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Abstract

Many studies of health utilise a multilevel modelling framework and if individual

level data are not available use ecological inference to obtain individual level parameter

estimates using area-level data summaries, resulting in biased parameter estimates and

increased variance. For these studies, the modifiable area unit problem means that the

scale of the analysis and the zones used to aggregate the data affect the amount and

direction of the bias and the increase in variance. To investigate the effects of scale and

zoning, in this paper the distribution of the parameter estimates for over many sets of

zones at the same scale (the zoning distribution) is obtained for parameter estimates

from an ecological model at multiple scales of analysis. The distributions are typically

symmetrical and unimodal and can be considered to follow a normal distribution. The

estimated average parameter estimate (ecological average) displays systematic variation

with scale and is related to
√
M − 1. The variance of the distribution is related to the

average number of observations in the areas. The implications of creating and using

a zoning distributions are wide ranging as they allow the estimates for a given set of

zones at the same or a different scales to be compared and assessed.
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1 Introduction

The modifiable area unit problem (MAUP) is the sensitivity of the results of an analysis to

the spatial areas or zones used to aggregate or analyse the data. It has two aspects: the

scale problem, which occurs when a smaller or larger number of areas is used to analyse the

data and the zoning problem which arises when the areas at a given scale are defined using

using different boundaries [Flowerdew et al., 2001]. Changing either of these factors may

alter the estimates which are obtained, but to date no apparently systematic trends have

emerged [Openshaw, 1984]. The MAUP means that the results of area level analyses can

only legitimately be applied to the particular areal units used, as an inference may change

when an alternative set of areas is used, even at the same scale. Its importance has been

recognised in many different types of analysis including studies of health [Diez-Roux and

Mair, 2010, Parenteau and Sawada, 2011, Swift et al., 2008, Cockings and Martin, 2005,

Schuurman et al., 2007, Best et al., 2001]. However, the geographical scale of a study is still

frequently determined by data availability [Wakefield, 2004].

The MAUP occurs because aggregation removes the link between individual response and

covariate values. For example, studies of health may use a multilevel modelling framework

to incorporate the clustered nature of the data in the analysis. The model has a hierarchical

structure with individual observations nested within the cluster or group to which they

belong, which for spatial data may be defined using geographic areas. Frequently, for privacy

reasons, only aggregate summaries are available and a common approach is to use ecological

inference which substitutes area level summaries for the individual level data. However, the

estimates of the parameters for this model may be biased because the within-area variability

of the data is not available and the amount and direction of bias depends on the geographic

areas used to analyse the data. The parameter estimates are not biased for the individual

level target of inference for a properly specified linear model [Tranmer and Steel, 2001],

although they will be for a non-linear link function. Changes in scale substantially affect the

variance of the estimates [Steel and Holt, 1996], but the effect of moving the zone boundaries
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is not apparently systematic [Stafford et al., 2008, Haynes et al., 2008]. Homogenous areas

are least affected by the MAUP [Briant et al., 2010] as in this case most of the variability

between data values is between areas.

The zones used to analyse data can either be derived from existing zoning systems or

created for the purpose of the analysis. Existing systems typically utilise official or admin-

istrative boundaries which provide a convenient way to disseminate data. However, it has

long been recognised that the use of existing zoning systems has limitations [Openshaw,

1977]. For example the UK Census Enumeration Districts display “wide variations in pop-

ulation size, geographical shape, area and social composition” [Cockings and Martin, 2005,

pp. 2732–2733].

Alternatives to administrative boundaries include zones formed using geometric shapes

(such as a rectangular grid), Voronoi tessellations [Swift et al., 2008], local knowledge of

the area, or automatic zone design procedures. A recent review of zone design techniques is

provided by Duque et al. [2007]. Stand alone zone design algorithms which have been used for

small area health data include ZDES [Openshaw and Rao, 1995] and AZTool [Cockings et al.,

2011, Martin, 2003] which are based on the AZP algorithm [Openshaw, 1977, Openshaw and

Rao, 1995]. Other zone design packages, including the scale-space clustering method [Mu

and Wang, 2008], are available for use with Geographic Information System (GIS) packages.

Several aspects of the zoning effect have previously been studied, including the appropri-

ate zones to use in an analysis [Haynes et al., 2007], the definition of neighbourhoods and the

inclusion of contextual or neighbourhood effects, particularly for the analysis of individual

level data [Diez-Roux and Mair, 2010]. The effect of scale and the ecological bias associated

with aggregate data analysis have been widely considered in the fields of spatial epidemiol-

ogy, geography and the social sciences [for example, see Greenland, 2002, Steel et al., 2003,

Richardson et al., 1987, Wakefield, 2004]. However, these do not consider the distribution of

estimates obtained using multiple sets of zones at each of several given scales, which is the

focus of this paper.
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In this paper, the selection or definition of analysis zones at several scales is used to

understand the effect of scale and zoning on regression parameter estimates obtained using

aggregate health data. In the next section zoning distributions are introduced. They are

used throughout the paper to describe the variation in parameter estimates for different sets

of zones. In Section 3 the methodology used to create empirical zoning distributions for

aggregate health data is described. The results of the analysis are presented in Section 4 and

discussed in Section 5.

2 The Zoning Distribution

A set of zones is formed when a given study region is partitioned into M geographically

contiguous, non-overlapping parts. Individuals in the population are assigned to the zones

using measures of geographic location, such that all individuals belong to exactly one zone

and each zone has Ng ≥ 1 observations, g = 1, ...,M . For a parameter or a statistic θ

evaluated for a given set of zones, an estimate, θ̂, is obtained.

Define the zoning distribution of the parameter estimate f(θ̂) as the distribution or density

function of the estimate over all possible sets ofM zones, given the constraints used in defining

the zones. It can be used to obtain the expected value and variability of estimates at a given

scale. The ecological average, defined as the expected value of the zoning distribution, and

variance provide a way to compare and standardise the results for a set of zones at a given

scale. Zoning distributions can also be used to make inferences about a parameter for one

set of zones or at one scale, given the data for another set of zones at a different scale.

There are presently no established rules or guidelines which can be used to consider

the form of the zoning distribution for area level data, other than in the case of purely

random grouping, when the expected value of each estimate is unbiased for the appropriate

individual level parameters and their variation can be derived from standard statistical theory

[Steel and Holt, 1996]. Since their comprehensive demonstration by Openshaw [1984], zoning
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distributions have not been widely considered in the literature, with the notable exception

of Cockings and Martin [2005] who create 10 sets of zones at several scales to determine the

sensitivity of a correlation coefficient to changes in scale and zoning. To identify appropriate

assumptions for zoning distributions, in this paper empirical estimates of zoning distributions

are created for the parameter estimates from a statistical model for small area health data.

3 Methodology

In this project, empirical zoning distributions were created for parameter estimates obtained

from a regression model for three health outcomes and a set of covariates using the following

steps. Firstly, spatially detailed health data was simulated for individuals in the 11879

populated Census Collection Districts (CDs) in New South Wales (NSW), Australia. Unit

record data from the 2007-2008 National Health Survey [Australian Bureau of Statistics, 2008,

2009] were combined with summary data defining the characteristics of CDs from the 2006

Australian Census [Australian Bureau of Statistics, 2006b] using a spatial microsimulation

model (MSM) as described in Burden and Steel [2013].

Health outcomes considered in the study were: measured body mass index (BMI); type

2 diabetes mellitus (diabetes); and angina. The relationship between each outcome and

three binary indicators: a sedentary lifestyle (little or no physical activity); dietary fat (con-

sumption of whole milk with ≥3% fat); and current smoking status (for BMI) or obesity

(BMI ≥ 25 - for angina and diabetes) was investigated. Table 1 shows summary statistics

for each variable. The variables age and sex were also included in the model for BMI and

used to calculate the expected cases of angina and diabetes in each area, which were included

as an offset in their respective models.

An area level indicator of socioeconomic status (denoted HSEIA) was also created, follow-

ing the procedure used to define the Australian Bureau of Statistics Socioeconomic Index for

Areas, Index of Relative Socio-Economic Advantage and Disadvantage (SEIFA) [Australian
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Table 1: Summary of health outcomes and risk factors for the simulated population of NSW
Total Mean Standard Coeff. 2.5 % 97.5 %
(’000) Error Variation percentile percentile

BMI 27.1 5.17 0.191 23.4 39.2
Diabetes 199 0.031 0.0015 0.049 0.028 0.034
Angina 121 0.019 0.0019 0.099 0.015 0.023
Smoking 1049 0.164 0.0071 0.043 0.151 0.178
Sedentary 1955 0.306 0.0070 0.023 0.293 0.320
Obesity 763 0.120 0.0033 0.028 0.113 0.126
Dietary Fat 2924 0.458 0.0070 0.015 0.445 0.472

Bureau of Statistics, 2006a, p.17–23]. Despite being created using different datasets and

some different variables, the distribution of deciles assigned to each area for the two indices

was similar. Overall, HSEIA included 16 variables, had an eigenvalue of 7.09 and explained

44% of the variation in the variables used in the index. For comparison, SEIFA included 21

variables, had an eigenvalue of 9.16 and also explained 44% of the variation in the variables.

The final simulated dataset comprised a set of individual health records (from the health

survey) for the population of NSW with spatial location information known to the CD level.

The location of individuals within CD’s was not defined. The simulated data was then rezoned

to higher levels of aggregation using the AZTool Software [Cockings et al., 2011, Martin, 2003].

AZTool randomly allocated CDs to analysis zones whilst preserving geographic contiguity. It

then iteratively swapped CDs between adjacent zones to improve the population target and

achieve upper and lower population limits for each zone. Table 2 shows the constraints used

to define the sets of zones at each scale. At eight scales of analysis, each of 1000 sets of zones

was defined using a single run of AZTool with 15 sets of swap iterations. Average population

statistics for the zones are summarised for each scale in Table 3. At each scale, the average

population per zone was very close to the target and the range in population per zone was

always narrower than the specified limits. The coefficient of variation (standard deviation

divided by the mean) decreased with scale indicating less variability in zone population with

increasing scale.

The data were aggregated to each set of analysis zones and the resulting zone level sum-
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Table 2: The population target and constraints used in AZTool to create 1000 zones at each
of eight scales.

Scale Population Range No.
Target (’000) Areas

L1 1000 0.5 – 3 6338
L2 2000 1–4 3169
L3 4000 2–8 1585
L4 6000 3–12 1056
L5 8000 4 – 16 792
L6 10000 5 – 20 634
L7 15000 7.5 – 30 423
L8 20000 10 – 40 317

Table 3: Population statistics for the sets of zones at each scale averaged over the 1000 sets
of zones forming the zoning distribution at each given scale.

Level No. Mean Std Min Max Coeff.
Zones Dev Variation

CD 11879 537 258 3 2755 0.481

1 6214 1026 210 636 2755 0.205
2 3168 2013 237 1373 3180 0.117
3 1585 4024 309 2783 5502 0.077
4 1056 6040 376 4429 8269 0.062
5 792 8053 444 5904 10464 0.055
6 634 10060 506 8004 12613 0.05
7 423 15078 678 11881 18018 0.044
8 317 20120 834 17037 23781 0.041

maries were modelled to obtain a regression parameter estimate, βE, for each covariate. The

population weighted average BMI in each area was modelled in terms of the average for age,

sex, each indicator variable and HSEIA using an area level regression model. Angina and

diabetes were modelled as count variables and making a rare disease assumption, an eco-

logical model was specified using a Poisson distributed response, i.e. for rare diseases and

large group sizes, the count of positive responses for each area was approximated by an in-

dependent Poisson random variable given the covariates and a normally distributed random

effect for the zones. An offset was included in the model to account for differences in the

population at risk in each area. It was calculated as the proportional counts of disease based
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on the population size and age×sex structure in each area. The models were estimated using

either generalised least squares (for BMI) or second order penalised quasi-likelihood (PQL2)

in the MlWiN software [Rasbash et al., 2009]. For BMI, 23% and 33% of the models for

levels 7 and 8 respectively did not converge, reducing the number of estimates used to define

the empirical distributions.

The individual level data were also modelled to provide a reference for comparison with

the ecological estimates. A linear (for BMI) or logistic (for angina and diabetes) multilevel

statistical model was used to obtain parameter estimates for the regression coefficients, β,

for each covariate. Binary indicators of prevalence of angina and diabetes were modelled as

Bernoulli random variables using a generalised linear model with a logistic link. The models

were estimated using each set of zones to define the group level. A 0.33% or 1% simple

random sample of individual records was selected with an equal probability of selection for

BMI and the binary variables respectively. Some logistic models at levels one to three failed

to convergence using PQL2, so first order marginal quasi-likelihood (MQL1) was used for

estimation.

Using the resulting parameter estimates for each covariate, zoning distributions were de-

fined at each scale using kernel density estimation with a Gaussian kernel in the R Statistical

Software [R Development Core Team, 2008].

4 Empirical Zoning Distributions

The average parameter estimate at each scale (ecological average) and its standard error

over the sets of zones are shown in Table 4 while the empirical variance and its standard

error are given in Table 5. Zoning distribution density plots for the ecological regression

parameter estimates (β̂E) are shown for BMI in Figure 1, for angina in Figure 2 and for

diabetes in Figure 3. The domain of each distribution represents the range of parameter

estimates which may be obtained for the given covariate and scale. The density curve defines
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the probability of the estimate for the given statistical model. As Table 4 and Figures 1 to

3 show, the zoning distributions were generally unimodal, reasonably symmetric and were

similar for all response variables. In general, with an increase in scale, the ecological average

of each parameter estimate increased in absolute magnitude in a consistent direction, but

the relative size of the change diminished with scale. Similar results were obtained for the

quantiles of the zoning distributions. The distribution of the estimated parameter for the

HSEIA covariate was more complex, reflecting its lack of statistical significance, taking both

positive and negative values at each scale. Its average value did become slightly more negative

with scale, but it remained very close to zero.

Table 4: Average parameter estimate β̂E and its average standard error over the sets of zones
at each scale for each covariate included in the models for BMI, Angina and Diabetes. Note
that covariates age and sex were also included in the model for BMI.

Level 1 2 3 4 5 6 7 8
BMI

Constant 27.9 27.5 27.5 27.4 27.4 27.4⋄ 27.6⋄ 27.8⋄

(0.283) (0.425) (0.65) (0.841) (1) (1.15) (1.48) (1.76)
Sedentary -1.28 -1.54 -1.98 -2.36 -2.74 -3.13⋄ -3.83⋄ -4.4⋄

(0.234) (0.344) (0.515) (0.653) (0.775) (0.886) (1.13) (1.35)
Smoker 2.24 3.28 4.1 4.56 4.9 5.25⋄ 5.82⋄ 6.3⋄

(0.203) (0.284) (0.407) (0.511) (0.6) (0.681) (0.862) (1.01)
Diet. Fat -0.694 -1.16 -1.78 -1.98 -2.06⋄ -1.96⋄ -1.93⋄ -1.78⋄

(0.217) (0.33) (0.51) (0.661) (0.792) (0.912) (1.18) (1.4)
HSEIA -0.00185 -0.00191 -0.00216 -0.00229 -0.00238 -0.00236⋄ -0.00243⋄ -0.00242⋄

(0.000124) (0.00019) (0.000297) (0.000389) (0.000466) (0.000535) (0.000689) (0.000818)

ANGINA
Constant 1.59 2.18 2.92 3.34 3.58 3.77 4.16 4.48

(0.157) (0.221) (0.314) (0.383) (0.443) (0.494) (0.606) (0.702)
Sedentary 2.75 3.08 3.34 3.46 3.55 3.64 3.72 3.74

(0.129) (0.172) (0.229) (0.272) (0.31) (0.343) (0.415) (0.478)
Obesity -3.6 -4.26 -4.96 -5.34 -5.57 -5.75 -6.1 -6.38

(0.19) (0.244) (0.318) (0.375) (0.425) (0.467) (0.56) (0.641)
Diet. Fat -1.83 -2.7 -3.71 -4.26 -4.58 -4.85 -5.31 -5.65

(0.149) (0.202) (0.273) (0.325) (0.368) (0.405) (0.485) (0.551)
HSEIA -0.00117 -0.00137 -0.00163 -0.00178 -0.00187 -0.00194 -0.0021 -0.00223

(7.42e-05) (0.000103) (0.000144) (0.000175) (0.000201) (0.000224) (0.000274) (0.000318)

DIABETES
Constant -0.477 -0.878 -1.41 -1.74 -1.95 -2.1 -2.39 -2.52

(0.114) (0.157) (0.22) (0.268) (0.307) (0.341) (0.413) (0.475)
Sedentary 0.0697⋄ 0.251⋄ 0.491 0.595 0.664 0.709 0.773 0.803⋄

(0.0938) (0.122) (0.16) (0.189) (0.214) (0.235) (0.28) (0.321)
Obesity 0.538 0.316⋄ 0.272⋄ 0.333⋄ 0.352⋄ 0.36⋄ 0.425⋄ 0.416⋄

(0.141) (0.179) (0.232) (0.271) (0.304) (0.332) (0.391) (0.443)
Diet. Fat 1.58 2.03 2.52 2.84 3.04 3.18 3.47 3.6

(0.108) (0.145) (0.195) (0.231) (0.261) (0.285) (0.337) (0.38)
HSEIA -0.000348 -0.000177⋄ 5.84e-05⋄ 0.00021⋄ 0.000306⋄ 0.000371⋄ 0.000504⋄ 0.000565⋄

(5.35e-05) (7.26e-05) (1e-04) (0.000121) (0.000139) (0.000154) (0.000186) (0.000214)
Standard errors in parentheses

⋄ indicates that parameter estimate significant for less than 95% of zones
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Table 5: Variance of β̂E (Var[V ar(β̂E)]) over the zones at each scale for BMI, Angina and
Diabetes.

Level 1 2 3 4 5 6 7 8
BMI
Constant 0.0262 0.0742 0.144 0.214 0.288 0.352 0.522 0.731

(5.86e-06) (3.51e-05) (0.000137) (0.000249) (0.000436) (0.000699) (0.00193) (0.00337)
Sedentary 0.0122 0.0373 0.0911 0.128 0.178 0.23 0.339 0.488

(2.03e-06) (1.07e-05) (4.7e-05) (0.000102) (0.000189) (0.000337) (0.000723) (0.00181)
Smoker 0.0108 0.0232 0.035 0.0667 0.0889 0.11 0.164 0.191

(1.47e-06) (9.24e-06) (3.86e-05) (7.58e-05) (0.000137) (0.000201) (0.000549) (0.000845)
Diet. Fat 0.0138 0.0394 0.0703 0.11 0.157 0.202 0.315 0.395

(2.91e-06) (1.93e-05) (9.12e-05) (0.000206) (0.000378) (0.000571) (0.00158) (0.00287)
HSEIA 6.86e-09 1.59e-08 2.85e-08 4.62e-08 5.78e-08 7.48e-08 1.24e-07 1.46e-07

(3.98e-12) (1.33e-11) (3.93e-11) (7.05e-11) (1.2e-10) (1.75e-10) (4.32e-10) (6.76e-10)

ANGINA
Constant 0.00745 0.021 0.0477 0.0633 0.0778 0.0989 0.131 0.176

(2.67e-06) (8.6e-06) (2.63e-05) (4.59e-05) (8.05e-05) (0.000117) (0.00022) (0.000404)
Sedentary 0.00323 0.00764 0.0154 0.019 0.0239 0.0284 0.0363 0.049

(9.46e-07) (2.73e-06) (9.17e-06) (2e-05) (3.46e-05) (4.9e-05) (1e-04) (0.000177)
Obesity 0.00687 0.0164 0.0325 0.0483 0.059 0.0737 0.101 0.144

(1.36e-06) (4.97e-06) (1.78e-05) (3.34e-05) (6.14e-05) (8.67e-05) (0.000158) (0.000292)
Diet. Fat 0.0054 0.0143 0.0281 0.0384 0.0442 0.0579 0.0764 0.102

(1.21e-06) (5.29e-06) (1.61e-05) (2.7e-05) (4.71e-05) (6.56e-05) (0.000121) (0.000204)
HSEIA 1.65e-09 4.3e-09 9.61e-09 1.28e-08 1.57e-08 2.01e-08 2.65e-08 3.56e-08

(6.89e-13) (1.8e-12) (5.19e-12) (9.21e-12) (1.62e-11) (2.36e-11) (4.53e-11) (8.38e-11)

DIABETES
Constant 0.0027 0.00882 0.0165 0.0221 0.0283 0.0358 0.0498 0.0695

(1.03e-06) (3.05e-06) (1.07e-05) (2.12e-05) (3.3e-05) (4.89e-05) (9.98e-05) (0.000142)
Sedentary 0.00143 0.00416 0.00643 0.00864 0.0113 0.0121 0.0165 0.0202

(3.35e-07) (1.28e-06) (4.12e-06) (8.44e-06) (1.31e-05) (1.89e-05) (3.9e-05) (5.99e-05)
Obesity 0.00321 0.00837 0.0163 0.0216 0.0273 0.038 0.0503 0.0704

(6.92e-07) (2.62e-06) (8.29e-06) (1.69e-05) (2.68e-05) (3.99e-05) (7.66e-05) (0.000106)
Diet. Fat 0.00225 0.00617 0.0119 0.0157 0.0185 0.0254 0.0352 0.048

(6.09e-07) (2.1e-06) (6.9e-06) (1.28e-05) (1.94e-05) (2.78e-05) (5.5e-05) (7.2e-05)
HSEIA 5.37e-10 1.76e-09 3.24e-09 4.31e-09 5.57e-09 6.99e-09 9.84e-09 1.37e-08

(2.52e-13) (6.35e-13) (2.15e-12) (4.3e-12) (6.6e-12) (9.91e-12) (2.03e-11) (2.91e-11)
Variance of the standard errors in parentheses

Table 5 shows that the variance of the distributions increased substantially with scale

and the proportional increase in variance with scale was similar for all covariates. The

increased variance with scale is most likely due to the reduced power of the analysis as the

mean covariate values for each zone became more similar with scale, reducing the observed

variance. This demonstrates the implications for the inferences that can be made using

ecological parameter estimates. When the limits of the distribution extend to include zero,

inferences may not be significant, or the apparent relationship may change sign, as observed

for some covariates in the model for diabetes.

These results suggest that the zoning distributions of the variances vary systematically

as a function of scale i.e. as a function of N̄ and/or M , reflecting that the variance is a
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function of the degrees of freedom, M − 1. The trend with scale seems consistent with

random aggregation even though the average parameter estimates do not exhibit random

aggregation.
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Figure 1: Density plots of the zoning distribution of the ecological regression coefficients
Sedentary, obesity, dietary fat, HSEIA and the random effect on BMI at eight scales

For BMI and angina, the parameter estimates obtained for all individual level variables

were statistically significant at the 5% level for all sets of zones at all scales but the estimates

for HSEIA were not. For diabetes, obesity was not significant at the lowest scale and only

significant for half the zones at level 2. Dietary fat was significant in fewer than 10% of

the sets of zones as scale increased and sedentary varied between 30% and 90%, becoming

more significant at higher scales. In many cases the size of the effects increased with scale,

suggesting that a component of the bias is related to the scale of the analysis. However,

the trend was not universal. For example, the results for the obesity parameter estimate are

more complex and are not always significant.
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Figure 2: Density plots of the zoning distribution for the ecological regression coefficients
Sedentary, obesity, dietary fat and HSEIA on angina at eight scales

The Shapiro Wilk test for normality was performed (using the R statistical software) for

each zoning distribution. For BMI and diabetes, the null hypothesis was retained at most

scales and normality of the zoning distribution could be assumed for all covariates. For

angina, the results were mixed with the assumption of normality rejected for all covariates

at level 4, all covariates except sedentary at level 5 and by HSEIA at levels 1 and 8. The

skewness of the zoning distributions for all parameter estimates was well below one (with

typical values of 0.01 to 0.03) and the excess kurtosis was also low, confirming that the

distributions are all relatively symmetric and are consistent with normally distributed data.
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Figure 3: Density plots of the zoning distribution for the ecological regression coefficients
Sedentary, obesity, dietary fat and HSEIA on diabetes at eight scales

4.1 Estimation of a Multilevel Target of Inference

A key advantage of the microsimulation approach is that estimates obtained from ecological

and multilevel models can be compared using realistic aggregate and individual level data

from the same population. Table 6 provides a summary of the average individual, CD level

and multilevel model parameter estimates for each response variable. The multilevel model

utilises the zones at level 4, although very similar results were obtained for groups at all

scales.

Assuming that an individual level inference is required, the ecological parameter estimates

are consistently biased and have generally higher variances than multilevel models, except

when there are many small zones. In many cases and for most covariates, the difference

between the ecological and multilevel parameter estimates was statistically significant due to
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Table 6: Parameter estimates for the statistical models for BMI, angina and diabetes.
Level 8 Level 4 Level 1 CD Model ML Model

BMI
Constant 27.8 27.4 27.9 27.9 29.9
Sedentary -4.4 -2.36 -1.28 -0.235 0.508
Smoking 6.3 4.56 2.24 0.000168 -0.203
Dietary Fat -1.78 -1.98 -0.694 0.584 -1.26
HSEIA -0.00242 -0.00229 -0.00185 -0.00129 -0.00279
20-29 -5.2 -5.37 -5.39 -5.32 -1.18
30-39 -2.96 -1.51 -1.54 -2.29 0.311
40-49 0.0204 -0.248 0.432 0.551 0.975
50-59 5.19 4.29 3.16 1.92 1.38
60-69 -0.189 1.2 2.11 1.94 1.78
70-79 5.37 3.08 1.36 0.846 1.41
80+ -8.22 -5.16 -3.02 -3.28 0
Female 5.02 4.59 2.34 1.05 -0.776

ANGINA
Constant 4.48 3.34 1.59 0.8 -2.61
Sedentary 3.74 3.46 2.75 2.31 0.988
Obesity -6.38 -5.34 -3.6 -2.67 0.528
Dietary Fat -5.65 -4.26 -1.83 -0.74 -0.55
HSEIA -0.00223 -0.00178 -0.00117 -0.000869 -0.00167

DIABETES
Constant -2.52 -1.74 -0.477 -0.0708 -2.44
Sedentary 0.803 0.595 0.0697 -0.138 0.629
Obesity 0.416 0.333 0.538 0.822 1.33
Dietary Fat 3.6 2.84 1.58 1.07 -0.72
HSEIA 0.000565 0.00021 -0.000348 -0.000498 -0.00126

the bias associated with the ecological estimates. With increasing scale, the change in the

bias of the ecological average and the average variance of the difference appears to behave

systematically. However, predicting the magnitude of the bias for any given set of zones is

much harder. If the zoning distribution were known, the bias of a particular estimate may be

standardised by removing the variability due to zoning, although the problem still remains

that the relationship between the individual level and area level estimates is not immediately

predictable.

The implications of the zoning distribution can also be considered in terms of a predictive

confidence interval for the parameter estimates obtained for a new set of zones. Assuming

approximate normality of the zoning distribution, the width of a 95% prediction interval for
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a new parameter estimate is equal to 2× 1.96

√
V ar(β̂)(1 + 1/K), where K is the number of

observations used to estimate the mean and variance of the zoning distribution. Table 7 shows

these intervals as a proportion of the average value of the estimate at the relevant scale. The

predictive confidence intervals get much wider as the scale increases, in a similar fashion to the

variance of the zoning distribution. This suggests that the impact of the zones increases for

higher scales, and hence the importance of taking the zoning distribution into consideration

also increases. However, wider relative prediction intervals are also frequently associated with

smaller average parameter estimates, which may not be statistically significant.

For some parameter estimates, 95% of the estimates from a new set of zones would lie

within 10% of the average value of the parameter estimate, i.e. the covariates for angina

at the lower scales. In some studies this may represent a reasonable level of variation due

to zoning, in which case the zoning distribution will not substantially affect the parameter

estimates or inference. However in many cases, even when the estimates are statistically

significant, the prediction interval for 95% of estimates from a new set of zones may be

greater than 20% and could lie between 30% and 100%. For these cases the variation due to

zoning may have a substantial impact on inference.

4.2 Relationships in the Data

In this section, relationships in the data that may affect and/or control the observed biases

and increased variance of the parameter estimates are investigated. For a linear model, when

data are randomly aggregated and the covariates are approximately normally distributed, the

parameter estimates for a conditionally specified model are theoretically unbiased and the

variance is inversely proportional to the degrees of freedom, M −1 [Steel and Holt, 1996]. As

the size of the total population is fixed, the variance is also proportional to N̄ . Figure 4 shows

that some of the regression parameter estimates for BMI, angina and diabetes appear to be

related to
√
M − 1, but not linearly. However, there are parameter estimates for which the

relationship does not hold at all and in the case of diabetes one parameter appears inversely

15



Table 7: Relative width of the predictive confidence interval for a parameter estimate obtained
for a new set of zones (in the same study area) at the same scale. It is written as a proportion
of the average value of the parameter estimate, X, i.e. E[β̂](1 ± X) where X = 1.96 ×√
V ar(β̂)× (1 + 1/1000), where K is the number of observations used to estimate the mean

and variance of the zoning distribution
Level 1 2 3 4 5 6 7 8
BMI
Constant 0.0114 0.0194 0.0271 0.0331 0.0384 0.0424 0.0513 0.0603
Sedentary 0.169 0.246 0.299 0.298 0.302 0.301 0.298 0.311
Smoking 0.0911 0.0912 0.0895 0.111 0.119 0.123 0.136 0.136
Diet. Fat 0.332 0.336 0.292 0.329 0.377 0.45 0.569 0.691
HSEIA 0.088 0.13 0.153 0.184 0.198 0.227 0.283 0.31
10-19
20-29 0.0404 0.0618 0.09 0.11 0.132 0.148 0.198 0.243
30-39 0.213 0.375 0.561 0.641 0.723 0.73 0.684 0.658
40-49 0.641 2.47 1.67 3.14 6.55 4.54 16.8 82.4
50-59 0.0778 0.108 0.149 0.176 0.203 0.223 0.257 0.313
60-69 0.132 0.284 0.539 0.749 1.08 1.68 5.41 11
70-79 0.24 0.279 0.317 0.336 0.346 0.32 0.354 0.371
80+ 0.106 0.155 0.185 0.206 0.226 0.247 0.272 0.291
Female 0.0981 0.124 0.141 0.148 0.181 0.199 0.233 0.286

ANGINA
Constant 0.106 0.13 0.147 0.148 0.153 0.164 0.17 0.184
Sedentary 0.0406 0.0556 0.0728 0.078 0.0853 0.091 0.101 0.116
Obesity 0.0452 0.0588 0.0713 0.0807 0.0855 0.0925 0.102 0.117
Diet. Fat 0.0787 0.0868 0.0886 0.0903 0.09 0.0973 0.102 0.111
HSEIA 0.0679 0.0937 0.118 0.124 0.131 0.143 0.152 0.166

DIABETES
Constant 0.214 0.21 0.179 0.167 0.169 0.177 0.183 0.205
Sedentary 1.06 0.504 0.32 0.306 0.313 0.304 0.326 0.347
Obesity 0.207 0.568 0.92 0.864 0.921 1.06 1.04 1.25
Diet. Fat 0.0588 0.0759 0.0849 0.0864 0.0877 0.0983 0.106 0.119
HSEIA 0.131 0.465 1.91 0.612 0.479 0.442 0.386 0.407
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Figure 4: Plot of the ecological average of the parameter estimates E[β̂E] versus
√
M − 1 for

each scale of analysis for BMI, angina and diabetes. The legend for angina is the same as for
diabetes

The average empirical variance of the parameter estimates (Ek[V ar(β̂E)]), over k = 1000

zones, is shown in Figure 5. For the response BMI, the expected value of the variance

of the parameter estimates is proportional to the average population size in each area, N̄

(and 1/
√
M , which is not shown). Despite non-linearity in the models, similar results are

obtained for angina and diabetes. In all cases the area level covariate HSEIA has a much

lower variance compared with the individual level covariates. These results suggest that

scale effects for the regression parameter estimates are related to M with variances linearly

related to N̄ . It is interesting to see that the same result appears to hold for a non-linear

model. If random aggregation can be identified for both linear and non-linear models, then

the scale at which the aggregation becomes random can also be identified. This means that
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the ecological average of the parameter estimate can be predicted at lower scales, down to

the scale at which the within area homogeneity affects the parameter estimates.
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Figure 5: Plot of Ek[V ar(β̂E)] versus N̄ for each scale of analysis for BMI, angina and
diabetes

The relationship between the variance of the zoning distribution for each regression pa-

rameter estimate (V ark(β̂
E)) and N̄ is shown in Figure 6. This estimate of the variance also

exhibits the same linear relationship with N̄ (and 1/
√
M) with increasing scale for all of the

response variables.

Comparing the two estimates of variance, the variance denoted by Ek[V ar(β̂E)] is the

average value of the variance estimate for each regression coefficient obtained using each set

of zones. The variance of the regression parameter estimate for the zoning distribution i.e.

calculated over the 1000 sets of zones, is denoted V ark(β̂
E). The two estimates are compared

directly in Figure 7 for each of the response variables. In all cases the variance estimates are

somewhat linearly related, but not exactly the same. The average empirical variance is close
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Figure 6: Plot of V ark(β̂
E) versus N̄ for each scale of analysis using linear ecological model

for BMI, angina and diabetes

to four times greater than the zoning variance.

5 Discussion

These results provide a valuable insight into zoning distributions, because knowledge of the

zoning distribution of a parameter estimate allows for its inclusion into a statistical model for

area level data, improving the estimates obtained from the model and better characterising

the data. It also allows confidence intervals for the expectation of the estimates over the

zoning distribution to be obtained. The empirical zoning distributions are all relatively sym-

metrical and generally unimodal and the regression parameter estimates are approximately

normally distributed. They suggest that for a continuous or a binary response variable, the

zoning distributions of the parameter estimates obtained using a linear or logistic ecological
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Figure 7: Relationship between V ark(β̂
E) and Ek[V ar(β̂E)] for each scale of analysis using

ecological models for BMI, angina and diabetes

model have a normal distribution. Moreover, the variance of each zoning distribution is a

predictable function of N̄ and the parameter estimates are related to
√
M − 1. The variance

of the zoning distribution is often appreciable, and should not be ignored when interpreting

the results of statistical analysis based on aggregate data for geographic zones.

The results demonstrate several implications of using data aggregated to a given set of

zones for obtaining parameter estimates. In general, the aggregate data estimator is biased

compared with the individual level estimator and the magnitude and direction of the bias

depends on the estimator. The bias of a given estimate cannot yet be predicted, but for

statistically significant estimates the average value of the estimator over the zones varies

reasonably systematically with aggregation for both a linear and a logistic ecological model.

An extension of this result is that zoning distributions may also be used in the definition and

analysis of neighbourhood effects. For example, zoning distributions (particularly at multiple

scales) can be used to identify the scale above which zones can be assumed to be randomly
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formed.

One result which is only available when multiple sets of zones are used to analyse the data

at each level is that parameter estimates may only be statistically significant for some sets of

zones at a given scale. When this occurs, the zones chosen to analyse the data can affect the

statistical significance of the parameter estimates in ways that at present are not predictable.

Comparing the parameter estimates for the population model and the multilevel model, in

this application both gave similar parameter estimates. Using such a large amount of data,

even with groups at the CD level, the effect of within zone homogeneity on the estimates is

not appreciable.

In some cases, the expectation of the zoning distribution at a given scale may itself be

a reasonable target of inference. If the zoning distribution can be characterised, we might

then be able to draw conclusions about it. A finding in this study is that in most cases, the

bias caused by aggregation is more substantial than the variation due to the zones used in

the analysis. The results are similar for analyses undertaken using both normally distributed

continuous data and count data. However, compared with the bias associated with the use

of aggregate rather than individual level data, the zoning effect was relatively minor at low

scales although its impact increased substantially as the scale of aggregation increased and

the zoning distributions became much flatter and wider.

Similarly, if the zoning distribution at a particular scale can be estimated, then given

results for one set of zones it may be possible to make a judgment regarding the results

which may be obtained for another set of zones at that scale. For example, using prediction

intervals, a prediction of the parameter estimates obtained with a different set of zones can be

made. For this study, relative prediction intervals of ±10% to ±15% were frequently obtained

from the zoning distributions, although some parameter estimates were more substantially

affected. Consequently in many cases the use of a particular set of zones introduces an

additional source of error, and knowledge of the zoning distribution allows it to be quantified

and compared with the other sources of error. In many cases the primary factor affecting
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the stability of the estimates is the scale of the analysis. In all cases, a greater number of

observations (i.e. zones) improves the variance of the estimates and increases the probability

of a statistically significant result. However, even when there are over 1000 zones in the

analysis the zoning can have an impact on the parameter estimates.

By undertaking analyses at several scales or using several sets of zones at a given scale,

the average value of the zoning distribution may be obtained. A major finding of the analyses

conducted here is that Ek[β̂
E] appears to vary consistently with scale allowing the effect of

zoning at a given scale to be predicted. Moreover, it is possible to re-aggregate the data to

a higher scale and then to predict the variance of the zoning distribution at a lower scale

based on the variance at the higher scale. The implications of these results are that given

one observation on a zoning distribution at one scale, if the data are aggregated in a number

of ways to several different scales the relationships between the scales can be exploited to

help asses the possible mean and variance of the zoning distribution for the scale of interest.

Moreover at a given level above the lowest scale, it is possible to make a partial adjustment

of the estimator to its average value to account for the zoning distribution.

To draw conclusions about a different scale requires an understanding of how the expec-

tation of the zoning distribution varies with scale. Obtaining parameter estimates at a scale

which is higher than the scale of interest is not difficult, as with sufficient zones the data can

be merged in multiple ways to a higher scale. Going down a level is more difficult, but if

the zoning distribution can be related in a systematic way to the scale of the analysis, then

prediction and estimation at lower levels is possible. An example of this is that the zoning

distribution at level 1, say, may help us in assessing the CD level zoning distribution which

should be used with the single estimate that we have for the CD level.

In conclusion, the characteristics of the zones used to aggregate the data are an important

aspect of the analysis for any type of study using small area health data or when population

grouping is involved. In all studies there is a need to carefully consider the zones used in

the analyses and the zoning distribution that applies. This paper provides an extensive
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systematic investigation of the characteristics of zoning distributions for parameter estimates

obtained from the analysis of small area health data using an ecological linear or logistic

model.
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