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Abstracts 

 
Despite the huge potential benefits, any analysis of probabilistically linked data cannot avoid the 
problem of linkage errors. These errors occur when probability-based methods are used to link or 
match records from two or more distinct data sets corresponding to the same target population, and 
they can lead to biased analytical decisions when they are ignored. Previous studies aimed at resolving 
this problem have assumed that the analyst has access to all the information used in the data linkage 
process. In practice, however, most analysts are secondary analysts, with only partial access to 
information about the linkage error structure. As a consequence, our previous research has focused on 
using an estimating equations approach to develop bias correction methods for secondary analysis of 
probabilistically linked data. In this paper we extend this approach to maximum likelihood estimation, 
using the missing information principle to accommodate the more realistic scenario of dependent 
linkage errors in both linear and logistic regression settings. We also develop the maximum likelihood 
solution when population auxiliary information in the form of population summary statistics is 
available. We also show that the main advantage from inclusion of population summary information is 
to correct small sample bias. 
 
Keywords: Probabilistic record matching; Linkage errors; Regression modeling; Auxiliary data. 
 
 
1. Introduction 

 
Record linkage has been a very popular research tool in many areas such as health, economics and 
sociology. One of important issues in record linkage process is to deal with the record linkage errors. 
When there is no unique identifier, the probabilistic record linkage process would produce some 
unwanted record linkage errors. Most of recent research works have been focused on the reduction of 
record linkage error rates in the probabilistic record linkage process. However, this approach does not 
provide error free record linkage data and, as Neter et al. (1965) indicated, a small amount of linkage 
error in a linked data set could cause significant error when we ignore the linkage errors in the linked 
data. Inspired by Neter et al. (1965), Scheuren and Winkler (1993,1997) and Lahiri and Larsen (2005) 
have tried to adjust the bias due to the linkage errors in the linear regression setting using the weights 
used in the probabilistic record matching process. Their unbiased estimators are very useful when all 
the data sets and the weights used in the record matching process are available to the analyst. 
However, due to strict confidential policies, the second analyst cannot access to all the information 
used in the data linkage process. With only partial access to information about the linkage error 
structure, the second analyst cannot use the methods of Scheuren and Winkler (1993,1997) or Lahiri 
and Larsen (2005). To overcome this problem, our previous researches have focused on using an 
estimating equations approach to develop bias correction methods for secondary analysis of 
probabilistically linked data. In this paper we extend this approach to maximum likelihood estimation, 
using the missing information principle to accommodate the more realistic scenario of dependent 
linkage errors in both linear and logistic regression settings. A problem in sample data analysis is that 
small sample may not represent whole population and it may lead a small sample bias in its analysis. 



Using the missing information principle can be used to avoid the unwanted small sample bias 
naturally.  
 
 
2. Methodology developments 
  
In this section, we explain how the missing information principle provides a natural mechanism for 
incorporating the auxiliary information, such as summary information, into likelihood analysis of the 
probabilistic linked sample data. The general assumptions for the analysis of the probabilistic linked 
sample data can be found in Kim and Chambers (2012), but to incorporate the auxiliary information, 
we further assume that the sum (or mean) of each data sets to be linked are known to the second 
analyst. Details are: 
1. All registers have complete coverage of the target population and are of size N. In particular, for 

each distinct population unit there exist unique records in each of Y  and X  that correspond to 
this population unit. 

2. Y  and X  can each be partitioned into Q 'match blocks' or 'm-blocks' such that linkage errors 
occur only within them. That is, records in distinct m-blocks can never be linked. We denote 
quantities associated with the qth m-block by a subscript of q. Thus the Mq  records making up 

the qth  m-block within X  are denoted Xq , etc. 
3. Linkage errors within an m-block are independent of any regression errors associated with 

observations from that m-block. 
 
In many practical situations, a sample s of records from the register X  is selected, and this sample is 
then independently linked to the two separate population registers Y  and X . In this second situation 
we make the following additional assumptions: 
 
4. Not all records in X  can be linked. However, this 'non-linkage' is at random, so the same 

regression model holds for the linked and non-linked records. 
5. For each m-block, the means of Yq  and Xq , yq  and Xq ,  are known. 
 
We consider a case where population values of two variables y  and X  are stored on two separate 
databases. A sample of record from X database is matched to the records on y  database with some 
possible record linkage errors. Suppose that population values of two variables y  and X  are stored 
in q different m-blocks. Because of record linkage errors, the linked y-values in qth m-block, yq

*  is not 
the same as the true yq  that are not observable. However, theoretically, the relation between the 
linked y-values and the true y-values can be defined by  

yq
* = Aqyq ,  

where Aq  is an unobservable random permutation matrix. One important issue in dealing with record 
linkage errors is to define the expectation of Aq . The previous studies including Lahiri and Larsen 
(2005) used the weights used in the probabilistic record matching process to define the expectation of 
Aq .  However, this information is not available to the secondary analyst in most cases. One way to 
overcome this problem is to use the correct matching rate between y and X  databases to define the 
expectation of Aq . Let λq  be the correct matching rate between y and X  in qth m-block and let 

E(Aq ) = Tq = [tij
q ].  Define tii

q = λq  and tij
q = (1− λq ) / (Mq −1)  if i ≠ j.  This correct matching rate 



λq  can be obtained publically or can be estimated using a small audit samples. See Kim and 
Chambers (2012) for the details.  
 
 
2.1 Linear regression case 
 
Suppose that the values in y and X databases has the following relation 

yq = Xqβ+εq ,  

where var(εq ) = σ
2 .  Here, we are interested in a case where some of sample records from 

X -database, Xsq ,  has been linked to the records in y-database, ysq
* ,  with possible linkage errors. 

We assume that the selection of linked sample is noninformative. Initially, we start with the case 
where Xq is known. However, this assumption will be dropped later naturally because, in the end, the 

knowledge of Xq  can be replaced by the values of Xsq  and Xq  in our equations.  
 
Note that, by assuming that the selection of linked sample is noninformative, we can partition y-values 
into the linked sample y-values, ysq

* ,  and the rest of y-values, yrq
* .  Then, the permutation matrix and 

its expectation matrix can be partitioned accordingly as 
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Let fq = E(yq |Xq ) = Xqβ  and TAsq = E(Asq ) . Then, with the results in Kim and Chambers (2012), 

E(ysq
* |Xq ) = TAsqfq ,

Var(ysq
* |Xq ) = σ 2Isq +Var(Asqfq )

                     =σ 2 ∑sq ,

 

where details of ∑sq  can be found in Chambers (2009). Further, with other variances and 
covariances, it follows that  
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and it leads to the estimator of the form 

β = XT
qRsq

TAsqXq

Xq
T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟q

∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−1

XT
qRsq

y*q
yq

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟q

∑ ,  

where  



Rsq = TAsq
T 1q /Mq( ) ∑sq TAsq1q /Mq
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However, by the definition of TAsq ,  

Xq
TRsq = (Csq
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where Csq = (λq − γ q )Xsq +Mqγ qXq .  Then, the estimation of β  depends on Xq  only through 

Xsq  and Xq .  Therefore, the estimation of β  can be possible with linked sample data set and the 
summary statistics provided. 
 
 
2.2 logistic regression case 
 
Many survey data can be binary or categorical. In this section, we will explain how the missing 
information principle can be applied in logistic regression model when the summary statistics are 
available where record matching between two samples is not perfect. The logistic model we are using 
is of the form 

yi | Xi  ~ independent Bernoulli π (xi ){ },

π (xi ) = Pr(yi = 1 | xi ) =
exp(β0 + β1xi )

1+ exp(β0 + β1xi )
.
 

Considering the case of linked sample, the usual score function for β  can be separated with linked 
sample set and non-linked set such that 

sc(β0 ) = yi − π (xi )
U
∑

U
∑ ,

sc(β1) = xi yi −π (xi ){ }
s
∑ + Es xiyi

r
∑⎛⎝⎜

⎞
⎠⎟
− xiπ (xi )

r
∑ ,

 

where U denotes the population set, s (r) denotes the set of  linked sample (nonlinked) population 
units and Es  denotes the conditional expectation on linked sample. However, when there exist 
linkage errors,   

sc(β1) = Xsq
T

q
∑ ysq −π sq (x){ }+ Es xiyi
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where π sq (x) = π (x1),…,π (xmq
)( )T .  By considering the expectation of the unobservable Asq , the 

modified score function can be of the form 

sc*(β1) = Xsq
T

q
∑ (λq − γ q )ysq

* +Mqγ qqyq −π sq (x){ }+ Es xiyi − xiπ (xi )
r
∑

r
∑⎛⎝⎜

⎞
⎠⎟
,  

where the first part of the score function depends only on the linked sample units. For the second part 
that is the expectation of nonlinked part, we adapt the methods explained in Chambers et al. (2012). 



Their functional forms depend on the amount of information available. When all the values in the 
x-database are available instead of Xsq  and Xq , 

Es xiyi − xiπ (xi )
r
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where try  is the sum of nonlinked y-values and 
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For the case where all the values in the x-database are not available but only Xsq  and Xq  are 
available, the score functions obtained by using smear techniques are of the form 

sc*(β0 ) = tyq − π (xi )−
Mq − mq
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where xi = xr − xs + xi , tyq  is the sum of y values in q-block and  
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3. Simulation results 
 
We use simulation to investigate the performance of our estimators in terms of relative bias and 
relative RMSE. We also compare the performance of our estimators that contain the missing 
information principle idea with other estimators.  
 
3. 1 Simulation results for linear regression 
 
The model used in this simulation is y = 1+ 5x + ε.  There are 3 different blocks and the pairs (yi

*, xi )  
were generated according to the correct linkage rate between them. The set of correct linkage rate 
between y-database and X-database in each block is (1.0, 0.95, 0.75). The total number of simulations 
is 1000.   

 
The estimators for this simulation are: 

1. Full MLE: No linkage errors and all of y and X values are known. This is a benchmark 
estimator. 

2. Naïve: Linkage errors exist, but ignore them in the analysis. Also assume that only linked 
sample values are presented.  

3. Eblue: Adjust linkage errors using the correct linkage error, but do not use the missing 



information principle. An empirical Best Linear Unbiased Estimator that was developed in 
Kim and Chambers (2012). 

4. MIP-MLE: Adjust linkage errors and also use the missing information principle. 
  
Table1: Simulation results for linear regression, in terms of relative bias and relative RMSE where 
the population size is (1000,1000,1000) and true correct linkage rate is (1.0, 0.95,0.75) for each 
block. 
 

Estimator Relative Bias Relative RMSE 
 Intercept slope Intercept slope 

Linked sample size in each block (300,300,300) 
Full MLE -0.09 0.02 3.71 2.89 
Naïve  24.63 -9.92 25.93 23.08 
Eblue -0.45 0.10 7.88 6.19 
MIP-MLE -0.30 0.10 7.58 6.60 

Linked sample size in each block (50,50,50) 
Full MLE 0.10 -0.02 3.68 2.89 
Naïve  25.68 -10.18 32.63 27.69 
Eblue 1.63 -0.57 20.26 15.97 
MIP-MLE 0.81 -0.30 18.50 16.54 

Linked sample size in each block (20,20,20) 
Full MLE 0.25 -0.04 3.51 2.74 
Naïve  25.93 -10.46 41.30 34.38 
Eblue 2.55 -1.21 32.34 25.60 
MIP-MLE 0.92 -0.35 28.45 25.43 
 
Our simulation results indicate that the missing information principle is not necessary when the sample 
size is large (when the linked sample size for each block is 300). However, as the linked sample size 
gets smaller, the performance of MIP-MLE gets better than that of Eblue. Especially, when the linked 
sample size is less than 50, we believe that MIP-MLE would provide most reasonable unbiased 
estimates of parameters. 
 
3. 2 Simulation results for logistic regression 
 
For the logistic regression, we consider the model of the form 

E(yi = 1 | xi ) = π (xi ) =
exp(−2 + xi )
1+ exp(−2 + xi )

 

and the pairs (yi
*,π (xi ))  were generated according to the correct linkage rate of (1.0,0.8,0.6). The 

total number of iterations is 200 for the linked sample size of (60,60,60) otherwise 500. 
 

The estimators for this simulation are 
1. Full MLE: No linkage errors and all of y and X values are known. This is a benchmark 

estimator. 
2. Naïve: Linkage errors exist, but ignore them in the analysis. Also assume that only linked 

sample values are presented.  
3. Sample adjust: Adjust linkage errors using the correct linkage error, but do not use the missing 

information principle. Only linked samples are used. 
4. Eblue: Adjust linkage errors using the correct linkage error, but do not use the missing 



information principle. 
5. MIP-MLE1: Adjust linkage errors and also use the missing information principle. x-values 

and sum of y-values are known as auxiliary information. 
6. MIP-MLE2: Adjust linkage errors and also use the missing information principle. Sum of 

x-values and sum of y-values are known. 
  
Table2: Simulation results for logistic regression, in terms of relative bias and relative RMSE: the 
population size is (1000,1000,1000) and true correct linkage rate is (1.0, 0.8,0.6) for each block. 
 

Estimator Relative Bias Relative RMSE 
 Intercept slope Intercept slope 

Linked sample size in each block (300,300,300) 
Full MLE -0.011 0.005 0.123 0.045 
Naïve  1.146 -0.434 1.160 0.438 
Sample adjust -0.045 -0.218 0.302 0.231 
Eblue -0.045 0.020 0.300 0.117 
MIP-MLE1 -0.044 -0.090 0.282 0.132 
MIP-MLE2 -0.050 -0.090 0.287 0.132 

Linked sample size in each block (100,100,100) 
Full MLE -0.005 0.001 0.119 0.043 
Naïve  1.137 -0.427 1.178 0.428 
Sample adjust -0.091 -0.203 0.557 0.243 
Eblue -0.091 0.043 0.546 0.208 
MIP-MLE1 -0.094 -0.003 0.496 0.190 
MIP-MLE2 -0.107 -0.005 0.504 0.189 

Linked sample size in each block (80,80,80) 
Full MLE -0.004 0.001 0.119 0.042 
Naïve  1.098 -0.417 1.156 0.433 
Sample adjust -0.136 -0.192 0.657 0.254 
Eblue -0.137 0.057 0.651 0.255 
MIP-MLE1 -0.125 0.019 0.597 0.236 
MIP-MLE2 -0.143 0.016 0.616 0.234 

Linked sample size in each block (60,60,60): Number of iteration = 200 
Full MLE 0.007 -0.003 0.125 0.044 
Naïve  1.145 -0.425 1.206 0.440 
Sample adjust -0.083 -0.194 0.833 0.299 
Eblue -0.074 0.050 0.811 0.338 
MIP-MLE1 -0.098 0.021 0.790 0.321 
MIP-MLE2 -0.148 0.018 0.853 0.322 
 
Simulation results show that MIP-MLEs perform well even when the sample size is large (300 for 
each m-block). The results also show that the performances of estimators that include the MIP part are 
getting better as the sample size is getting smaller. However, we also notice that these methods fail to 
converge quite often if the linked sample size is small, say less than 50. This is the reason why the 
number of iteration for the last case is 200 rather than 500. Currently, we are searching for an 
alternative optimization technique to solve this problem. 
 
 



4. Conclusions 
 
We extend the linkage error correction methods in regression analysis using the missing information 
principle and we show that these methods performs well under reasonable situation. These methods 
are especially useful when the sample size is small. However, due to the extra terms in the formulae, 
these methods are not helpful, especially in linear regression, when the sample size is large (more than 
300). Also, in logistic regression, these methods often fail to converge if the sample size is very small 
and further improvement is required in optimization technique. Despite of these problems, these 
methods are quite useful to adjust a small sample bias. Currently we are trying to extend these 
methods to accommodate multi-linked data set where number of linked data set is more than three.  
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