based on additional covariates (e.g., Kuyah et al. 2012), and the formulae given in this paper 

accommodate multivariate regression. 

Other workers (Parresol 2001; Lambert et al. 2005) have found that modelling the error structure 

on the original data scale can on occasions give results as good as or even better than applying a 

transformation. Another alternative to the simple power-law model used here is the use of weighted 

non-linear (or combined) allometric models, for which there is a considerable literature (e.g., Brown 

et al. 1989; Bi and Hamilton 1998; Parresol 1999; Ritson and Sochacki 2003; Bi et al. 2004; Morote et 

al. 2012).  However, to our knowledge, the accuracy of these various approaches to overcoming 

traditional problems associated with back transformation of allometric relationships has not been 

explored in detail and, consequently, log-log models remain the most common form of allometric 

models used in forest science.   

For practical use, any model predictions and model estimates computed on the logarithmic scale 

must be back-transformed to the original, plant-biomass scale. Because this transformation is non-

linear, and there is variability in the observed data around the fitted relationship, a simple ‘naive’ 

exponential-based transformation will generate bias (e.g., Finney 1941). Consequently, correction 

factors are typically calculated to remove this bias when back-transforming.  

For tree allometrics, several estimates of average biomass have been commonly used, including 

the residual maximum likelihood (REML) estimate, also known as the Baskerville estimate 

(Baskerville 1972), Duan’s smearing estimate (Duan 1983), and the Snowdon correction factor or 

ratio estimate (Snowdon 1991).  Snowdon’s ratio estimate has also had an impact in the forestry 

literature (e.g. Búrquez and Martínez-Yrízar 2011) although, to our knowledge, its statistical 

efficiency has not been previously tested. Smith (1993) and Hui et al. (2010) review many of the 



earlier correction factors in the field of allometry. Within statistics, several other estimates have 

been proposed (e.g., Finney 1941; Bradu and Mundlak 1970; El-Shaarawi and Viveros 1997; Shen 

and Zhu 2008), but they have not been assessed in terms of their prediction properties for the 

purpose of tree allometrics.   

The ultimate goal of applying allometrics is the prediction of biomass for new trees, and so these 

correction factors need to be evaluated in terms of their prediction performance. Optimal predictors 

are those that minimise the mean squared prediction error (MSPE). Therefore, the aim of this paper 

is to compare the bias and variability of several possible predictors of forest biomass, including those 

commonly used in log-log allometric relationships. Our analysis is based on large datasets of above-

ground biomass and stem diameter for trees and shrubs in the genera Eucalyptus and Acacia.   

 

Methodology 

Statistical formulation of the problem of estimating biomass 

We write our regression model for log-biomass using matrix notation, such as may be found in 

Shen and Zhu (2008).  Matrix notation is helpful as the matrix formulae are the same whether we 

have one, two, or more covariates. The regression-model setup states that the log-biomass response 

Y for a collection of n trees is related to the covariates X via the equation: 

Y = Xβ + ε 

where ε is an n-dimensional vector of independent and identically distributed mean-zero normal 

random variables with variance σ
2
; X is a matrix of dimension n by (p+1); β = (β0, β1, ...., βp)

T
 is the 

(p+1)-dimensional vector of fixed effects; Y = (Y1, ...., Yn)
T
 is the n-dimensional vector of log-biomass 

data; and T denotes the matrix-transpose operation. This model has m = n-(p+1) degrees of 

freedom, and the covariates encoded within X include constant term and p other variables that may 

include such variables as log height, log basal area, age, or binary dummy variables associated with 

species, for example. 

The ordinary-least-squares (OLS) estimate for β is β�  = (X
T
X)

-1
 X

T 
Y, and this has a normal 

distribution, N(β, σ
2
 (X

T
X)

-1
). Based on the assumptions made so far, the OLS estimate for β is 

unbiased. The residual sum of squares (RSS) is related to a chi-squared random variable; that is, 

RSS = Y
T
[I - X(X

T
X)

-1
X

T
]Y has a scaled chi-squared distribution, σ

2 
χm

2
, with expected value 

E(RSS) = mσ
2
. Note also that β�  and RSS are independent, a result that plays a key role in deriving the 

expected values of biomass on the original scale. 

The maximum likelihood (ML) estimate for σ
2
, σ��  

ML = RSS/n, is biased. The REML estimate for σ
2
, 

σ��  
REML = RSS/m = s

2
, is unbiased (Patterson and Thompson 1971; Harville 1977). The ML estimate of 

β is the same as the OLS estimate β�, and it is unbiased. 



For a new tree whose covariate value is x0, the model states that the log-biomass is Y0 = xo
Tβ + ε0. 

Thus, Y0 has a normal distribution, N(xo
Tβ, σ

2
), with mean xo

Tβ and variance σ
2
. When transformed 

back to the original scale, the biomass is exp(Y0) = exp(xo
Tβ + ε0), which has mean µ(x0) = exp(xo

Tβ + 

½σ
2 

) and variance (exp(σ
2
) - 1) exp(2xo

Tβ + σ
2
).  

Allometrics is an attempt to solve two related tasks. The first is the estimation of the average 

biomass of trees whose covariate value is x0, that is, the estimation of the (constant) value µ(x0). The 

second is the prediction of the biomass for a specific new tree whose covariate value is x0, that is the 

prediction of the (random) value exp(Y0). We perform estimation and prediction based on our fitted 

regression model, and hence our estimates and predictors are both random quantities with means 

and variances. The difference between estimation of a fixed quantity (e.g., the average biomass of 

trees with covariate x0) and the prediction of a random quantity (e.g., the biomass of a specific tree 

with covariate x0) is subtle. Of course the numerical magnitude of the estimates and predictors are 

the same; the only difference lies in their variability. Predicting a random variable generally leads to 

greater variability.  

 

Estimates of biomass 

Because we use regression to estimate expected log-biomass, a naive estimate for the expected 

biomass is a direct back-transformation of that value to the original scale. The value xo
Tβ� is an 

unbiased estimate of the constant xo
Tβ, which is equal to E(Y0|x0). However, exp(xo

Tβ�) is not an 

unbiased estimate of exp(xo
Tβ + ½σ

2
) = µ(x0) = E(exp(Y0)|x0), the expected biomass of a tree with 

covariate value x0. We call xo
Tβ�  the 'naive' estimate because it is the first estimate one might try, but 

it is biased. All corrections for this bias that we have found within the scientific literature involve 

multiplicative correction factors, CEst, so that the estimates are all of the form: 

μ�
Est

(x0)= CEst .exp(x
o
T
β�) 

Then μ�
Naive

(x0) corresponds to the special case of CNaive = 1. 

One commonly used estimate of this form is based on the OLS estimate for β and the REML 

estimate for σ
2
 plugged into µ(x0) = exp(xo

Tβ + ½σ
2 

). As such, the correction factor for this REML-

based estimate is: 

CREML= exp�½s2	 

and this straightforward approach can go a long way towards correcting the bias of the naive 

estimate; it has been used in a forestry setting by Baskerville (1972). 

Two commonly used estimates in forestry for biomass estimation are the ratio estimate and the 

smearing estimate. The ratio estimate was first proposed by Snowdon (1991), and its correction 

factor is: 



CRaXo= 
1Texp(Y)

1Texp(Xβ�)
 

The smearing estimate was first described by Duan (1983), and its correction factor is: 

CSmear= 
1Texp(Y- Xβ�)

n
 

One of the problems with the REML-based estimate is that it does not take into account the 

uncertainty in the estimate s
2
 for σ

2
. Finney (1941) proposed an estimate that addressed this 

shortcoming when estimating a term such as exp(µ + ½σ
2
), which is a slight simplification of what we 

aim to estimate here; see also Heien (1968). In our context, the correction factor for Finney’s 

estimate is: 

CFinney= exp�½s2	 . 
1- s2 �s2+2

4n
� +s4 �3s4+44s2+84

96n2
� 

This correction factor, like the others we have seen so far, is a constant value and does not vary 

with x0, the covariate of the tree whose biomass we wish to estimate. In reality, the variability in 

predicted log-biomass values changes with the covariates due to uncertainty in the estimate of β, 

which affects our estimate of the mean log-biomass. Notice that var(xo
Tβ�) = x0

T
(X

T
X)

-1
x0 σ

2
, which we 

shorten to v(x0).σ
2
, as this expression is used in the four remaining correction factors. The additional 

source of uncertainty due to β� was taken into account by Bradu and Mundlak (1970), who derived 

the uniform minimum variance unbiased (UMVU) estimate for µ(x0). The UMVU estimate has 

correction factor: 

CUMVU(x0)= 0F1 �m

2
;
m(1-v(x0))

4
s2� 

where 0F1 is a confluent hypergeometric function, and recall that m = n-(p+1) is the number of 

degrees of freedom associated with the regression. For simple linear regression the number of 

parameters is p+1=2, and hence m=n-2. Software for evaluating confluent hypergeometric functions 

is available in the GNU Scientific Library (GSL); see Galassi et al. (2009). Hankin (2006) provides 

software for linking the GSL library to the R programming environment (R Core Team, 2012), which 

may be a more accessible way for statisticians to evaluate this estimate.  

Perhaps because of a perceived difficulty in evaluating the confluent hypergeometric function, 

other researchers have looked for easy-to-evaluate estimates that approximate the UMVU estimate. 

El-Shaarawi and Viveros (1997) proposed an estimate (EV) with correction factor: 

CEV(x0)= exp �1-v(x0)

2
s2-

1

4m
s4-

1

6m2
s6� 

Shen and Zhu (2008) proposed two alternative estimates that are respectively designed to 

minimise mean squared error (MM) and minimise bias (MB) within a particular class of estimates. 

The correction factors for these estimates are: 



CMM�x0	= exp � ms2

2�m+2+3nv(x0)	+ 3s2
� 

and 

CMB(x0)= exp � ms2

2�m+nv(x0)	+ s2
� 

We have included an appendix to this paper that contains the R code required to fit a log-log 

allometric model and make predictions using each of these correction factors (see Appendix 1). We 

include code to model the volume of 31 cherry trees using diameter and height as covariates. This 

classic statistical dataset is available through the SMIR package (Aitken et al., 2012) and may be 

familiar to many statisticians due to its inclusion in Ryan et al. (1976). 

 

Prediction of biomass 

We also use regression to predict log-biomass of new trees, and our predictor can be back-

transformed to form a predictor of the biomass of these trees. Consider a new tree with biomass 

exp(Y0) and covariate x0. Then the value xo
Tβ�  is an unbiased predictor of Y0 = x0

T
β + ε0, since both 

random quantities have the same expected value, namely x0
T
β. However, exp�xo

Tβ�) is not an 

unbiased predictor of exp(x0
T
β + ε0), the biomass of this new tree, since we saw earlier that the 

expected value of biomass for this tree is exp(x0
T
β + ½σ

2 
).  

Now, any estimate of biomass can also be used as a predictor of biomass. The distinction 

between the two lies in their errors. The estimation error is: 

μ�
Est

�x0	- exp(x0
Tβ + ½σ2), 

whereas the prediction error is: 

μ�
Est

�x0	- exp(x0
Tβ + ε0), 

which is more variable due to the second source of variability, namely ε0. The averages of these 

quantities are the bias and prediction bias, respectively. 

 

Datasets 

Datasets of total above-ground biomass (kg dry matter (DM)) and stem diameter (cm) for eight 

species of trees and shrubs were used. The shrub species were Acacia calamifolia Sweet ex Lindl., A. 

hakeoides A. Cunn. ex Benth., and A. pycnantha Benth.; and the tree species were Eucalyptus 

loxophleba Benth., E. melliodora A.Cunn. ex Schauer, E. occidentalis Endl., E. spathulata Hook., and 

E. viminalis Labill.  The species were harvested from a range of revegetation sites in southern 

Australia; a detailed description of the measurement methods is given in Paul et al. (2012). There 

was an average of 163 individuals per species, ranging from 102 to 365 individuals. Stem diameters 

for trees were diameter at breast (130cm) height (DBH) and for shrubs were diameter at 10 cm 



height (D10). After the diameters were recorded, the trees/shrubs were harvested to measure 

biomass as described in Paul et al. (2012).  

We fitted simple-linear-regression models for each species using Y = log (above-ground biomass) 

as the response variable and x = log (stem diameter) as the covariate (Table 1).  Log (stem diameter) 

explains over 90% of the variation in log (above-ground biomass) in each dataset (Table 1). Our 

estimates of error standard deviations (s) for each species range from 0.25 to 0.45. Assuming σ lies 

within this range, the magnitude of biases we are adjusting for are between 3 and 10% of biomass. 

Figure 1 is a plot of the data for the E. viminalis dataset, showing the strength of the linear 

relationship between predictor and response on the log-log scale. Regression diagnostics were 

performed, and no evidence was found to reject the model assumptions of normality and constant 

variance of the errors.  

 

Comparison of estimates 

To compare the different estimates, we conducted a simulation study calibrated to look like the 

datasets specified in the previous section. It is necessary to perform a simulation study to evaluate 

the performance of the correction factors because true biomass values are known and the model 

assumptions are met. A comparison based on the single datasets will not allow us to validate the 

variability of the estimates and predictions.  

For each tree/shrub species we simulated a new dataset for the given set of stem diameters using 

a simple-linear-regression model with the regression coefficients and error standard deviations 

listed in Table 1. We then proceeded to estimate these regression coefficients, β0 and β1, and the 

error standard deviation, σ, from the simulated data. Next, we computed the nine biomass 

estimates at each diameter value in that dataset. Finally, these estimates were compared with the 

known expected biomass µ(x0), for each x0, which was computed using the known regression 

coefficients listed in Table 1; the error of the biomass estimate, namely the difference between the 

estimated biomass and the known biomass, was obtained. We carried out 10,000 simulations, and 

the bias (average error), standard deviation (SD) of the errors, and mean squared error (MSE = SD
2
 + 

bias
2
) for the estimates, obtained by averaging across the 10,000 simulations, were recorded for 

each tree/shrub (i.e., for each x0). We further averaged these summary statistics across individuals 

for each species. This enabled comparisons of the estimates across a range of stem diameters within 

each species as well as more general comparisons across species. 

 



Comparison of predictors 

The estimates of expected biomass, CEst .exp(x
o
T
β�), are often used to predict biomass of new 

trees, so we evaluated the performance of these predictors by comparing their predicted values to 

additional simulated biomass values Y0 with covariate x0. These additional biomass values were 

simulated using the true allometric parameters given in Table 1. The prediction bias and MSPE, 

obtained by averaging the prediction errors and squared prediction errors across the 10,000 

simulations, were recorded for each x0 and then further averaged across individuals for each species. 

 

Results 

The magnitude and direction of bias are important. Because of the relationship between bias, 

variance, and mean squared error, it is natural to make comparisons of the correction factors in 

terms of the bias
2
, MSE, (prediction bias)

2
, and MSPE values averaged across all trees/shrubs for 

each dataset for nine different correction factors; see Table 2. The directions of bias are examined in 

Figure 2B. The need for a bias correction is evident through the consistently poor performance of 

the Naive correction factor, both in terms of estimation and in terms of prediction. For all estimates, 

the Bias
2
 value is a minor component of the MSE, except for the Naive estimate. The MSE values for 

the Naive estimates are always larger than the others. An examination of MSE and MSPE values 

shows that Snowdon’s Ratio correction factor also performs poorly. In what follows, we focus 

primarily on the remaining seven correction factors.  

The overall performance of the seven correction factors as estimates and predictors can be 

evaluated using Table 2. The differences in performance of the correction factors are subtle and 

patterns in performance are more evident in graphical displays. For simplicity, here we present plots 

for the E. viminalis dataset only (Figure 2), allowing comparison of the MSE and MSPE values (Figure 

2A) and the Bias and Prediction Bias (Figure 2B) for the seven correction factors. The pattern and 

order of correction factors found for this dataset are similar to those for the other seven datasets 

(see Appendix 2).  The correction factor that consistently gives the smallest MSE and MSPE values in 

all cases is the MM correction factor. In terms of bias, the MM correction factor is on par with, or 

slightly larger in magnitude than, the MB, EV, and UMVU correction factors. In all examples, there is 

very little difference between the MB, EV, and UMVU correction factors. The bias of the MM 

correction factor indicates that it slightly underestimates biomass. The Ratio, Finney, and Smear 

correction factors have higher MSE and MSPE values in each example, and their biases indicate that 

they slightly overestimate biomass each time. 

Figure 3 presents plots of the bias (Figure 3A), the relative standard deviation (Figure 3B) and the 

relative MSE (Figure 3C) of the estimates as a function of diameter for the E. viminalis dataset.  The 



biases of four of the seven correction factors move away from zero as the stem diameters increase, 

however the bias of the MB, EV, and UMVU correction factors stay close to zero (Figure 3A). Again 

we observe no visible difference between the MB, EV, and UMVU correction factors in terms of bias 

at any diameter, and any observed difference between the UMVU’s bias and zero is due to the fact 

that Figure 3A is based on a simulation.  

Using the UMVU estimate of biomass as our basis for comparison, we examine the standard 

deviations of our estimates relative to the standard deviation of the UMVU estimate (Figure 3B). The 

REML, Finney, and Smear estimates are more variable than the MB, EV, and UMVU estimates. The 

MM estimate is less variable than the UMVU estimate.  

Finally, we examine the MSE to obtain an overall evaluation of the estimates relative to the MSE 

of the UMVU estimate (Figure 3C). MSE acts as a natural overall method for comparing these 

estimates as it combines both bias (Figure 3A) and variability (Figure 3B) into a single measure.  The 

MM estimate has consistently lower MSE values at each diameter compared with the UMVU 

estimate (Figure 3C). The patterns shown in Figure 3 are also apparent for the other species. 

 

Discussion 

Our study resulted in two main findings. First, only one estimate, the UMVU estimate, was truly 

unbiased, but the EV and MB estimates gave almost identical performance whilst avoiding the need 

to evaluate a confluent hypergeometric function (Figures 2, 3). Second, the MM correction factor 

removed the bulk of the gross bias and performed better in terms of prediction; the MM correction 

factor had bias of slightly larger magnitude but also had the lowest MSPE compared to other 

correction factors (Figure 3).  MM underestimated biomass but the magnitude of this bias was small, 

making up less than 1% of the MSPE.   

These results have implications for the application of tree allometrics, as the correction factors 

found to perform best here are not currently in general use.  Three of the estimates tested here, the 

REML, Smearing, and Snowdon’s Ratio estimates, have been commonly used in estimation of forest 

biomass.  Previous work, including Lambert et al. (2005), who also cited criticisms raised by 

Flewelling and Pienaar (1981) and Hepp and Brister (1982), has criticised the REML estimate about 

the magnitude of its bias, especially for small sample sizes. In agreement with this, we found that 

this correction factor overestimated biomass, more so for larger individuals (Figure 3A).  A 

comparison of estimates using simulated sampling studies of Pinus radiata datasets (Snowdon 1991) 

found that, in most cases, the Ratio estimate gave less biased and/or more accurate estimates of 

total biomass than the REML and Finney estimates.  Further, the Ratio estimate was found to have 

lower bias and increased accuracy at the plot level than the Smearing and REML estimates when 



validated against whole-plot harvests of woody vegetation in the Sonoran Desert (Búrquez and 

Martínez-Yrízar 2011).  Based on its low bias relative to these two other correction factors, 

Snowdon’s Ratio correction factor has been commonly applied in the field of tree allometrics (e.g., 

Montagu et al. 2005; Paul et al. 2008).  Here we found that although Snowdon’s Ratio estimate 

performed better than several of the other estimates in terms of bias (see Table 2), as a predictor it 

performed relatively poorly. Based on our investigations, we suggest that four of the correction 

factors considered here, and which are not currently used in forest science, provide better 

alternatives in terms of their ability to predict biomass.   

Although we assess correction factors in terms of their performance as estimates and predictors 

of total above-ground biomass of trees and shrubs using allometric equations, this assessment also 

applies to other logarithmic regressions including, for example, allometric equations for the 

prediction of leaf area (Marshall and Waring, 1986). Much of the previous work (e.g., Smith 1993) 

has focussed on correcting the bias associated with estimates of the average response variable (in 

our case, tree biomass) from log-log allometric equations. However, as prediction of the response 

variable (in our case, tree biomass) is the ultimate goal here, we have also evaluated correction 

factors in terms of their ability to predict. 

In this study, we tested datasets covering only relatively small trees (all stem diameters <42 cm, 

with the exception of E. occidentalis, with three of the 118 stem diameters lying in the range 42-79 

cm), where the commonly used log-log allometric equations are relatively robust, provided they are 

based on a sufficient number of individuals.  However, when relatively large trees with relatively 

high variability in biomass due to factors such as hollows or decayed wood are included, linear 

allometric equations developed on transformed data may not give due weighting to larger trees, 

which hold most of the biomass for a given site (e.g., see Brown et al. 1989; Roxburgh et al. 2006; 

Kuyah et al. 2012).  In such cases, the application of other allometric models may provide a better 

alternative.   For example, other workers (Parresol 2001; Lambert et al. 2005) have found that 

modelling the error structure on the original data scale gives results as good as or even better than 

applying a transformation.  Also, weighted non-linear (or combined) allometric models have been 

used recently by numerous workers (e.g., Brown et al. 1989; Parresol 1999; Bi et al. 2004; Morote et 

al. 2012).  Further work is required to test the accuracy of these various approaches to overcoming 

traditional problems associated with back transformation of allometric relationships.   

The common use of logarithmic regression in allometry has been questioned by several 

researchers in situations where the ultimate goal is not prediction but the description of the 

relationship between variables (e.g., Warton et al. 2006, Packard et al. 2010).  Warton et al. (2006) 

examined allometrics through a bivariate model of biomass and diameter; that is, their model takes 



errors in the measurement of diameters into account. More recently, Warton et al. (2012) released 

software that offers two alternatives to OLS regression for finding the regression line of best fit, 

namely 'major axis' and 'standardised major axis'. Warton et al. (2006) explicitly highlight that 

regression is preferred when prediction is the purpose of line-fitting.   

 

Conclusions 

When unbiased estimates are required, the UMVU correction factor is an obvious choice, and the 

MB and EV correction factors give almost identical performance whilst avoiding the need to evaluate 

a confluent hypergeometric function.  

When unbiased estimates and predictions are not strictly required, there is one alternative 

correction factor, the MM correction factor, which should be considered. As a predictor it removes 

the bulk of the gross bias and it has superior performance in terms of MSPE. The MM correction 

factor has slightly larger bias than the MB, EV and UMVU correction factors, but it has the lowest 

MSPE among all nine correction factors that we considered. Its bias is slightly negative, but small; 

the square of its bias makes up less than 1% of the MSPE. Therefore, when predicting biomass of 

new trees, we recommend the use of the MM correction factor. 
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Figure 1 Relationship between above-ground biomass and stem diameter (both on log scales) for E. 

viminalis, together with the ordinary-least-squares regression line.  

 

Figure 2 Relationships between (A) mean square error (MSE) and mean square prediction error 

(MSPE) values and (B) bias and prediction bias (P-Bias) for the seven correction factors for the 

simulation based on the E. viminalis dataset.  

 

Figure 3 Plots of estimation bias (A), relative standard deviation (B), and relative mean squared error 

(C) as a function of diameter for the E. viminalis dataset. A: The Naive estimate is not included here 

as its bias is much larger in magnitude, ranging from -0.2 kg DM at low diameters to -8.0 kg DM at 

high diameters. Any apparent bias in the UMVU estimate is due to simulation noise only. B: The 

Naive and Ratio estimates are excluded as their relative SD values range from 0.95 to 0.97 for the 

Naive estimate and from 1.0 to 1.3 for the Ratio estimate. C: The Naive and Ratio estimates are 

excluded as their relative MSE values range from 1.5 to 5.9 for the Naive estimate and from 1.1 to 

1.6 for the Ratio estimate. 
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Table 1: Summary statistics for the diameters and biomass values and the regression on the log-log scale for each of the eight datasets, including the 1 

number of shrubs and trees (n), the minimum (Min), maximum (Max), mean, and standard deviation (StDev) for the diameters and biomass, and least 2 

squares estimates for intercept and slope, the root mean squared error (s), the number of degrees of freedom (m=n-2), and the proportion of variation 3 

of the response explained by the predictor (R
2
) for each species. DBH is stem diameter at breast (130cm) height; D10 is stem diameter at 10 cm.  4 

  Stem diameter Diameter Summary (cm) Biomass Summary (kg DM) Regression Summary 

n  Min Max Mean StDev Min Max Mean StDev Intercept β�� Slope β�� s m=n-2 R
2
 

Acacia calamifolia 128 D10 1.0 15.9 6.0 3.2 0.113 87 12.2 14.9 -2.23 2.41 0.360 126 0.939 

A. hakeoides 113 D10 0.5 21.3 6.8 4.0 0.059 123 10.6 15.4 -2.10 2.10 0.358 111 0.946 

A. pycnantha 102 D10 1.0 23.8 9.2 4.7 0.114 130 26.4 27.0 -2.37 2.36 0.450 100 0.927 

Eucalyptus loxophleba 104 DBH 0.2 29.0 8.4 5.0 0.122 191 30.9 37.0 -0.779 1.82 0.366 102 0.930 

E. melliodora 169 DBH 1.8 39.2 7.7 6.0 0.608 698 27.5 71.6 -1.73 2.12 0.326 167 0.939 

E. occidentalis 118 DBH 2.3 79.0 11.7 11.5 1.040 6710 178.0 765.0 -2.12 2.43 0.240 116 0.979 

E. spathulata 206 DBH 2.3 41.3 9.7 5.3 2.270 966 60.2 90.8 -1.30 2.22 0.251 204 0.954 

E. viminalis 365 DBH 2.3 29.8 10.0 4.9 0.769 365 32.0 44.5 -2.19 2.30 0.242 363 0.954 

 5 
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Table 2: Mean squared error (MSE), squared bias (Bias
2
), mean square prediction error (MSPE), and squared prediction-bias (P-Bias

2
) values for each 7 

estimate, averaged across all trees for each dataset, where MSE = Variance + Bias
2
.  8 

A. calamifolia A. hakeoides A. pycnantha E. loxophleba E. melliodora E. occidentalis E. spathulata E. viminalis 

MSE Naive 2.60 1.690 22.0 14.70 23.0 2180 39.6 3.57 

Ratio 1.54 1.080 11.1 9.38 21.3 3920 34.8 1.90 

REML  1.29 0.871 8.83 7.77 16.3 2040 28.9 1.68 

Finney 1.29 0.869 8.79 7.76 16.3 2040 28.9 1.68 

Smear 1.29 0.868 8.78 7.75 16.3 2040 28.9 1.68 

EV 1.28 0.865 8.74 7.73 16.2 2020 28.8 1.68 

MM 1.28 0.860 8.63 7.70 16.1 2010 28.7 1.67 

MB 1.28 0.866 8.74 7.73 16.2 2030 28.8 1.68 

UMVU 1.28 0.865 8.74 7.73 16.2 2020 28.8 1.68 

A. calamifolia A. hakeoides A. pycnantha E. loxophleba E. melliodora E. occidentalis E. spathulata E. viminalis 

Bias
2
 Naive 0.618 0.391 6.93 3.64 1.55 17.4 3.54 0.798 

Ratio 7.12E-05 3.53E-06 5.37E-04 1.16E-03 3.89E-05 8.51E-02 1.32E-04 2.86E-05 

REML  3.11E-04 2.15E-04 5.97E-03 5.77E-05 1.64E-03 7.45E-02 1.58E-03 1.28E-04 

Finney 1.15E-04 7.14E-05 2.16E-03 1.61E-04 1.04E-03 5.46E-02 8.99E-04 7.63E-05 

Smear 1.61E-05 7.17E-06 3.71E-04 9.96E-04 5.95E-04 3.84E-02 4.13E-04 3.95E-05 

EV 2.96E-06 2.58E-06 4.38E-04 1.16E-03 1.08E-05 2.21E-04 6.28E-05 1.85E-05 

MM 1.54E-03 1.08E-03 1.77E-02 2.07E-02 5.42E-03 0.236 4.45E-03 1.96E-04 

MB 3.37E-06 2.85E-06 4.48E-04 1.14E-03 1.83E-05 6.14E-06 7.17E-05 1.88E-05 

UMVU 3.05E-06 2.65E-06 4.45E-04 1.15E-03 1.10E-05 2.16E-04 6.30E-05 1.85E-05 

          



MSPE  A. calamifolia A. hakeoides A. pycnantha E. loxophleba E. melliodora E. occidentalis E. spathulata E. viminalis 

 Naive 58.108 36.637 408.13 297.78 413.32 24688 956.22 153.55 

 Ratio 56.975 36.083 397.71 292.42 412.2 26459 952.63 152 

 REML  56.747 35.879 395.03 290.75 407.2 24579 946.2 151.74 

 Finney 56.745 35.877 394.99 290.74 407.17 24577 946.19 151.74 

 Smear 56.744 35.875 395.01 290.72 407.18 24575 946.16 151.74 

 EV 56.742 35.872 394.95 290.71 407.04 24561 946.07 151.74 

 MM 56.738 35.861 394.85 290.69 406.88 24546 945.92 151.74 

 MB 56.742 35.872 394.95 290.71 407.05 24562 946.07 151.74 

 UMVU 56.742 35.872 394.95 290.71 407.04 24561 946.07 151.74 

          

P-Bias
2
  A. calamifolia A. hakeoides A. pycnantha E. loxophleba E. melliodora E. occidentalis E. spathulata E. viminalis 

 Naive 0.622 0.386 6.86 3.65 1.53 16.1 3.49 0.777 

 Ratio 3.27E-05 3.32E-06 1.39E-03 1.42E-03 1.87E-04 1.93E-02 6.02E-04 2.85E-04 

 REML  2.22E-04 3.37E-04 8.34E-03 1.61E-05 2.30E-03 0.181 2.79E-03 5.23E-04 

 Finney 6.40E-05 1.48E-04 3.67E-03 2.65E-04 1.58E-03 0.149 1.85E-03 4.11E-04 

 Smear 1.65E-06 4.07E-05 1.11E-03 1.23E-03 1.01E-03 0.122 1.12E-03 3.18E-04 

 EV 9.99E-07 2.82E-05 1.22E-03 1.42E-03 1.15E-04 1.90E-02 4.40E-04 2.51E-04 

 MM 1.76E-03 8.53E-04 1.41E-02 2.17E-02 4.38E-03 0.111 2.88E-03 5.97E-06 

 MB 7.85E-07 2.90E-05 1.24E-03 1.39E-03 1.38E-04 2.41E-02 4.63E-04 2.53E-04 

 UMVU 9.53E-07 2.84E-05 1.24E-03 1.41E-03 1.16E-04 1.90E-02 4.41E-04 2.51E-04 
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