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Bias Reduction for Correlated Linkage Error

Gunky Kim and Raymond Chambers

National Institute for Applied Statistical Research Australia
University of Wollongong

Abstract

Linked data sets are often multi-linked, i.e. they are created by matching records from three

or more data sources. In such cases, probability-based methods for record linkage may lead to

correlated linkage errors. Furthermore, it is often the case that not all records can be linked,

due to the linking procedure not being able to find suitable matches in at least one of the data

sources. This can be simply because the data source is a sample, and so does not contain the

requisite matching records. More generally, however, the probability algorithm used to create

the matches may not be able to find another record that meets the minimum criterion for

matching. In this paper we develop methods for carrying out regression analysis using multi-

linked data that allow for both correlated linkage error as well as unlinked records. We also

investigate the role of auxiliary information in this process, focussing on the situation where

marginal distribution information from the data sets being linked is available. Our simulation

results show that recently published bias reduction methods based on an assumption of

independent linkage errors can lead to insufficient bias correction in the correlated case, and

that a modified approach which allows for correlated linkage errors is superior. We also show

that auxiliary marginal information about the data sets being linked can help further reduce

the bias due to both non-linkage and linkage errors.

key words: probabilistic record linkage; auxiliary population information; multi-linked data;

linear regression; estimating equations.

1 Introduction

Probabilistic data linkage is now widely used, especially in areas (e.g. health science) where

direct measurement is impossible or extremely costly. For example, Brook et al. (2008) claim
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that linked health record data sets produced by the Western Australian Data Linkage system

(Holman et al., 1999) led to 708 research outputs over the period 1995 - 2003. Following the

pioneering work of Fellegi and Sunter (1969), methods for linking records stored on different

data bases have been extensively developed, with practical applications including census

data (Jaro, 1989) and population health data (Newcombe, 1988). In this paper, we focus

on one important application where different data sets relating to the same individuals at

different points in time or collected from different institutions are ‘multi-linked’ to provide

a synthetic data record for each individual that covers the different data sets. In particular,

the Oxford Record Linkage system, the Scottish Record Linkage system and the Canadian

Mortality Data Base all use forms of multi-linking to create linked longitudinal data records.

From an analytic perspective, multi-linking is of no concern when error-free unique iden-

tifiers are present in each data set being linked. However, when multi-linking is probabilis-

tically based there is always the possibility of linkage errors in the merged data. Such errors

can, for example, lead to a linked longitudinal record being actually made up of data items

from different individuals. This is also the case when the identifiers used in linking con-

tain errors. For example, Adams et al. (1997) found that linking based on Social Security

Number is not adequate, and recommend the use of probabilistic data linkage, even though

some incorrect linkage is then unavoidable. A similar result was reported in Rotermann

(2009). The Census Data Enhancement project of the Australian Bureau of Statistics aims

to link data from the same individuals over a number of censuses in order to create a tool

for research into the longitudinal dynamics of the Australian population. An initial test for

this project (Bishop and Khoo, 2007) showed that 13% of the test records were incorrectly

linked under optimal conditions, i.e. when names and address were used in the matching

process. These figures are representative of those obtained in similar Australian studies.

Holman et al. (1999) reported 87% correct linkage for Western Australia hospital record

linkages in 1996-1997, while linked hospital morbidity data in Victoria in 1993-94 showed a

78-86% correct match rate.

Possible bias due to linkage errors is discussed in Gomatam et al. (2002), Nitsch et al.

(2006) and Fair et al. (2000), while Krewski et al. (2005) explores the impact of linkage errors

on statistical inferences in cohort mortality studies. They show that record linkage errors

lead to bias and additional variation, and that this increases as linkage errors increase.

Since some degree of linkage error is inevitable in most linked data sets, one needs to adopt
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methods that correct the resulting bias when analysing these data. Scheuren and Winkler

(1993), Scheuren and Winkler (1997) and Lahiri and Larsen (2005) consider the case of linear

regression analysis using data sourced from two probabilistically linked sets of records, and

describe methods for correcting bias due to linkage errors. Their results assume that all

linkage probabilities associated with the probabilistic matching process are known, and that

the linkage is complete, i.e. every unit in the files being matched is linked. However, in many

cases the analyst does not have access to the entire set of linkage probabilities associated

with the probabilistic matching process, e.g. because of data confidentiality requirements.

For example, Kelman et al. (2002) states that technicians involved in the linking carried

out by the West Australian Data Linkage System are not permitted to take part in any

subsequent analysis of the linked data. This confidentiality requirement therefore prohibits

researchers using the linked data to access all the linkage probabilities or all the population

records used in the probabilistic matching process. In this case the bias correction methods

of Scheuren and Winkler (1993), Scheuren and Winkler (1997) and Lahiri and Larsen (2005)

cannot be used. In effect, one requires bias-correction methods that can be implemented by

a ‘secondary analyst’, i.e. one who does not know all the linkage probabilities and who does

not have access to all the population records used in the matching process.

In previous work (Kim and Chambers, 2012b), we assume a simple first order exchange-

able model for linkage errors that depends only on the marginal probability of correct linkage,

and use this to describe methods for correcting the bias due to linkage errors when multiple

data sets are probabilistically multi-linked. A key assumption in this development is that

linkage errors are pairwise independent. A more realistic scenario, however, is where linkage

errors are pairwise dependent, in the sense that if the records corresponding to two different

individuals in distinct data sets A and B are incorrectly linked, then it is likely that the

records for the same two individuals in distinct data sets A and C will also be incorrectly

linked. In this paper we show how the bias due to correlated linkage errors in the result-

ing merged data set can be corrected. Our methods are based on the inference framework

described in Chambers (2009), and we focus on the situation where the merged data set

is obtained by linking three separate data sources via two possibly dependent linkage op-

erations. These data sources could represent different registers for the same population at

different points in time or they could correspond to where a survey sample is linked to two

separate population registers, one contemporaneous with the survey and the other containing
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historical information.

Provided the linkage error model is correctly specified, bias correction methods work well

when the linked data set is large and has characteristics that are representative of those of

the source data sets. However, this is not the case when the linked data set is small, which

can happen when the linking procedure is unable to find matches for a significant number of

records. Bias correction methods based on large sample approximations are not adequate in

such cases, particularly if the characteristics of the correctly linked, incorrectly linked and

unlinked records all differ substantially. Here appropriate bias corrections depend crucially

on correct specification of both the linkage error process as well as the process that drives

creation of the links in the first place. For example, Nitsch et al. (2006) points out that non-

linkage, like non-response, can be informative and should not be ignored. Similarly, Bishop

and Khoo (2007) note that the largest source of error that they observed when analysing

linked Census records was that associated with non-linked records, i.e. records that could

not be adequately matched in the probabilistic linkage process. In order to ameliorate this

bias, we propose to use population auxiliary information, e.g. population summary statistics

like totals or means, as additional information in the bias correction process. Although not

likelihood-based, our approach is motivated by the ideas set out in Section 8.5 of Chambers

et al. (2012).

The structure of the paper is as follows. We introduce our notation and basic assump-

tions in Subsection 1.1 below. Section 2 then describes the methodology underpinning the

suggested bias correction technique. In particular, in Subsections 2.1 - 2.3 we develop this

methodology for the case where only linked sample data are available. The extension to the

situation where population auxiliary information is also available is then set out in Subsec-

tion 2.4. Section 3 contains simulation results and Section 4 concludes the paper with a

discussion of potential extensions of our results.

1.1 Notation and assumptions

The assumptions we make here are the same as in Kim and Chambers (2012b). For nota-

tional simplicity we denote conditioning by a subscript in what follows, so the conditional

expectation E(y|X) is written EX(y) and so on. Suppose that we are interested in fitting

a regression model of the form EX(y) = f(X;β) = f where f is a known function, but

the parameter β is to be estimated. Here y denotes the vector of population values of the
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response variable of interest, and X denotes the corresponding matrix of population values

for a set of explanatory variables, which are themselves drawn from multiple sources. In

particular, we focus on the situation where the actual values making up y and X are un-

known, but probabilistic linkage is used to reconstruct them using the data in two or more

population registers. To fix concepts, and for simplicity of exposition, we assume here that

the regression model of interest is the linear model

y = 1β0 +X1β1 +X2β2 + ε = Xβ + ε = f + ε (1)

where y, X1 and X2 denote data stored on three separate population registers and 1 de-

notes the unit vector of order N , the population size. Note, however, that our subsequent

development is quite general, with inference about β based on the solution of an unbiased

estimating equation, so the linear model (1) is easily replaced by a generalized linear model.

The model errors ε are assumed to have zero mean and are uncorrelated given X, with

VarX(ε) = σ2IN where IN is the identity matrix of order N . It is assumed that the linked

data needed to fit (1) is generated via a probabilistic linkage process, so linkage errors are

possible. These mismatches will lead to biased estimation of β. The aim of this paper is to

describe a methodology that can be used to eliminate this bias.

In what follows, we do not distinguish between the population registers underpinning y,

X1 and X2 and the data sets themselves, with one of the three registers assumed to be the

‘benchmark’ register, i.e. all linkage errors are defined relative to the way that it orders the

population units. Without loss of generality we take X1 to be this benchmark register, so

linkage errors arise between y and X1 and between X1 and X2. We initially consider the

situation where there is complete linkage, i.e. there is one to one matching of all records in

each register. This enables us to develop our notation and general approach in a situation

where the basic analytic issues are clear. We then move to the more interesting situation

where one data set is a sample, which is linked to two separate population registers. In this

case we allow for incomplete linkage.

We start by stating our basic assumptions for the first situation, i.e. where the linked

data set is constructed by complete linking of three population registers:

1. All registers have complete coverage of the target population and are of size N . In

particular, for each distinct population unit there exist unique records in each of y,

X1 and X2 that correspond to this population unit.
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2. The registers y, X1 and X2 can each be partitioned into Q ‘match blocks’ or ‘m-

blocks’ such that linkage errors occur only within an m-block. This is equivalent to

assuming that records in distinct m-blocks are never linked, and that the records for

any population unit in an m-block are contained in that m-block on each register. We

denote quantities associated with the qth m-block by a subscript of q. Thus the Mq

records making up the qth m-block within X1 are denoted X1q, etc. An individual

record i in m-block q is denoted i ∈ q.

3. We have non-informative linkage in the sense that linkage errors within an m-block are

independent of any regression errors associated with observations from that m-block.

In many practical situations, a sample s of records from the register X1 is selected, and

a subsample of these records is linked to the two separate population registers y and X2.

In this situation we make the following additional assumptions:

4. The method of sampling is non-informative within m-blocks for the regression model of

interest, in the sense that the same regression model holds for both sampled and non-

sampled population units within an m-block. Furthermore, the linked sample records

in an m-block are ‘linked at random’, so the non-informativeness assumption also holds

for the linked sample units. Note that this last assumption is a strong one. See Kim

and Chambers (2012a).

5. Let y = (yi),X1 = [xT1i] andX2 = [xT2i]. A consistent estimator of any population quan-

tity of the form
∑N

i=1 g(yi,x1i,x2i) is its sample-weighted equivalent
∑
swig(yi,x1i,x2i),

where ws = (wi; i ∈ s) is a vector of known sample weights.

2 Methodological Development

Optimal probability-based linkage is based on maximising the probability of a declared link

being correct. Unfortunately, most practical implementations require one to trade off the

number of links made against their accuracy. Any implementation of probabilistic linkage

will therefore result in unmade linkages or non-linkages, as well as linkage errors in those

cases where linkages are actually made. If the analyst has access to the complete set of joint

linkage probabilities as well as all the population records used in the probabilistic matching

6



process, then he or she can apply the bias correction method described in Lahiri and Larsen

(2005). However, this type of information is typically unavailable to researchers not involved

in the actual data linkage process. Below we show that the bias caused by linkage errors

can be corrected if we know the marginal probability of correct linkage for any particular

record. These marginal probabilities can be obtained from the record linkage system without

violating confidentiality restrictions or can be estimated using small random ‘audit samples’

that identify whether or not particular links are correct. Given this information, we develop

efficient estimators for regression coefficients when three data sources have been probabilis-

tically linked to form the data set used in the analysis. Although our primary interest in

this context is where a sample from one register has been linked to two other registers, we

start by considering the case where three registers are completely linked. This allows us to

introduce the basic ideas used in the subsequent methodological development.

2.1 A model for correlated linkage error

In this Subsection and the next we assume that all three linked data sets are registers and

linkage is complete, i.e. linkage is one to one and onto. We use a superscript of * to denote

quantities defined using the linked data, and model the relationship between the true, but

unobserved, values of y and X2 and the observed linked values y∗ and X∗2 within m-block

q by writing

y∗q = AqY q and X∗2q = BqX2q

whereAq andBq are unobserved random permutation matrices of order Mq that characterise

the outcomes of the two linkage processes in m-block q. We use the exchangeable linkage

errors (ELE) model of Chambers (2009) to specify T Aq = EX∗(Aq) and TBq = EX∗(Bq).

Under this model, any linked record i in m-block q has the same probability of being correctly

linked, and is also equally likely to be incorrectly linked to any other record in the same m-

block. A similar model is used in Neter et al. (1965). This leads to the representations

T Aq = (λAq − γAq)Iq + γAq1q1
T
q

and

TBq = (λBq − γBq)Iq + γBq1q1
T
q

where, for any two distinct records i and j in m-block q, λAq = Pr(x1iq, yjq correctly linked)

and γAq = Pr(x1iq, yjq incorrectly linked, i 6= j) = (Mq − 1)−1(1 − λAq), with λBq and γBq
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defined similarly.

Kim and Chambers (2012b) assume thatAq andBq are independently distributed. How-

ever, it is more realistic to assume that if the records corresponding to two different individ-

uals in data sets X1 and y are incorrectly linked, then it is quite likely that the records for

the same two individuals in data sets X1 and X2 will also be incorrectly linked, i.e. Bq and

Aq are dependent random matrices. Let Aq = [aqij] and Bq = [bqij]. In order to model the

conditional distribution of Bq given Aq we extend the ELE model, assuming that

φq = Pr(x1iq,x2iq correctly linked & x1iq, yiq correctly linked)

does not depend on i. Put λB|Aq = λ−1
Aqφq. Under this correlated ELE model for Aq and Bq,

TB|Aq = EX∗(Bq|Aq) = (λB|Aq − γB|Aq)Iq + γB|Aq1q1
T
q

where γB|Aq = (Mq − 1)−1(1− λB|Aq). It follows that if we put

XE|A
q = EX∗

([
1q,X1q,B

T
qX

∗
2q

]∣∣Aq

)
=
[
1q,X1q,TB|AqX

∗
2q

]
(2)

then under the linear model (1)

EX∗(y∗q) = EX∗(Aqyq) = EX∗(Aq)EX∗(yq|Aq) = T AqX
E|A
q β. (3)

2.2 Estimation under correlated linkage error

We focus on the situation where the aim is to estimate the parameter β of the linear regression

model of interest using an adjusted unbiased estimating function. When both yq and Xq are

available this is the function H(β) =
∑

qGq(yq − f q) where f q = EX(yq) = Xqβ and Gq

is a weighting function that depends on Xq but not on yq. However, we do not observe yq

or Xq. Instead, their linked versions y∗q and X∗q are observed. A naive estimating function

based on H(β) is

H∗(β) =
∑
q

G∗q(y
∗
q − f ∗q)

where f ∗q = X∗qβ and G∗q = X∗Tq . Here X∗q = (1q,X1q,X
∗
2q). The naive estimator is

defined by solving H∗(β) = 0. This estimator is biased since EX∗(y∗q) = T Aqf
E|A
q 6= f ∗q,

where fE|Aq = XE|A
q β. On the other hand, using (2) and (3), we see that an unbiased

estimating function based on the linked data is

H∗(β) =
∑
q

G∗q(y
∗
q − T Aqf

E|A
q ) (4)
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and so an unbiased estimator of β can be defined as the solution β̂∗ to the estimating

equation defined by setting (4) to zero. The following Theorem extends Theorem 1 of Kim

and Chambers (2012b) and develops the asymptotic variance of β̂∗ under correlated linkage

error. Its proof is in the Appendix.

Theorem 1. Let f ∗2q = (f ∗2iq; i ∈ q) = X∗2qβ2 and let β̂∗ denote the solution to setting (4)

to zero. The asymptotic variance of β̂∗ is then

V (β̂∗) =
[∑

q

G∗qT AqX
E|A
q

]−1[∑
q

G∗qV (y∗q)G
∗T
q

]([∑
q

G∗qT AqX
E|A
q

]−1)T
where V (y∗q) = σ2Iq + V Aq + V Cq. Here

V Aq = (1− λAq) diag
[{
λAq(f

E|A
iq − f̄E|Aq )2 + f̄E|A(2)

q − (f̄E|Aq )2
}

; i ∈ q
]

where fE|Aq = (f
E|A
iq ; i ∈ q), f̄

E|A
q = M−1

q

∑
i∈q f

E|A
iq and f̄

E|A(2)
q = M−1

q

∑
i∈q(f

E|A
iq )2. Simi-

larly

V Cq = (1− λB|Aq) diag
[
(Mq − 1)−1

{
(λAqMq − 1)di +Mq(1− λAq)d̄q

}
; i ∈ q

]
with di = λB|Aq(f

∗
2iq− f̄ ∗2q)2 + f̄

∗(2)
2q −(f̄ ∗2q)

2, f̄ ∗2q = M−1
q

∑
i∈q f

∗
2iq and f̄

∗(2)
2q = M−1

q

∑
i∈q(f

∗
2iq)

2.

Note:

1. Given T Aq, TB|Aq and fE|Aq , an unbiased estimator of σ2 is

σ̃2 = N−1
[∑

q

(y∗q − fE|Aq )T (y∗q − fE|Aq )− 2
∑
q

(fE|Aq )T (Iq − T Aq)f
E|A
q

]
. (5)

We can therefore estimate V (y∗q) above by substituting β̂∗ for β in the definitions

of fE|Aq , f ∗2q and σ̃2. An estimator of the asymptotic variance V (β̂∗) of β̂∗ follows

directly.

2. The value of β̂∗ depends on choice of the weighting function G∗q. A popular choice

is G∗q = (X∗q)
T . However, there are alternative choices. For example, Lahiri and

Larsen (2005) develop an adjusted estimator for β that, when placed in an estimating

equation framework, corresponds to settingG∗q = (T AqX
E|A
q )T . The optimal weighting

function, i.e. the one that minimises the asymptotic variance of β̂∗ (Godambe, 1960),

depends on the unknown model parameters and is given by

G∗q =
( ∂

∂β

[
EX∗(y∗q)

])T(
V (y∗q)

)−1

=
(
T AqX

E|A
q

)T(
σ2Iq + V Aq + V Cq

)−1

.
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An iterative approach to calculating G∗q, combining the estimator (5) of σ2 with this

optimal weighting function specification, should lead to an efficient adjusted estimator

β̂∗. Simulation studies in the next section compare the performances of the estimators

defined by these alternative choices.

The development so far has assumed that the correct linkage probabilities λAq and λB|Aq

are known. This will not be the case in practice, in which case estimates of these probabilities

are required. The actual asymptotic variance of β̂∗ then also depends on the additional

variability induced by this estimation process, as we show in the following Corollary to

Theorem 1. Its proof is in the Appendix.

Corollary 2. When λAq and φq are unknown and are replaced by m-block-specific consistent

estimators λ̂Aq and φ̂q, the asymptotic variance of β̂∗ becomes

V (β̂∗) = D
[∑

q

(
G∗qV (y∗q)G

∗T
q +

2∑
i=1

2∑
j=1

(
∂iH

∗)Jijq(∂jH∗)T)]DT

where D =
[∑

qG
∗
qT AqX

E|A
q

]−1

, J q = [Jijq] = Cov(λ̂Aq, φ̂q) and

∂iH
∗ =

(
∂iG

∗
q

)(
y∗q − T Aqf

E|A
q

)
−G∗q

[(
∂iT Aq

)
fE|Aq + T Aq

(
∂if

E|A
q

)]
.

Here ∂1 = ∂/∂λA and ∂2 = ∂/∂φq.

Observe that as in Chambers (2009) and Kim and Chambers (2012b), the estimated

parameters λ̂Aq and φ̂q can be calculated using the number of incorrect linkages observed in

a random ‘audit sample’ of records in m-block q taken from the linked data base
[
y∗ X1 X

∗
2

]
.

2.3 Incomplete sample to registers linkage

We now consider the more realistic case where a sample s of n records from the benchmark

register X1 is taken and an attempt is made to link these records to the y and X2 registers.

However, this linkage is incomplete, i.e. there are some records in the sample s that cannot

be linked, either to records in the X2 register or to records in the y register, or both. Note

that assumption 4 at the end of Section 1 applies here, so whether a record in X1q is sampled

or not has nothing to do with whether it can be linked to a record in yq or one in X2q (or

both) and furthermore, actual linkage is then a random event.

10



Let X1sq be the set of the sample records from X1q. Also let X1slq be the set of sample

records in X1sq that are linked to both X2 and to y. The set of sample records in X1sq that

cannot be linked in this way are denoted by X1suq (i.e. we ignore partial linkages). Similarly,

X1rq denotes the set of non-sample records in X1q. Following Kim and Chambers (2012b),

we assume that that there exists, at least in theory, a corresponding set of decompositions of

the set of non-sample records. In particular, X1rlq represents the set of non-sample records

that are potentially ‘linkable’ to both X2 and y. The remaining non-sampled ‘unlinkable’

records are denoted X1ruq. It immediately follows that the following partitions exist:

y∗q =


y∗slq
y∗suq
y∗rlq
y∗ruq

 =


A(slsl)q A(slsu)q A(slrl)q A(slru)q

A(susl)q A(susu)q A(surl)q A(suru)q

A(rlsl)q A(rlsu)q A(rlrl)q A(rlru)q

A(rusl)q A(rusu)q A(rurl)q A(ruru)q



yslq
ysuq
yrlq
yruq

 = Aqyq.

where

E(Aq|X∗q) = T Aq =


T (sl)Aq

T (su)Aq

T (rl)Aq

T (ru)Aq

 =


T (slsl)Aq T (slsu)Aq T (slrl)Aq T (slru)Aq

T (susl)Aq T (susu)Aq T (surl)Aq T (suru)Aq

T (rlsl)Aq T (rlsu)Aq T (rlrl)Aq T (rlru)Aq

T (rusl)Aq T (rusu)Aq T (rurl)Aq T (ruru)Aq

 .

Further, because X∗2 can be similarly partitioned into X∗2slq, X
∗
2suq, X

∗
2rlq and X∗2ruq, one

has

TB|Aq =


T (sl)B|Aq
T (su)B|Aq
T (rl)B|Aq
T (ru)B|Aq

 =


T (slsl)B|Aq T (slsu)B|Aq T (slrl)B|Aq T (slru)B|Aq
T (susl)B|Aq T (susu)B|Aq T (surl)B|Aq T (suru)B|Aq
T (rlsl)B|Aq T (rlsu)B|Aq T (rlrl)B|Aq T (rlruB|A)q

T (rusl)B|Aq T (rusu)B|Aq T (rurl)B|Aq T (ruru)B|Aq

 .

Since both the sampling and linking processes are assumed to be non-informative within

m-blocks, the estimating function for β based on the linked sample data is

H∗sl(β) =
∑
q

G∗slq
(
y∗slq − T (sl)Aqf

E|A
q

)
=
∑
q

G∗slq
(
y∗slq − T (slsl)Aqf

E|A
slq − T (slsu)Aqf

E|A
suq − T (slrl)Aqf

E|A
rlq − T (slru)Aqf

E|A
ruq

)
.

Under the ELE model, this becomes

H∗sl(β) =
∑
q

G∗slq

[
y∗slq −

(λAqMq − 1

Mq − 1

)
f
E|A
slq −

(1− λAq
Mq − 1

)
1slq1

T
q f

E|A
q

]
. (6)

11



This modified estimating function depends on the value of 1Tq f
E|A
q , which is a population,

rather than a sample, quantity. Given assumptions 4 and 5 at the end of section 1, we can

estimate 1Tq f
E|A
q using the weighted sample estimate w̃T

slqf
E|A
slq , where w̃slq = MsqM

−1
slqwslq.

Here wslq denotes the vector of sampling weights associated with the Mslq linked sample

records in the qth m-block, while Msq is the total number of sampled records in this block.

In the special case where X1sq corresponds to an equal probability sample from X1q, w̃slq =

MqM
−1
slq 1slq, where Mq is the number of records in qth m-block. It immediately follows that

(6) can be replaced by

H∗sl(β) =
∑
q

G∗slq
(
y∗slq − T̃ (sl)Aqf

E|A
slq

)
(7)

where

T̃ (sl)Aq = (Mq − 1)−1
{

(λAqMq − 1)Islq + (1− λAq)1slqw̃T
slq

}
.

Unfortunately, (7) requires further approximation, since the linear regression model assump-

tion, together with (2), implies

f
E|A
slq =

(
1slq,X1slq,T (sl)B|AqX

∗
2q

)
β

where

T (sl)B|AqX
∗
2q = T (slsl)B|AqX

∗
2slq + T (slsu)B|AqX

∗
2suq + T (slrl)B|AqX

∗
2rlq + T (slru)B|AqX

∗
2ruq

and the last three terms on the right hand side in the preceding identity are dependent on the

unlinked sample and non-sample (linked and unlinked) values in X2, which are unknown.

The same argument used to justify sample weighting above then leads to T (sl)B|AqX
∗
2q being

approximated by T̃ (sl)B|AqX
∗
2slq where

T̃ (sl)B|Aq = (Mq − 1)−1
{

(λB|AqMq − 1)Islq + (1− λB|Aq)1slqw̃T
slq

}
.

That is, the final form of the estimating function that can be used in this case replaces (7)

with

H̃
∗
sl(β) =

∑
q

G∗slq
(
y∗slq − T̃ (sl)Aqf̃

E|A
slq

)
(8)

where f̃
E|A
slq =

(
1slq,X1slq, T̃ (sl)B|AqX

∗
2q

)
β = X̃

E|A
slq β.

As in the previous sub-section, the development so far has assumed that the probabilities

λAq and λB|Aq are known. In practice, these will be unknown and replaced by the values of

12



suitable estimators λ̂Aq and λ̂B|Aq respectively. The following Theorem sets out the form of

the asymptotic variance for the solution β̂∗s to setting (8) to zero. We do not provide its

proof since it is along the same lines as that of Theorem 1 and Corollary 2. We also use the

same notation as in these results.

Theorem 3. Let β̂∗s denote the solution to setting the modified estimating function (8) to

zero. Given the assumptions (4) and (5) at the end of section 1 as well as those implicit in

Theorem 1 and Corollary 2, the asymptotic variance of β̂∗s is then

V (β̂∗s) = D̃sl

[∑
q

(
G∗slqV (y∗slq)G

∗T
slq +

2∑
i=1

2∑
j=1

(
∂iH̃

∗
slq

)
Jijq
(
∂jH̃

∗
slq

)T)]
D̃

T

sl

where

D̃sl =
[∑

q

G∗slqT̃ (sl)AqX̃
E|A
slq

]−1

,

V (y∗slq) = σ2Islq + Ṽ (sl)Aq + Ṽ (sl)Cq

and

∂iH̃
∗
slq =

(
∂iG

∗
slq

)(
y∗slq − T̃ (sl)Aqf̃

E|A
slq

)
−G∗slq

[(
∂iT̃ (sl)Aq

)
f̃
E|A
slq + T̃ (sl)Aq

(
∂if̃

E|A
slq

)]
.

Here

Ṽ Aq = (1− λAq) diag
[{
λAq(f̃

E|A
iq − f̃E|Aslq )2 + f̃

E|A(2)
slq − (f̃

E|A
slq )2

}
; i ∈ slq

]
where f̃

E|A
slq = M−1

slq

∑
i∈slq f̃

E|A
iq and f̃

E|A(2)
slq = M−1

slq

∑
i∈slq(f̃

E|A
iq )2. Similarly

Ṽ (sl)Cq = (1− λB|Aq) diag
[
(Mq − 1)−1

{
(λAqMq − 1)d̃i +Mq(1− λAq)d̃q

}
; i ∈ q

]
with d̃i = λB|Aq(f

∗
2iq−f̄ ∗2slq)2+f̄

∗(2)
2slq−(f̄ ∗2slq)

2, f̄ ∗2slq = M−1
slq

∑
i∈slq f

∗
2iq and f̄

∗(2)
2slq = M−1

slq

∑
i∈slq(f

∗
2iq)

2.

2.4 Calibrating to population summary information

The target of inference for the estimating equation approach used in this paper is the pa-

rameter β that is the solution to setting the expected value of the estimating function (4)

to zero, where this expectation is with respect to the stochastic process that defines the

regression of y on X as well as the random processes that underpin the linkage. When

the number of linked sample units is small, the large sample approximations used to justify

replacing (4) by (8) can be inaccurate. In such cases the solution to the estimating equation

13



defined by setting (8) to zero can be biased for β. Similarly, the weighting used to adjust for

non-linkage may not be effective in small samples, which can also lead to (8) being biased.

In both cases, this bias can be viewed as symptomatic of a lack of representativeness of

the linked sample units. In this Subsection we therefore explore how summary information

about the linked registers can be used to ‘calibrate’ inference based on (8), thereby reducing

its potential small sample bias. In particular, we assume that population average values are

known for each m-block, noting that release of such summary information will typically not

contravene the confidentiality of the data held in the linked registers.

Let X̄q and ȳq respectively denote the known mean values of the m-block components

Xq and yq of the registers X and y. This information can then be used in two ways.

The first is to remove the need for the approximations used in going from (6) to (8). This

follows from noting that when X̄q is known, and the ELE model holds, then X̄
E|A
q = X̄q.

Furthermore, in this case X
E|A
slq =

(
1slq,X1slq,T (sl)B|AqX

∗
2q

)
where

T (sl)B|AqX
∗
2q = (λB|Aq − γB|Aq)X∗2slq +MqγB|Aq1slqX̄2q,

with γB|Aq = (1− λB|Aq)/(Mq − 1). Consequently, rather than using the approximation (8),

we can replace (6) by

H∗sl(β) =
∑
q

G∗slq

[
y∗slq −

{
(λAq − γAq)XE|A

slq β +MqγAq1slqX̄
T
q β
}]
.

Secondly, when X̄q and ȳq are known, we can use the implied information about the

average residual defined by the non-sample records to add a further, calibrating, term to

this estimating function. In order to do this, we define ȳ∗rq and X̄
∗
rq via the identities

(Mq −Mslq)ȳ
∗
rq = Mqȳq −Mslqȳ

∗
slq

and

(Mq −Mslq)X̄
∗
rq = Mq(1−MslqγAq)X̄q −Mslq(λAq − γAq)X̄

E|A
slq

respectively. Note that EX∗
{
ȳ∗rq − (X̄

∗
rq)

Tβ
}

= 0. The calibrated estimation function is

then

H∗sl:cal(β) =
∑
q

(
G∗slq

[
y∗slq−

{
(λAq−γAq)IslqXE|A

slq β+MqγAqX̄qβ
}]

+(Mq−Mslq)Ḡ
∗
rq

{
ȳ∗rq−X̄

∗
rqβ
})

14



or equivalently

H∗sl:cal(β) =
∑
q

(
G∗slq

[
y∗slq −

{
(λAq − γAq)XE|A

slq β +MqγAq1slqX̄qβ
}]

+ Ḡ
∗
rq

[{
Mqȳq −Mslqȳ

∗
slq

}
−
{
Mq(1−MslqγAq)X̄q −Mslq(λAq − γAq)X̄

E|A
slq

}
β
])
.

(9)

There are a number of ways the weighting matrix Ḡ
∗
rq in (9) can be specified. For example,

the analogy with optimal weighting for an estimating equation suggests

Ḡ
∗
rq = (X̄

∗
rq)

T
(
V̄ (y∗slq)

)−1

where V̄ (y∗slq) is the mean of the diagonal terms in V (y∗slq). On the other hand, a more

robust specification that avoids the need to estimate V (y∗slq) is Ḡ
∗
rq = (X̄

∗
rq)

T .

The following Theorem sets out the asymptotic variance of the solution to setting (9) to

zero. The notation used is the same as that in previous results, and its proof is set out in

the Appendix.

Theorem 4. Let β̂
∗
sl:cal denote the solution to setting the calibrated estimating function (9)

to zero. Suppose that λAq and λB|Aq are known. Then the asymptotic variance of β̂
∗
sl:cal is

V (β̂
∗
sl:cal) = Dsl:cal

[∑
q

(
G∗slqV (y∗slq)G

∗T
slq − 2G∗slq diag(V (y∗slq))1slq(Ḡ

∗
rq)

T

+ Ḡ
∗
rqmqV̄ (y∗slq)(Ḡ

∗
rq)

T
)]
DT

sl:cal

where

Dsl:cal =
[∑

q

{
G∗slq

[
(λAq − γAq)XE|A

slq +MqγAq1slqX̄q

]
+ Ḡ

∗
rq

[
Mq(1−MslqγAq)X̄q −Mslq(λAq − γAq)X̄

E|A
slq

]}]−1

.

When λAq and λB|Aq are unknown, and replaced by unbiased estimates, this asymptotic vari-

ance is

V (β̂
∗
sl:cal) = Dsl:cal

[∑
q

(
Γslq +

2∑
i=1

2∑
j=1

(
∂iH

∗
ws

)
Jijq
(
∂jH

∗
ws

)T)]
DT

sl:cal

where

Γslq = G∗slqV (y∗slq)G
∗T
slq − 2G∗slq diag(V (y∗slq))1slq(Ḡ

∗
rq)

T + Ḡ
∗
rqmqV̄ (y∗slq)(Ḡ

∗
rq)

T .
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3 Simulation study

In this section we describe the results of a Monte Carlo simulation that was used to compare

the performances of estimators of β under both incomplete linkage and correlated linkage

errors in the case where no population summary information is available and also when this

information is available. The population regression model used in the simulation was

yi = 1 + 5x1i + 8x2i + εi.

The values x1i were drawn from the standard normal distribution and the values x2i were

drawn from a normal distribution with a mean of 2 and a variance of 4, while the errors εi

were independently drawn from the standard normal distribution.

The population was generated as three m-blocks, with linkage errors generated according

to the correlated ELE model. In particular, the probabilities of correct linkage between yq

and X1q were set to λA1 = 1, λA2 = 0.95 and λA3 = 0.85 , the probabilities of correct linkage

between X1q and X2q were set to λB1 = 1, λB2 = 0.85 and λB3 = 0.8 , and the joint correct

linkage probabilities φq were set to φ2 = 0.845 and φ3 = 0.77 . Note that with these choices

we then had λB|A2 = 0.89 and λB|A3 = 0.91.

We considered the case where these probabilities are known as well as the case where

they were estimated from independent audit samples. These audit samples were defined by

taking independent random samples in the m-blocks corresponding to q = 2 and q = 3 and

then estimating λAq and φq as the proportion of correctly linked x1 to y and x1 to x2 and y

audit sample records respectively.

The linkage setup for which results are presented in this paper is the sample to registers

linking case considered in Subsection 2.3, with three m-blocks each of size 2500, and with 500

records in each m-block randomly assigned as unlinkable. Independent random samples were

then selected in each m-block, independently of whether population units were linkable or

not. We considered three sample size scenarios. In the first, a sample of size 1000 was taken

from each m-block, so that, on average, 800 of the sampled records were able to be linked

(not necessarily correctly) to both registers in each simulation. The results for this scenario

are discussed in Subsection 3.1 below. The remaining two sample size scenarios were chosen

in order to investigate the gains from calibration to external register information. In this

case, independent samples of size 200 and of size 30 were taken from each m-block. Results

for these two small sample scenarios are set out in Subsection 3.2.
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The estimation methods for the parameters of the population regression model that were

used in the first scenario are set out below. Methods based on the estimating function (8)

substituted estimates for unknown parameters when calculating the weighting matrix G∗slq.

ST The naive OLS estimator based on the linked sample data;

Aind The solution to (8), with G∗slq =
(
T̃ (sl)AqX̃

E|A
slq

)T
, but with λB|Aq = λBq, incorrectly

assuming that the two linkage processes (y to X1 and X2 to X1) are uncorrelated.

Note that this choice of weighting matrix is related to the Lahiri and Larsen (2005)

method of bias correction;

Cind The solution to (8) with plug in approximations to the optimal weights G∗slq =(
T̃ (sl)AqX̃

E|A
slq

)T
V −1(y∗slq) where V (y∗slq) = σ2Islq + Ṽ (sl)Aq + Ṽ (sl)Cq. Again, we incor-

rectly assume that the two linkage processes are uncorrelated.

Acor The same estimator as Aind, but now allowing for correlated linkage errors;

Ccor The same estimator as Cind, but allowing for correlated linkage errors.

In the second and third scenarios, the focus was on the small sample gains due to inclusion

of population summary information in the estimating equation for the regression parameter.

In this case, Acor and Ccor were again computed, as well as an alternative to Ccor, denoted

Ccor2. This differed from Ccor in the method used to calculate the variance term in the

optimal weights, using instead the heteroskedasticity-robust squared residual,

V (y∗slq) = S(β)TS(β) (10)

where

S(β) = y∗slq −
{

(λAq − γAq)XE|A
slq β +MqγAq1slqX̄qβ

}
.

An advantage of calculating the variance term in the optimal weights using (10) is that it

reduces the compounding effect of the approximation errors that result when this variance

term is estimated as in Ccor, i.e. by plugging parameter estimates into the different compo-

nents of the asymptotic variance expression displayed in Theorem 3. Calibrated versions of

Acor, Ccor and Ccor2, computed using (9), were also calculated. These are denoted Acor:cal,

Ccor:cal and Ccor2:cal respectively in Subsection 3.2.
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3.1 Simulation results for the case where there is no population

summary information

Table 1 shows the Monte Carlo relative bias and RMSE for the different estimators as well as

the actual coverages of normal theory-based nominal 95 per cent confidence intervals based

on plug in estimates of the asymptotic variance calculated using the expression in Theorem

3. We see immediately that although Aind and Cind reduce the bias in estimation of the

regression model coefficients relative to that of the naive estimator ST, these methods still

have a substantial bias as far as estimation of the coefficients associated with y and x2 are

concerned. Note, however, that this bias vanishes once we allow for correlated linkage errors

via Acor and Ccor. This is intuitively reasonable since it is estimation of these parameters

that is most affected by the linkage errors. Also, as one expects, there is an increase in

variability when the linkage model parameters are estimated from the audit sample. Consid-

ering the RMSE results, it is clear that use of an optimal weighting system (Cind or Ccor)

represents the best option when basing estimation on (8). This is similar to the findings in

Kim and Chambers (2012a) and Kim and Chambers (2012b).

We observe that the coverage rates defined by Ccor are consistently higher than 95%,

indicating that the plug in estimator of the asymptotic variance of this estimator is biased

upwards. This is not the case for Acor and does not appear to happen when only two

data sets are linked, see Chambers (2009) and Kim and Chambers (2012a). Since this

phenomenon also occurs when the linkage probabilities are specified (rather than estimated

from the audit subsample), it is almost certainly due to estimation errors associated with the

use of the estimator (5) of the regression error variance σ2 when estimating this asymptotic

variance.

Table 1 here.

3.2 Simulation results for the case where there is population sum-

mary information

The aim of this Subsection is to evaluate the performance of the calibrated estimating func-

tion (9), as well as to assess the effect of using (10) to compute optimal weights for use in (9).

Tables 2 and 3 show the Monte Carlo relative bias and RMSE of uncalibrated estimators

based on (8) and calibrated estimators based on (9), as well as the actual coverage of normal
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theory-based nominal 95 per cent confidence intervals based on plug in estimators of the

asymptotic variances of these estimators (see Theorems 3 and 4) for sample sizes of 200 and

30 respectively.

Tables 2 and 3 here.

The results set out in 2 and 3 provide somewhat mixed messages. To start, we see imme-

diately that the heteroskedasticity-robust approach (10) to calculation of optimal weights

for use in either (8) or (9) works very well in terms of both reducing bias and stabilising

variance at both sample sizes. Secondly, we see that the main beneficiary of the improved

efficiency from introduction of the population summary information is estimation of the in-

tercept coefficient β0, as one would expect. This is consistent with related results on the use

of likelihood-based methods for incorporating this type of population summary information

in linear regression (Chambers et al., 2012). However, the introduction of this information is

not always beneficial. Although the calibrated estimators Acor:cal and Ccor2:cal are never

inferior to their uncalibrated versions Acor and Ccor2 respectively, the calibrated version

Ccor:cal of the plug in type optimally weighted version of (8) in fact performs substantially

worse than its uncalibrated equivalent Ccor when the sample size is 200 (Table 2). This

result is reversed, however, at the much smaller sample size of 30 (Table 3). In effect, at the

larger sample size the gain in efficiency due to the use of population summary information

in Ccor:cal is more than outweighed by the loss of efficiency due to bias associated with the

plug in approach to calculating the estimate of V (y∗slq) used in weighting. It is only at a

much smaller sample size (30) that we see this trade off reversed.

Finally, we note that the coverage performances generally of the normal theory confidence

intervals based on the asymptotic variances in Theorems 3 and 4 is reasonable. In the case

of the estimators Acor and Acor:cal, calibration tends to make these intervals slightly more

conservative in most (but not all) cases. As far as Ccor2 and Ccor2:cal are concerned,

calibration also appears to generally increase coverage. In contrast, with Ccor and Ccor:cal

we see a decrease in coverage following calibration. However, since Ccor generates very

conservative intervals, this decrease actually tends to move coverage back to nominal levels.
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4 Summary and future research

We extend the bias correction methods for secondary regression analysis based on multi-

linked data described in Kim and Chambers (2012b). In particular, we develop bias-

correction methods that can accommodate both correlated linkage errors and unlinked data,

as well as make use of population summary information in order to reduce bias and sta-

bilise variability when linked sample sizes are small. Our approach assumes the simple

ELE mechanism for linkage errors suggested by Chambers (2009) since this seems most

appropriate for the secondary analysis situation. Our results show that the estimator de-

fined by the estimating function (9) that makes use of the summary information and uses a

heroskedasticity-robust approximation to the optimal weighting function performs well, even

when sample sizes are small. We focus on the linear regression analysis case, but, since we

take an estimating equation approach, our methods are easily extended to generalised linear

regression modelling.

Future research is necessary on more efficient ways of integrating population summary

information into analysis of linked data. In this context, we are currently investigating

alternative maximum likelihood solutions based on the ideas set out in Chambers et al.

(2012). Another important outstanding problem is dealing with informative non-linkage.

We have assumed the availability of weights that correct for the bias induced by non-linkage.

In a secondary analysis situation, such weights may not be available, or may need to be

constructed using the available linked data. Development of theory for this situation remains

an open problem.
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A Apendix

A.1 Proof of Theorem 1

We use ∂β to denote the partial differentiation operator with respect to β and adapt standard

arguments used to obtain the asymptotic variance of the solution to an unbiased estimating

equation. Furthermore, we only consider the case where G∗q is a function of X∗q. Then, since

∂βH
∗(β) = −

∑
q

G∗qT AqX
E|A
q

we need only to show that in large samples the variance of y∗q given X∗q can be approximated

by V (y∗q) = σ2Iq + V Aq + V Cq. Note that

VarX∗(y∗q) = EX∗

{
VarX∗

(
y∗q|Aq

)}
+ VarX∗

{
EX∗

(
y∗q|Aq

)}
. (11)

Then, by (2) and (3),

EX∗
(
y∗q|Aq

)
= AqEX∗

(
yq|Aq

)
= AqX

E|A
q β = Aqf

E|A
q .

Hence V Aq = VarX∗

{
EX∗

(
y∗q|Aq

)}
= VarX∗

(
Aqf

E|A
q

)
. A large sample approximation to

this variance is set out equation (16) of Chambers (2009), and is given by

V Aq = (1− λAq) diag
[{
λAq(f

E|A
iq − f̄E|Aq )2 + f̄E|A(2)

q − (f̄E|Aq )2
}

; i ∈ q
]
. (12)

In order to calculate EX∗

{
VarX∗

(
y∗q|Aq

)}
, we note that

VarX∗
(
y∗q|Aq

)
= Aq

[
EX∗

{
VarX∗

(
yq|(B|A)q

)}]
AT
q

+Aq

[
VarX∗

{
EX∗

(
yq|(B|A)q

)}]
AT
q .

(13)

From (1) we see that

VarX∗
(
yq|(B|A)q

)
= σ2Iq.

Hence the first terms on the right hand side of (12) is

Aq

[
EX∗

{
VarX∗

(
yq|(B|A)q

)}]
AT
q = Aqσ

2IqA
T
q = σ2AqIqA

T
q = σ2Iq. (14)

In order to evaluate the second term on the right had side of (11) we note that, given

f ∗2q = X∗2qβ2,

V Bq = VarX∗

{
EX∗

[
yq|(B|A)q

]}
= VarX∗

(
(B|A)Tq f

∗
2q

)
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which has the large sample approximation

V Bq = (1− λB|Aq) diag
[{
λB|Aq(f

∗
2iq − f̄ ∗2q)2 + f̄

∗(2)
2q − (f̄ ∗2q)

2
}]

= (1− λB|Aq) diag
[
di; i ∈ d

]
.

Put V Cq = EX∗

(
Aq

[
VarX∗

{
EX∗

[
yq|(B|A)q

]}]
AT
q

)
. Then

V Cq = EX∗

(
Aq(1− λB|Aq) diag

[
di; i ∈ d

]
AT
q

)
= (1− λB|Aq)EX∗

(
Aq diag

[
di; i ∈ d

]
AT
q

)
.

Put

eAqij = λAqI(i = j) +
1− λAq
Mq − 1

I(i 6= j).

Then, using similar arguments to that underpinning equations (66)-(67) of Chambers (2009),

we can write down the large sample approximation

EX∗

(
Aq diag

[
di; i ∈ d

]
AT
q

)
= diag

( Mq∑
i=1

die
Aq
ij ; i ∈ q

)
= diag

[
(Mq − 1)−1

{
(λAqMq − 1)di +Mq(1− λAq)d̄q

}
; i ∈ q

]
so the corresponding large sample approximation to V Cq is

V Cq = (1− λB|Aq)EX∗ diag
[
(Mq − 1)−1

{
(λAqMq − 1)di +Mq(1− λAq)d̄q

}
; i ∈ q

]
. (15)

Combining (11), (12), (14) and (15), the required result follows immediately. Use of this

asymptotic variance result to estimate the variance of β̂∗ follows directly. All that is required

is an unbiased estimator of σ2 based on the linked data. Here we note that we can write

(y∗q − fE|Aq )T (y∗q − fE|Aq ) = U 1q +U 2q +U 3q,

where
U 1q = yTqA

T
qAqyq − yTq f q − fTq yq + fTq f q

U 2q = yTq f q − fTq f q
U 3q = fTq yq − (y∗q)

TfE|Aq − (fE|Aq )Ty∗q + (fE|Aq )TfE|Aq .

Now

EX∗

(∑
q

U 1q

)
= EX∗

(∑
q

(yq − f q)T (yq − f q)
)

= Nσ2.

Also

EX∗

(∑
q

U 2q

)
= EX∗

(
(yq − f q)Tf q

)
= EX∗

(
εTq f q

)
= 0
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while, after re-arranging terms, we have

U 3q =
{
yTq f

E|A
q − (y∗q)

TfE|Aq

}
+
{

(fE|Aq )TfE|Aq − (fE|Aq )Ty∗q
}

+ ∆q,

where

EX∗

(
∆q

)
= EX∗

({
yTq − (fE|Aq )T

}
f q +

{
(fE|Aq )T − yTq

}
fE|Aq

)
= 0.

Thus,

EX∗

(
U 3q

)
= EX∗

[{
yTq f

E|A
q −(y∗q)

TfE|Aq

}
+
{

(fE|Aq )TfE|Aq −(fE|Aq )Ty∗q
}]

= 2(fE|Aq )T (Iq−T Aq)f
E|A
q .

Hence an unbiased estimator of σ2 is

σ̂2 = N−1
∑
q

{
(y∗q − f̂

E|A
q )T (y∗q − f̂

E|A
q )− 2(f̂

E|A
q )T (Iq − T Aq)f̂

E|A
q

}
.

A.2 Proof of Corollary 2

A first order Taylor series approximation is of the form

0 = H∗(β̂, λ̂A, φ̂)

≈H∗(β0, λ0,A, φ0) + ∂βH
∗(β0, λ0,A, φ0)(β̂ − β0)

+ ∂λA
H∗(β0, λ0,A, φ0)(λ̂A − λ0,A) + ∂φH

∗(β0, λ0,A, φ0)(φ̂− φ0),

where β0, λ0,A and φ0 denote the true values of β, λA and φ respectively. This leads us to

the large sample approximation

VarX∗(β̂) =
[
∂βH

∗
0

]−1
[
VarX∗(H∗0) +

(
∂λA
H∗0
)
VarX∗(λ̂A)

(
∂λA
H∗0
)T

+
(
∂φH

∗
0

)
VarX∗(φ̂)

(
∂φH

∗
0

)T
+
(
∂λA
H∗0
)
CovX∗(λ̂A, φ̂)

(
∂φH

∗
0

)T
+
(
∂φH

∗
0

)
CovX∗(φ̂, λ̂A)

(
∂λA
H∗0
)T]([

∂βH
∗
0

]−1
)T
,

where H∗0 denotes H∗(β0, λ0,A, φ0). Let ∂1 = ∂/∂λA
and ∂2 = ∂/∂φ. Then using the

definition of ∂βH
∗
0 and VarX∗(H∗0) from the proof of Theorem 1, the asymptotic variance

of β̂∗ is

V (β̂∗) = D
[∑

q

(
G∗qV (y∗q)G

∗T
q +

2∑
i=1

2∑
j=1

(
∂iH

∗)Jijq(∂jH∗)T)]DT

where D =
[∑

qG
∗
qT AqX

E|A
q

]−1

and J q = [Jijq] = Cov(λ̂Aq, φ̂q).
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A.3 Proof of Theorem 4

When λAq and λB|Aq are known, by a first order Taylor series approximation

V (β̂
∗
sl:cal) =

[
∂βH

∗
0

]−1
VarX∗(H∗0)

([
∂βH

∗
0

]−1
)T
.

Let Dsl:cal = −
[
∂βH

∗
0

]−1
. Then it can be seen that

∂βH
∗
0 = −

∑
q

{
G∗slq

[
(λAq − γAq)IslqXE|A

slq +MqγAq1slqX̄q

]
+ Ḡ

∗
rq

[
Mq(1−MslqγAq)X̄q −Mslq(λAq − γAq)X̄

E|A
slq

]}
.

Also, from its definition,

VarX∗(H∗0) =
∑
q

(
G∗slqV (y∗slq)G

∗T
slq−2G∗slq diag(V (y∗slq))1slq(Ḡ

∗
rq)

T+Ḡ
∗
rqmqV̄ (y∗slq)(Ḡ

∗
rq)

T
)
.

Thus,

V (β̂
∗
sl:cal) = Dsl:cal

[∑
q

(
G∗slqV (y∗slq)G

∗T
slq − 2G∗slq diag(V (y∗slq))1slq(Ḡ

∗
rq)

T

+ Ḡ
∗
rqmqV̄ (y∗slq)(Ḡ

∗
rq)

T
)]
DT

sl:cal

as required.

The proof uses similar arguments to those in the proof of Corollary 2 for the case where

λAq and λB|Aq are unknown and are replaced by estimated values.
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Table 1: Monte Carlo relative bias and relative RMSE (both expressed in percentage terms)

for parameter estimates based on a sample size of 1000, with an independent audit sample

of size 25. Empirical coverages (expressed in percentage terms) of normal theory-based

nominal 95 per cent confidence intervals are also shown. These use plug in estimators of the

asymptotic variance expression in Theorem 3.

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Estimation of β0

ST 206.14 206.14 207.43 207.43 0.0 0.0

Aind -67.96 -64.65 71.87 78.32 22.3 100.0

Cind -31.45 -25.91 33.46 33.44 78.7 100.0

Acor 1.13 2.65 23.27 37.41 95.6 90.4

Ccor 1.37 5.36 12.99 21.89 99.7 98.2

Estimation of β1

ST -6.69 -6.69 16.35 16.35 37.5 37.5

Aind -0.03 -0.06 6.77 7.43 97.2 100.0

Cind -0.49 -0.65 4.36 4.75 99.9 100.0

Acor -0.03 -0.07 6.69 7.35 96.1 95.4

Ccor -0.01 -0.21 4.24 4.62 99.7 99.3

Estimation of β2

ST -12.89 -12.89 36.62 36.62 0.0 0.0

Aind 4.25 4.05 12.54 13.74 8.8 100.0

Cind 1.97 1.62 5.74 5.78 48.5 100.0

Acor -0.07 -0.16 3.56 6.35 93.0 86.7

Ccor -0.08 -0.33 1.76 3.63 99.6 97.1
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Table 2: Monte Carlo relative bias and relative RMSE (both expressed in percentage terms)

for parameter estimates based on a sample size of 200, with an independent audit sample

of size 25. Empirical coverages (expressed in percentage terms) of normal theory-based

nominal 95 per cent confidence intervals are also shown. These use plug in estimators of the

asymptotic variance expressions in Theorems 3 and 4.

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Estimation of β0

Acor 0.43 2.84 55.32 77.37 94.1 83.1

Ccor 2.93 14.15 31.27 49.80 99.8 92.8

Ccor2 -0.58 -0.29 10.15 10.24 93.3 94.0

Acor:cal 0.87 3.17 45.99 69.81 93.1 75.8

Ccor:cal 9.45 20.29 43.14 57.85 96.0 89.9

Ccor2:cal -0.20 0.08 7.76 7.91 97.8 98.1

Estimation of β1

Acor -0.11 -0.05 14.90 15.86 96.3 94.8

Ccor -0.18 -0.72 9.59 10.63 99.9 98.4

Ccor2 0.00 -0.01 3.16 3.17 94.8 95.0

Acor:cal -0.09 -0.03 14.83 15.80 96.5 94.6

Ccor:cal -0.16 -0.71 15.61 16.43 92.1 90.0

Ccor2:cal 0.00 -0.01 3.15 3.16 94.5 94.8

Estimation of β2

Acor -0.07 -0.21 8.15 12.37 93.2 75.6

Ccor -0.25 -0.93 4.05 7.80 99.6 89.1

Ccor2 0.01 0.00 1.29 1.31 92.3 91.5

Acor:cal -0.05 -0.20 8.12 12.33 93.6 75.4

Ccor:cal -0.59 -1.27 7.55 10.17 90.2 80.8

Ccor2:cal 0.01 -0.01 1.28 1.31 92.5 91.7
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Table 3: Monte Carlo relative bias and relative RMSE (both expressed in percentage terms)

for parameter estimates based on a sample size of 30, with an independent audit sample

of size 25. Empirical coverages (expressed in percentage terms) of normal theory-based

nominal 95 per cent confidence intervals are also shown. These use plug in estimators of the

asymptotic variance expressions in Theorems 3 and 4.

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Estimation of β0

Acor 6.46 9.82 151.41 139.47 94.7 94.5

Ccor 23.61 18.69 97.36 90.19 98.2 98.3

Ccor2 -5.56 -3.08 32.82 27.71 90.9 92.4

Acor:cal 3.15 6.63 117.14 102.64 95.1 96.7

Ccor:cal 20.16 16.06 72.27 64.55 99.7 99.7

Ccor2:cal -5.74 -3.16 27.41 20.98 96.2 97.2

Estimation of β1

Acor -0.73 -0.73 38.50 38.31 96.8 96.8

Ccor -1.39 -1.23 26.93 26.80 99.1 98.8

Ccor2 -0.08 -0.13 8.59 8.56 93.3 93.0

Acor:cal -0.70 -0.70 37.46 37.18 97.6 97.1

Ccor:cal -1.34 -1.19 26.97 26.80 99.0 98.7

Ccor2:cal -0.03 -0.09 8.45 8.42 94.3 93.7

Estimation of β2

Acor -0.36 -0.58 21.41 18.91 94.9 96.7

Ccor -1.34 -1.09 12.77 11.40 99.2 98.8

Ccor2 0.35 0.19 4.86 3.76 89.6 90.8

Acor:cal -0.19 -0.41 20.68 18.13 96.0 97.5

Ccor:cal -1.25 -1.00 12.76 11.41 98.8 99.0

Ccor2:cal 0.36 0.20 4.84 3.69 90.1 91.4
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