
University of Wollongong
Research Online

Centre for Statistical & Survey Methodology
Working Paper Series Faculty of Engineering and Information Sciences

2013

Poisson M-quantile regression for small area
estimation
Nikos Tzavidis
University of Southampton

Maria Giovanna Rannalli
University of Perugia

Nicola Salvati
University of Pisa

Emanuela Dreassi
University of Florence

Ray Chambers
University of Wollongong, ray@uow.edu.au

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Recommended Citation
Tzavidis, Nikos; Giovanna Rannalli, Maria; Salvati, Nicola; Dreassi, Emanuela; and Chambers, Ray, Poisson M-quantile regression for
small area estimation, Centre for Statistical and Survey Methodology, University of Wollongong, Working Paper 14-13, 2013, 28.
http://ro.uow.edu.au/cssmwp/114

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/cssmwp
http://ro.uow.edu.au/cssmwp
http://ro.uow.edu.au/eis


Copyright © 2013 by the National Institute for Applied Statistics Research Australia, UOW. 
Work in progress, no part of this paper may be reproduced without permission from the Institute. 
 

National Institute for Applied Statistics Research Australia, University of Wollongong, 
Wollongong NSW 2522. Phone +61 2 4221 5435, Fax +61 2 4221 4845. Email: 

anica@uow.edu.au 

 
 
 
 
 
 

National Institute for Applied Statistics Research 
Australia 

 

The University of Wollongong 
 

 

Working Paper 
 
 

14-13 
 

 
Poisson M-quantile Regression for Small Area Estimation 

   
 
 
 

Nikos Tzavidis, M. Giovanna Ranalli , Nicola Salvati, Emanuela Dreassi and Ray 
Chambers 

 

mailto:anica@uow.edu.au�


Poisson M-quantile Regression
for Small Area Estimation

Nikos Tzavidis∗ M. Giovanna Ranalli† Nicola Salvati‡

Emanuela Dreassi§ Ray Chambers¶

Abstract
A new approach to model-based small area estimation for count out-

comes is proposed and used for estimating the average number of visits to
physicians for Health Districts in Central Italy. The proposed small area pre-
dictor is based on defining a Poisson M-quantile model by extending the
ideas in Cantoni & Ronchetti (2001) and Chambers & Tzavidis (2006). This
predictor can be viewed as a semi-parametric outlier robust alternative to
the more commonly used plug-in Empirical Best Predictor that is based on a
Poisson generalised linear mixed model with Gaussian random effects. Re-
sults from the real data application and from a simulation experiment con-
firm that the proposed small area predictor has good robustness properties
and can be more efficient than alternative small area predictors.

Keywords: Count data; generalized linear models; health survey; non-normal out-
comes; nonparametric bootstrap; robust inference.
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Italy, salvati@ec.unipi.it
§Dipartimento di Statistica, Informatica, Applicazioni ‘G. Parenti’, Università degli Studi di
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the National Institute of Statistics. The 2012-13 edition is currently running; pre-
vious editions have been conducted in the periods 1999-2000 and 2004-05. It
provides information about the health condition and health care use of the non-
institutionalized population of Italy. The questionnaire comprises items on basic
health condition (like perceived health status, MBI and dietary habits) that are
also surveyed annually by the Multipurpose Everyday Life Survey. In addition, it
covers special health topics on chronic and acute diseases, visits to physicians and
general practitioners.

HCAMS is a multistage survey in which municipalities are primary sampling
units (PSUs), while households are secondary sampling units (SSUs). The 1999-
2000 edition has about 1,449 PSUs (out of 8,102) and 52,332 households with
approximately 120,000 individuals. HCAMS is designed to provide reliable (di-
rect and design based) estimates at the Administrative Region (NUTS2) level,
but there is also a need for estimates for smaller subpopulations or geographical
areas. This is true in general for National Surveys, but particularly relevant for
surveys with health related information, since in Italy health is mainly managed
locally at the level of NUTS2. In particular, policies are endorsed by Adminis-
trative Regions by allocating resources and funds to Health Districts (HDs) that
are in charge for local implementation. HDs are defined by groups of contiguous
municipalities and are not planned domains in the HCAMS. A good number of
HDs have very low sample size and represent, therefore, small areas of interest.

The increasing demand from the administrators and policy planners for reli-
able estimates of various parameters at small area level has led to the development
of a number of efficient model-based small area estimation (SAE) methods (see
Rao, 2003, for a review of such methods). For example, the empirical best linear
unbiased predictor (EBLUP) based on a linear mixed model (LMM) is often rec-
ommended when the target of inference is the small area average of a continuous
response variable (Battese et al., 1988). However, using a LMM to characterise
differences between small areas requires strong distributional assumptions. Ro-
bust SAE inference under the LMM has recently attracted some interest (Sinha
& Rao, 2009; Chambers et al., 2013). An alternative approach to small area esti-
mation that automatically allows for robust inference is to use M-quantile mod-
els (Breckling & Chambers, 1988) to characterise these differences (Chambers &
Tzavidis, 2006).

Most of the variables in the HCAMS are binary or take the form of a count
and are therefore not suited to standard SAE methods based on LMMs. Working
within a frequentist paradigm, one can follow Jiang & Lahiri (2001) who propose
an empirical best predictor (EBP) for a binary response, or Jiang (2003) who ex-
tends these results to generalized linear mixed models (GLMMs). Nevertheless,
use of EBP can be computationally challenging (Molina & Rao, 2010). Despite
their attractive properties as far as modelling non-normal outcomes is concerned,
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the use of GLMMs requires numerical approximations. In particular, the likeli-
hood function defined by a GLMM can involve high-dimensional integrals which
cannot be evaluated analytically (see Mc Culloch, 1994, 1997; Song et al., 2005).
In such cases numerical approximations can be used, as for example in the R
function glmer in the package lme4. Alternatively, estimation of the model pa-
rameters can be obtained by using an iterative procedure that combines Maximum
Penalized Quasi-Likelihood (MPQL) and REML estimation (Saei & Chambers,
2003). For all these reasons, alternative approaches to modelling discrete out-
comes should be considered. Furthermore, estimates of GLMM parameters can
be very sensitive to outliers or departures from underlying distributional assump-
tions. Large deviations from the expected response as well as outlying points in
the space of the explanatory variables are known to have a large influence on clas-
sical maximum likelihood inference based on generalized linear models (GLMs).
Following a Bayesian paradigm, Maiti (2001) describes a Hierarchical Bayes ap-
proach to fitting a GLMM based on an outlier-robust normal mixture prior for
the random effects and uses this model for SAE. Sinha (2004) proposes robust
estimation of the fixed effects and the variance components of a GLMM, using
a Metropolis algorithm to approximate the posterior distribution of the random
effects.

Let us introduce briefly the notation for small area estimation and GLMMs.
Let U denote a finite population of size N which can be partitioned into D do-
mains or small areas, with Ud denoting population on small area d, d = 1, ..., D.
The small area population sizes Nd, for d = 1, ..., D are assumed known. Let ydj
be the value of the outcome of interest, for the purposes of this paper a discrete
or a categorical variable, for unit j in area d, and let xdj denote a p × 1 vector of
unit level covariates (including an intercept). It is assumed that the values of xdj
are known for all units in the population, as are the values zd of a q × 1 vector of
area level covariates. We will see that the first requirement can be relaxed to some
extent when there are no continuous variables among the x’s. In the presence of
categorical covariates, an equivalent alternative representation of the assumed data
structure is in the form of a cross-tabulation. The aim is to use the sample values
of ydj and the population values of xdj and zd to estimate a proportion or a count
of a characteristic in the small area d = 1, ..., D.

For discrete outcomes model-based small area estimation conventionally em-
ploys a GLMM for µdj = E[ydj|ud] of the form

g(µdj) = ηdj = xTdjβ + zTd ud, (1)

where g is a link function. When ydj is a count outcome the logarithmic link func-
tion is commonly used and the individual ydj values in area d are assumed to be
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independent Poisson random variables with

µdj = E[ydj|ud] = exp{ηdj} (2)

and Var[ydj|ud] = µdj . The q-dimensional vector ud is generally assumed to be
independently distributed between areas according to a normal distribution with
mean 0 and covariance matrix Σu. Σu depends on parameters δ = (δ1, . . . , δK),
which are referred to as the variance components and β in (1) is the vector of fixed
effects. If the target of inference is the small area d mean, ȳd = N−1d

∑
j∈Ud

ydj
and the Poisson-GLMM (1) is assumed, the approximation to the minimum mean
squared error predictor of ȳd is N−1d [

∑
j∈sd ydj +

∑
j∈rd µdj]. Since µdj depends on

β and ud, a further stage of approximation is required, where unknown parameters
are replaced by suitable estimates. This leads to the plug-in version of the EBP
(hereafter EBPP) for the area d proportion ȳd under (2),

ˆ̄yEBPP
d = N−1d

{∑
j∈sd

ydj +
∑
j∈rd

µ̂dj

}
, (3)

where µ̂dj = exp{η̂dj}, η̂dj = xTdjβ̂ + zTd ûd, β̂ is the vector of the estimated fixed
effects and ûd denotes the vector of the predicted area-specific random effects (see
Rao, 2003; Saei & Chambers, 2003; Jiang & Lahiri, 2006; González-Manteiga
et al., 2007). In (3) sd and rd denote the set of sampled (of size nd) and non-
sampled (of size Nd − nd) units in small area d, respectively.

In this paper, we focus on estimates of the mean number of visits to physicians
within the past four weeks among people aged 65 or more for 60 HDs comprised
in the three Administrative Regions of Liguria, Toscana and Umbria. These are
neighboring Regions placed in the center part of Italy and share a common con-
cern on the quality of services for elderly. Aging of the population is a general
concern in Italy given that it shows the largest proportion of people aged 65 or
more in Europe (20.3% in 2011, latest available figure). Liguria, Toscana and
Umbria are three of the four ‘oldest’ regions in Italy with proportions of 26.7%,
23.3% and 23.1%, respectively.

Malec et al. (1997) also consider the estimation of quantities related to the
number of visits to physicians from the American National Health Interview Sur-
vey. They focus on the proportion of population with at least one visit in the past
twelve months and use a Hierarchical Bayesian approach. A logistic model to re-
late the individual’s probability of a doctor visit to his/her characteristics is used
and then small area parameters are modeled with respect to area specific covari-
ates. In this case, we are interested in the number of visits to physicians and,
therefore, we need to properly model this count variable. In addition, the distri-
bution of the variable of interest shows some unduly large values that require a
robust procedure to properly account for them in the estimation process. It is in
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fact very important that final estimates are not overly influenced by them to pro-
vide a reliable comparison among small areas.

For all these reasons, in this paper we present a new approach to SAE for
count outcomes based on M-quantile modeling. These models do not depend on
strong distributional assumptions nor on a predefined hierarchical structure, and
outlier robust inference is automatically performed when these models are fitted.
Following Chambers et al. (2012b) and Chambers et al. (2012a) we extend the
existing M-quantile approach for continuous data to the case where the response
is a count. As with M-quantile modeling of a continuous response (Chambers
& Tzavidis, 2006) random effects are avoided and between area variation in the
response is characterised by variation in area-specific values of quantile-like coef-
ficients. In Section 2 we motivate the use of M-quantile models for the estimation
of mean number of visits to the physicians with some explorative analysis on
the data set. In Section 3, after reviewing M-quantile small area estimation for a
continuous response, we show how the approach for robust inference for GLMs
proposed by Cantoni & Ronchetti (2001) can be extended for fitting an M-quantile
GLM. Approaches for defining the M-quantile coefficients, which play the role of
pseudo-random effects in this framework, are discussed in Section 4, alongside the
definition of small area predictors and corresponding Mean Squared Error (MSE)
estimators. In Section 5 we report the results from the application of the proposed
methodology for deriving estimates of the number of visits in primary health care
outlets for HDs in Italy. Results from model-based and design-based simulation
studies aimed at empirically assessing the performance of the proposed small area
predictors are presented in Section 6. Section 7 concludes the paper with some
remarks and possible future researches.

2 The estimation of mean number of visits to a doc-
tor from HCAMS: empirical challenges

The survey design of HCAMS uses a complex sampling scheme and, in particu-
lar, it is as follows. Within a given Province (LAU1), municipalities are classified
as Self-Representing Areas (SRAs) - consisting of the larger municipalities - and
Non Self-Representing Areas (NSRAs) - consisting of the smaller ones. In SRAs
each municipality is a single stratum and households are selected by means of sys-
tematic sampling. In NSRAs the sample is based on a stratified two stage sample
design. Municipalities are PSUs, while households are SSUs. PSUs are divided
into strata of approximately the same dimension in terms of population. One PSU
is drawn from each stratum with probability proportional to the PSU population
size. The SSUs are selected from population registers held by municipalities by
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Figure 1: Sample size in each Health Districts of Liguria, Toscana and Umbria in
2000.

means of systematic sampling in each PSU. All members of each sample house-
hold, in both SRAs and NSRAs, are interviewed.

The data that we consider in this paper are from the 1999-2000 edition of
HCAMS. We are interested in producing estimates of the average number of visits
to physicians within the past four weeks for elderly (aged 65 or more) in the 60
HDs of Toscana, Liguria and Umbria. Recall that HDs are groups of neighboring
municipalities (PSUs), while elderly is a domain that cuts across PSUs. The total
sample size for the three Regions is n = 4,021. Figure 1 provides a map of the
three regions of interest; HDs are color coded according to the sample size. Note
that 5 HDs in Toscana and 1 in Umbria are out of sample areas, i.e. they have no
sampled units.

The application of small area unit level methodologies requires individual
level covariate information for all units in the population for each area. One pos-
sible source of these data is the Population Census run in Italy in 2001. Among
variables available from the census, we concentrate on those that are also avail-
able every year from population registers held at a municipality level. This is the
set of auxiliary variables that are available also for the other editions of the survey
and can eventually be employed to obtain estimates and have comparisons over
time. From administrative registers, we have the distribution for each municipality
by age, gender and marital status. We collapse age in 5-year classes (65-69, 70-
74, 75-79, 80-84, 85 or more) and also consider an overall Administrative Region
effect.

Table 1 reports the results of a procedure of analysis of deviance from fitting
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Table 1: Analysis of deviance table from fitting Poisson-Normal mixed models to
the whole dataset (in italics the models with nonsignificant improvements in the
fit).

Covariates Resid. df df Deviance p-value
Null 4019
age 4015 4 59.590 1.5e-11
age, gender 4014 1 12.816 0.0003
age, gender, marital status 4011 3 2.277 0.5170
age, gender, region 4012 2 4.196 0.1227
age, gender, region, age × gender 4008 4 1.165 0.8838
age, gender, region, region × gender 4010 2 0.746 0.6888
age, gender, region, region × age 4004 8 8.962 0.3455

a Poisson-Normal mixed effects model on the sample data, in which a random
intercept is fitted for each HD. We can note that age class, gender and region are
significant. On the other hand, marital status and interactions between pairs of the
three significant variables are not significant. A likelihood ratio test for the sig-
nificance of the variance of the distribution of the small area random effects has
been conducted as well. Given that we are testing whether the parameter of inter-
est is zero, i.e. a value on the boundary of its parameter space, it can be shown that
minus twice the ratio of the two log-likelihoods has approximate density function
equal to a 50:50 mixture between a χ2

0 and a χ2
1 distribution. Using this approx-

imation instead of the usual χ2
1 essentially leads to p-values being halved. In our

case the value of the test statistic is 33.695, with a p-value 3.22e−09, that provides
evidence of a significant area effect.

An important property of the Poisson regression model is that it allows to
analyze individual or grouped data with equivalent results due to the fact that the
sum of independent Poisson random variables is also Poisson. This is useful when
we have groups of individuals with identical covariate values as it occurs in this
case study. For this reason, in the sequel we will fit models to grouped data in
which groups are defined by cross classifying gender by age class by HDs. The
response variable is the total number of visits to physicians for all individuals in
each group. The overall sample size from each group is considered as an offset.

Figure 2 reports two plots of Pearson residuals from the Poisson-Normal mixed
effects model with covariates given by age class, gender and Region. The his-
togram clearly shows that the distribution of the residuals is positively skewed and
has some quite large values. This is confirmed by the second plot, representing the
distribution of the residuals by HD: some HDs contain many positive residuals,
whereas some HDs have negative residuals. Finally, Figure 3 plots the raw residu-
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Figure 2: Model fit diagnostics for a Poisson-Normal mixed model fit to the data:
histogram of Pearson residuals (left) and box-plots of Pearson residuals by Health
District (right).

als against the predicted values for the number of visits to physicians. The x-axis
values range between 0 and 20 in order to show clearly over 98% of the observa-
tions. In the x-range from 8 to 20, there is no obvious pattern. However, between
0 and 8 we can see more variability, that can be an effect of the skewness of the
predicted values. The plot indicates some under-prediction when the predicted
number of visits is very small. The results of these preliminary model diagnostics
suggest that the use of M-quantile small area estimators is a reasonable choice.

3 M-quantile regression
In this Section we present an extension of linear M-quantile regression to count
data following Chambers et al. (2012b) and Chambers et al. (2012a). We start by
providing a fairly detailed presentation of M-quantile regression for continuous
outcomes before focusing on the case of count outcomes. In this Section we drop
subscript d for ease of notation.

3.1 M-quantile regression for a continuous response
The classic regression model summarises the behaviour of the mean of a random
variable y at each point in a set of covariates x. This provides a rather incom-
plete picture, in much the same way as the mean gives an incomplete picture of a
distribution. Quantile regression summarises the behaviour of different parts (e.g.
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Figure 3: Model fit diagnostics for a Poisson-Normal mixed model fit to the data:
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quantiles) of the conditional distribution of y at each point in the set of the x’s. In
the linear case, quantile regression leads to a family of hyper-planes indexed by
a real number q ∈ (0, 1). For a given value of q, the corresponding model shows
how the q-th quantile of the conditional distribution of y varies with x. For exam-
ple, if q = 0.5 the quantile regression hyperplane shows how the median of the
conditional distribution changes with x. Similarly, for q = 0.1 the quantile regres-
sion hyperplane separates the lower 10% of the conditional distribution from the
remaining 90%.

Suppose (xTj , yj), j = 1, . . . , n denotes the values observed for a random
sample consisting of n independent observations from a population, where xTj are
row p-vectors of a known design matrix X and yj is a scalar response variable
corresponding to a realisation of a continuous random variable with unknown
continuous cumulative distribution function F . A linear regression model for the
q-th conditional quantile of yj given xj is

Qy(q|xj) = xj
Tβq. (4)

An estimate of the q-th regression parameter βq is obtained by minimizing

n∑
j=1

|yj − xTj βq|{(1− q)I(yj − xTj βq ≤ 0) + qI(yj − xTj βq > 0)}.

Solutions to this problem are usually obtained by linear programming methods
(Koenker & D’Orey, 1987) and algorithms for fitting quantile regression are now
available in standard statistical software, for example the library quantreg in
R (R Development Core Team, 2010), the command qreg in Stata, and the
procedure quantreg in SAS.

Quantile regression can be viewed as a generalization of median regression.
In the same way, expectile regression (Newey & Powell, 1987) is a ‘quantile-like’
generalization of mean (i.e. standard) regression. M-quantile regression (Breck-
ling & Chambers, 1988) integrates these concepts within a framework defined
by a ‘quantile-like’ generalization of regression based on influence functions (M-
regression). The M-quantile of order q for the conditional density of y given the set
of covariates x, f(y|x), is defined as the solution MQy(q|x;ψ) of the estimating
equation

∫
ψq{y−MQy(q|x;ψ)}f(y|x)dy = 0, where ψq denotes an asymmetric

influence function, which is the derivative of an asymmetric loss function ρq. A
linear M-quantile regression model yj given xj is one where we assume that

MQy(q|xj;ψ) = xj
Tβq. (5)

That is, we allow a different set of p regression parameters for each value of q ∈
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(0, 1). Estimates of βq are obtained by minimizing

n∑
j=1

ρq(yj − xj
Tβq). (6)

Different regression models can be defined as special cases of (6). In particular,
by varying the specifications of the asymmetric loss function ρq we obtain the
expectile, M-quantile and quantile regression models as special cases. When ρq
is the squared loss function we obtain the linear expectile regression model if
q 6= 0.5 (Newey & Powell, 1987) and the standard linear regression model if
q = 0.5. When ρq is the loss function described by (Koenker & Bassett, 1978) we
obtain the linear quantile regression.

Setting the first derivative of (6) equal to zero leads to the following estimating
equations

n∑
j=1

ψq(rjq)xj = 0, (7)

where rjq = yj − xTj βq, ψq(rjq) = 2ψ(s−1rjq){qI(rjq > 0) + (1− q)I(rjq ≤ 0)}
and s > 0 is a suitable estimate of scale. For example, in the case of robust
regression, s = median|rjq|/0.6745, and we use the Huber Proposal 2 influence
function, ψ(u) = uI(−c ≤ u ≤ c)+c ·sgn(u)I(|u| > c). Provided that the tuning
constant c is strictly greater than zero, estimates of βq are obtained using iterative
weighted least squares (IWLS).

3.2 M-quantile regression for count data: A Quasi-likelihood
approach

The use of M-quantile regression with discrete outcomes is challenging as in this
case there is no agreed definition of an M-quantile regression function (Cham-
bers et al., 2012b,a). A popular approach for modelling the mean of a discrete
outcome as a function of predictors is via the use of GLMs by assuming that the
response variable follows a distribution that is a member of the exponential family
of distributions using an appropriate link function. For count data an appropriate
distribution is the Poisson and the link function is the logarithm.

In the same way that we impose in the linear specification (4) the continuous
case, we impose an appropriate continuous (in q) specification on MQy(q|X;ψ)
for count data (Chambers et al., 2012b,a). The most obvious specification for
count data is the log-linear specification. That is, we replace (5) by

MQy(q|xj;ψ) = tj exp(xjβq), (8)
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where tj is an offset term. For estimating βq, following Chambers et al. (2012b,a),
we consider extensions of the robust version of the estimating equations for GLMs
by Cantoni & Ronchetti (2001) to the M-quantile case. In particular, Cantoni &
Ronchetti (2001) propose a robust version of the estimating equations for GLMs
and consider two popular GLMs namely, the binomial and the Poisson models.
Estimating equations are defined by

Ψ(β) := n−1
n∑
j=1

{
ψ(rj)w(xj)

1

σ(µj)
µ′j − a(β)

}
= 0, (9)

where rj = σ(µj)
−1(yj−µj) are Pearson residuals,E[Yj] = µj , µ′i is its derivative

with respect toβ, Var[Yj] = σ2(µj), and a(β) = n−1
∑n

j=1E[ψ(rj)]w(xj)µ
′
j/σ(µj)

ensures the Fisher consistency of the estimator. The bounded ψ function is intro-
duced to control deviation in y-space, whereas weights w(·) are used to down-
weight the leverage points. When w(xj) = 1, j = 1, . . . , n Cantoni & Ronchetti
(2001) call the estimator the Huber quasi-likelihood estimator. Notice that when ψ
is the identity function we obtain the classic quasi-likelihood estimator for GLMs.

For M-quantile regression the estimating equations (9) can be re-written as

Ψ(βq) :=
1

n

n∑
j=1

{
ψq(rjq)w(xj)

1

σ(MQy(q|xj;ψ))
MQ′y(q|xj;ψ)− a(βq)

}
= 0,

(10)
where rjq = σ(MQy(q|xj;ψ))−1(yj − MQy(q|xj;ψ)), σ(MQy(q|xj;ψ)) =
= MQy(q|xj;ψ)1/2, MQ′y(q|xj;ψ) = MQy(q|xj;ψ)xj and a(βq) is a correc-
tion term to obtain unbiased estimators, which is defined following the arguments
in Cantoni & Ronchetti (2001),

a(βq) = n−1
n∑
j=1

2wq(rjq)w(xj)
{
cP (Yj > i2 + 1)− cP (Yj 6 i1)+

MQy(q|xj;ψ))

σ(MQy(q|xj;ψ))
[P (Yj = i1)− P (Yj = i2)]

}
MQy(q|xj;ψ)1/2xj,

with

• i1 = bMQy(q|xj;ψ)− cσ(MQy(q|xj;ψ))c,
• i2 = bMQy(q|xj;ψ) + cσ(MQy(q|xj;ψ))c and
• wq(rjq) = [qI(rjq > 0) + (1− q)I(rjq 6 0)].

When w(xj) = 1, j = 1, . . . , n a Huber quasi-likelihood estimator is obtained.
An alternative simple choice for w(xj) suggested by robust estimation in linear
models is w(xj) =

√
1− hj where hj is the jth diagonal element of the hat

matrix H = X(XTX)−1XT .
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The solution to the estimating equations (10) can be obtained numerically by
a Fisher scoring procedure.

Note that (9) can be obtained as special case of (10) for specific choices of q.
In particular, when q = 0.5 we obtain (9). Moreover, linear M-quantile regression
is a special case of (10) if the the linear link function MQy(q|xj;ψ) = xTj βq is
used and c tends to infinity. R routines for fitting M-quantile regression for count
data are available from the authors.

3.3 Alternative estimation approaches
Quantile regression for count data from a Bayesian perspective has been recently
considered by Lee & Neocleous (2010) whereas from a frequentist perspective
by Machado & Santos Silva (2005). In both papers, the authors point out that the
problem with estimating conditional quantiles of counts is caused by the combi-
nation of a non differentiable sample objective function with a discrete dependent
variable. To overcome this problem, Machado & Santos Silva (2005) use a spe-
cific form of jittering for creating artificial smoothness in the outcome. In par-
ticular, smoothness is achieved by adding to the count outcome noise generated
from a Uniform(0, 1). The quantiles of the resulting continuous outcome are then
directly modelled because of the one-to-one relationship between the conditional
quantiles of the count outcome and those of the artificially generated continuous
outcome. An alternative approach to modeling the conditional distribution of a
count outcome given the covariates was proposed by Efron (1992) who proposed
using asymmetric maximum likelihood estimation. As Machado & Santos Silva
(2005) point out, asymmetric maximum likelihood estimation can be seen as the
result of smoothing the objective function used to define the quantile regression
estimator. Efron’s approach results in estimates of conditional location for count
data that is similar to conditional expectiles proposed by Newey & Powell (1987).

The approach we propose in this paper for estimating M-quantile regression
also uses an objective function that has a degree of smoothness. In particular, the
smoothness can be increased by setting the tuning constant in the Huber influence
function equal to a large value in which case estimates of the model parameters
from our approach should be close to those obtained by Efron’s asymmetric max-
imum likelihood estimation. Indeed, comparing estimates of the model parame-
ters from Efron’s (1992) method (using the vgam function with family equal to
amlpoisson in R) with our method, when setting Huber’s tuning constant equal
to a large value, confirm this assumption. Nevertheless, more needs to be done for
comparing the different estimation approaches especially when these are used for
prediction purposes as is the case with small area estimation.
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4 Estimation of small area counts by M-quantile re-
gression models

4.1 Point estimation
Linear mixed effects models and GLMMs include random area effects to account
for between-area variation. Estimation of the model parameters is then imple-
mented by means of parametric assumptions such as that random effects are nor-
mally distributed. Efficient prediction of random effects is crucial due to their
central role in small area estimation. Although for linear models closed form so-
lutions exist, for GLMs this is not the case. For GLMMs and from a frequentist
perspective predicted random effects are obtained by using approximations to the
likelihood, for example via first or second order penalised quasi-likelihood, or
numerical methods such as Gaussian quadrature. Hence, for GLMMs outlier ro-
bust prediction of random effects becomes more challenging and the use of semi-
parametric methods may offer a simpler solution to outlier robust estimation.

A key concept in the application of M-quantile methods to data with group
structure is the identification of a unique ‘M-quantile coefficient’ associated with
each observed datum. These coefficients are then averaged, in some suitable way,
over observations making up the group to define a group level M-quantile coeffi-
cient, which can be used to characterise the distribution of y|x within the group
in very much the same way as a random group effect. In the continuous y case,
the M-quantile coefficient for observation j is simply defined as the unique solu-
tion qj to the equation yj = M̂Qy(qj|xj;ψ). However, for count data the equation
yj = M̂Qy(qj|xj;ψ) does not have a solution when yj = 0. To overcome this
problem we use the definition by Chambers et al. (2012a):

M̂Qy(qj|xj;ψ) =

{
k(xj) yj = 0
yj yj = 1, 2, . . .

A possibility is k(xj) = M̂Qy(qmin|xj;ψ) where qmin denotes the smallest q-
value in the grid of q-values used to determine the qj values of the observed units.
However, this implies that qj = qmin whenever yj = 0, irrespective of the value of
xj , which does not appear to be appropriate. One way to tackle this is by following
the same line of argument that Chambers et al. (2012b) used in motivating the
definition of qj for the Bernoulli case. This implies that an observation with value
y1 = 0 corresponds to a smaller q-value than another with value y2 = 0 when
M̂Qy1(0.5|x1;ψ) > M̂Qy2(0.5|x2;ψ). A way to define this is by setting k(xj) =

min{1− ε, [M̂Qy(0.5|xj;ψ)]−1}, where ε > 0 is a small positive constant.
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Then the M-quantile coefficient for unit j is qj , where

M̂Qy(qj|xj;ψ) =

 min
{

1− ε, 1

exp(xTj β̂0.5)

}
yj = 0

yj yj = 1, 2, . . .

(11)

For a detailed discussion see Chambers et al. (2012a,b).
Provided there are sample observations in area d, an area d specific M-quantile

coefficient, θ̂d can be defined as the average value of the sample M-quantile co-
efficients in area d, otherwise we set θ̂d = 0.5. Following Chambers & Tzavidis
(2006), the M-quantile predictor of the average count ȳd in small area d is then

ˆ̄yMQ
d = N−1d

{∑
j∈sd

ydj +
∑
j∈rd

M̂Qy(θ̂d|xdj;ψ)
}
, (12)

where M̂Qy(θ̂d|xdj;ψ) = exp{xTdjβ̂θ̂d}.

4.2 Mean squared error estimation
The Mean Squared Error of the predictor ˆ̄yMQ

d is defined as

MSE(ˆ̄yMQ
d ) = E[(ˆ̄yMQ

d − ȳd)2]. (13)

Following Chambers et al. (2012b) we propose a nonparametric bootstrap-based
estimator of the MSE of the ˆ̄yMQ

d by constructing an artificial finite population
that resembles the real population. To develop the bootstrap procedure we write
the linear predictor of the Poisson M-quantile regression model in a form that
mimics the mixed effects model form,

ydj = xTdjβ0.5 + xTdj(βθd − β0.5). (14)

Averaging the last term on the right-hand side of (14) for each small area results
in a term uMQ

d which can be interpreted as a pseudo-random effect for area d in
that it quantifies an average difference of the area-specific M-quantile fit from the
median fit.

The bootstrap we propose is nonparametric in nature in the sense that the area
effects are generated by using an empirical rather than a parametric distribution.
The steps of the bootstrap procedure are summarized below:

• (Step 1) Using sample s, fit model (8) and obtain predictors ˆ̄yMQ
d . For

each small area compute the pseudo-random effect ûMQ
d by computing the

E(xTdj(βθd − β0.5)) for each area. It is convenient to re-scale the elements
ûMQ so that they have sample mean exactly equal to zero.
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• (Step 2) Construct the vector ûMQ∗ = {ûMQ∗
1 , . . . , ûMQ∗

D }T , whose ele-
ments are obtained by extracting a simple random sample with replacement
of size D from the set {ûMQ

1 , . . . , ûMQ
D }T .

• (Step 3) Generate a bootstrap population U∗ of size N =
∑D

d=1Nd, by
generating values from a poisson distribution with

µ∗dj = exp{xTdjβ̂0.5 + ûMQ∗
d }, j = 1, . . . , Nd

and calculate the bootstrap population parameters ȳ∗d, d = 1, . . . , D. The
choice of a Poisson distribution may appear contradictory to the non-parametric
nature of the proposed bootstrap. However, the Poisson assumption is im-
plicit in our M-quantile Poisson model due to the mean-variance relation-
ship in the estimating equations. The non-parametric aspect of the proposed
bootstrap is only related to the way the pseudo-random effects are gener-
ated.
• (Step 4) Extract a sample s∗ of size n from the bootstrap population U∗

using the assumed sampling design and compute small area estimates with
the bootstrap sample ˆ̄yMQ∗

d , d = 1, . . . , D.
• (Step 5) Repeat steps 2-4 B times.
• (Step 6) Denoting by ˆ̄y

MQ∗(b)
d the M-quantile predictor in the b-th bootstrap

replication and by ȳ∗(b)d the corresponding population value in the b-th boot-
strap population, a bootstrap estimator of MSE is

MSE(ˆ̄yMQ
d ) = B−1

B∑
b=1

(
ˆ̄y
MQ∗(b)
d − ȳ∗(b)d

)2
. (15)

The proposed bootstrap is not the only approach to MSE estimation. An alterna-
tive approach would have been to use the random effects block bootstrap (Cham-
bers & Chandra, 2012), which is free both of the distribution and the dependence
assumptions of the usual parametric bootstrap. Chambers et al. (2012b) adapted
the block bootstrap for estimating the MSE of the M-quantile small area predictor
in the case of a Bernoulli outcome. A similar approach can be used in the case
of a count outcome. A comparison between the alternative approaches to MSE
estimation will be discussed in future work.

5 Results and discussion
In this section we present the results of the application of the small area estimation
procedure introduced in the previous section to data from the HCAMS. In particu-
lar, we compare small area estimates of the average number of visits to physicians
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Table 2: Analysis of quasi-deviance table for the Poisson M-quantile model at
q = 0.50.

Covariates Resid. df df Deviance p-value
Null 506
age 502 4 52.473 1.0e-10
age, gender 501 1 10.375 0.0013
age, gender, region 499 2 10.991 0.0041

among elderly (aged 65 or more) and their corresponding mean squared error es-
timates based on the following estimators: (i) the direct estimator computed as
a ratio estimator using calibration weights provided with the micro-data; (ii) the
EBPP in equation (3) based on a Poisson-Normal model with random area inter-
cepts using age, gender and region as covariates according the results of Table
1; (iii) the M-quantile predictor in (12) based on the Poisson M-quantile model
introduced in Section 3.2.

In the Poisson M-quantile model the ψ function is set to be the Huber Pro-
posal 2 with the tuning constant c = 1.6 (Cantoni & Ronchetti, 2001). In addi-
tion, model selection is carried out via a robust stepwise procedure based on the
Huber quasi-deviance at q = 0.5 (Cantoni & Ronchetti, 2001). The analysis of
deviance reported in Table 2 shows that the auxiliary variables age, gender and
region, added sequentially, are highly significant on the basis of their deviance
value. Interactions between pairs of these variables are again nonsignificant. Ta-
ble 3 reports the estimated βq coefficients at q = 0.50, together with standard
errors estimated using the proposal in Cantoni & Ronchetti (2001) and p-values.
Estimates confirm what expected: the number of visits increases as the people
grow old and women go to the physicians more often than men. This latter figure
can be explained by the greater longevity of women that is reflected in a larger
number of years in conditions of disability or in presence of chronicities.

Efficient estimates of area effects are necessary for small area estimation via
GLMMs. Similarly, estimation of M-quantile coefficients is necessary for small
area estimation using the Poisson M-quantile model proposed in this paper. Fig-
ure 4 shows how the standardized M-quantile coefficients estimated via expression
(11) are related to the standardized area effects estimated using the glmer func-
tion in R. Figure 4 shows that the relationship between the estimated area effects
and the estimated M-quantile coefficients is strong. The correlation between the
estimated area effects and the estimated M-quantile coefficients is 0.91. This re-
sult suggests that M-quantile coefficients are comparable to estimated area effects
obtained using standard GLMM fitting procedures as far as capturing intra-area
(domain) variability is concerned.
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Table 3: Estimated Poisson M-quantile βq coefficients and their standard errors at
q = 0.50. The baseline for variable age is 65-69, for variable gender is female and
for variable region is Liguria.

Covariates Estimate Std. Error p-value
Intercept -0.411 0.047 1.2e-09
age 70-74 0.029 0.052 0.2854
age 75-79 0.245 0.051 1.1e-06
age 80-84 0.211 0.069 0.0011
age >84 0.256 0.064 3.1e-05
gender -0.125 0.038 0.0005
region Toscana 0.110 0.044 0.0067
region Umbria 0.149 0.046 0.0007
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Figure 4: Estimated M-quantile coefficients vs. estimated area effects (standard-
ized values).
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Figure 5: Total number of visits to physicians in Health Districts of Liguria,
Toscana and Umbria in 2000: Model-based M-quantile estimates versus corre-
sponding direct estimates.

For comparing the performance of the different estimators we must use a set of
diagnostics. Such diagnostics are suggested in Brown et al. (2001). Model-based
estimates should be (i) coherent with unbiased direct estimates and (ii) more
precise than direct estimates. To validate the reliability of the model-based small-
area estimates, we use the goodness of fit (GoF) diagnostic and the values of the
coefficient of variation (CV). Overall, the correlation between the model-based
estimates and the direct estimates are positive and high, which indicates that the
model-based estimates are coherent with the direct estimates (Direct/M-quantile is
0.87 and Direct/EBPP is 0.95). This result for M-quantile estimates is confirmed
by Figure 5 where the direct estimates are plotted vs M-quantile estimates: we
note that M-quantile estimates appear to be consistent with direct estimates of the
total number of visits to physicians.

The GoF diagnostic is based on the null hypothesis that the direct and model-
based estimates are statistically equivalent. The alternative is that the direct and
model-based estimates are statistically different. The GoF diagnostic is computed
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Figure 6: The plot shows distribution of Health Districts values of estimated CV
for direct (solid line) and model-based estimates, with estimated CVs for the M-
quantile predictor shown as a dashed blue line and estimated CVs for the EBPP
shown as a dashed red line. HDs are ordered according to increasing sample size.
Out of sample areas are the last six areas.
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Ratio/ni <24 24-100 101-556
Direct 2.36 1.92 1.52
EBPP 1.07 1.06 1.01

Table 4: Mean values across areas of the ratios of the estimated MSE of the direct
and EBPP estimators to the estimated MSE of the Poisson M-quantile estimators
grouped by area sample sizes.

using the following Wald statistic for every model based estimator

W =
∑
d

{ (ˆ̄ydirect
d − ˆ̄ymodel

d )2

[v̂ar(ˆ̄ydirect
d ) + m̂se(ˆ̄ymodel

d )]

}
.

The value from the test statisticW is compared against the value from a χ2 dis-
tribution with D = 54 degrees of freedom. In our case, this value is 72.15 at 5%
level of significance. We use the nonparametric bootstrap algorithm for the M-
quantile predictor and the bootstrap procedure proposed by González-Manteiga
et al. (2007) for EBPP for estimating the MSE for each small area. Variance es-
timates for the direct estimator have been computed taking into account the com-
plex two stage design employed for HCAMS. In particular, variance estimates for
the estimate of the average number of visits to physicians has been computed sep-
arately for each of the three regions to provide a first estimate of the design effect
(values between 5.6 and 7.1). Then, following Kish (1987, Section 2.6), design
effects have been recomputed to account for the fact that the elderly constitute a
subdomain that cuts across PSUs (final deff values for each small area between
0.9 and 1.5). The values of the GoF are 27.3 for M-quantile predictor and 15.9 for
EBPP. These results indicate that all model-based estimates are not statistically
different from the direct estimates.

Figure 6 shows the distribution across HDs of the estimated CVs (expressed in
percentage terms) for direct (solid black line) and model-based estimates (blue de-
notes M-quantile estimates and red denotes EBPP estimates). The estimated gains
of the model-based estimates over the direct estimates are large, particularly for
HDs with a small number of sampled units. Generally, the M-quantile estimates
have a smaller estimated CV than corresponding EBPP estimates.

Moreover, to evaluate the precision of M-quantile predictor, in Table 5 we
report the median values across areas of the ratios of the estimated MSE of the
EBPP and direct estimators to the estimated MSE of the WMQ estimator for three
groups of areas formed according to area-specific sample sizes. The M-quantile
estimator is more efficient than the direct and the EBPP when the sample sizes
are small. For large sample sizes the improvements in efficiency of M-quantile
predictor are smaller; with ni > 100 M-quantile and EBPP predictors seem to be
equivalent: the value of the the ratio is 1.01.
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In Figure 7 we compare the maps obtained for the average number of visits to
physicians in HDs of Liguria, Toscana and Umbria in 2000 as estimated by direct,
Poisson M-quantile and EBPP based estimators. We used the same cut-points to
depict the three maps. In line with expectations, most HDs have close levels of
average number of visits to physicians, but there are areas deviating from the bulk
of the distribution in both directions.

As anticipated by the aforementioned correlation coefficients, the estimates
are all comparable in magnitude over the three maps. However, maps based on the
two model based estimators look very much alike and show a smoother pattern as
opposed to that based on design based estimates. In addition, model based maps
allow to have estimates also for ‘empty’ small areas for which the design based
estimator cannot be computed. However, when comparing model based maps, we
can note that some HDs tend to have a larger estimate in the EBPP based map than
that shown in the Poisson M-quantile map. This is due to the fact that those are
the small areas with particularly large values of y for which M-quantile models
provide more robustness in the final estimates.

6 Simulation study
The purposes of this simulation experiment are: (i) to compare the performance
of the M-quantile predictor with that obtained by EBPP and the direct estimator;
(ii) to evaluate the performance of the bootstrap mean squared estimator (15)
proposed in Subsection 4.2.

The simulated data are generated using the individual xTdj values and the es-
timates of β̂ = (−0.44, 0.05, 0.28, 0.27, 0.29,−0.13, 0.16, 0.14) and of the stan-
dard error ϕ̂ = 0.192 obtained fitting the GLMM on the real data of Section 5. In
each run of the simulation, y values are generated for the groups given by cross-
classifying gender by age class for each of D = 54 small areas for which we
have sample values. In total, we have ten groups for each small area. The value
of the y variable for each cell ydj (d = 1, . . . , D, j = 1, . . . , 10) is calculated
as Poisson(µdj) with µdj = Ndj exp{ηdj} and ηdj = xTdjβ̂ + ud, where ud are in-
dependently drawn from a normal distribution with mean 0 and standard error ϕ̂.
Here, T = 1, 000 populations are generated and the true values of the average
number of visits for each of the 54 sampled HDs of Liguria, Toscana and Umbria,
ȳd = N−1d

∑10
j=1 ydj , d = 1, . . . , D, of the synthetic populations are available.

For each population, sample values ydj for each cell are generated from a
Poisson(µ∗dj) with µ∗dj = ndj exp{xTdjβ̂ + ud}, where ud is the value of random
effect drawn previously to create the population, and according to two scenarios:

• (0) - No outliers.
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Figure 7: Maps of the direct, Poisson M-quantile and EBPP based estimates of
average number of visits to physicians in Health Districts of Liguria, Toscana and
Umbria in 2000.
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• (M) - Measurement-type error: 2%, 5%, 10% of randomly chosen response
values has been changed from ydj to ydj = ydj + 10.

For each sample the M-quantile, EBPP and the direct estimator are used to
estimate the average small area count ȳd, d = 1, . . . , D. The performances of
different small area estimators are evaluated with respect to two basic criteria: the
bias and the root mean squared error (RMSE). Simulated values of the bias and of
the mean squared error for a small area estimator are obtained as T−1

∑T
t=1(ˆ̄ydt−

ȳdt) and T−1
∑T

t=1(ˆ̄ydt − ȳdt)
2, respectively. Here ȳdt denotes the actual area d

value at simulation t, with predicted value ˆ̄ydt. The median and maximum value
of the absolute Bias and the median value of RMSE over small areas are set out
in Table 5. The results confirm our expectations regarding the behaviour of the
estimators: under the (0) scenario the EBPP performs slightly better than the M-
quantile in terms of RMSE, whereas there is no noticeable difference among the
three estimators in terms of bias. The M-quantile predictor is the best in terms of
bias and RMSE under the (M) scenarios and it is clearly superior respect to the
other estimators as contamination increases.

Table 5: Model-based simulation results: performances of predictors of small area
count. Scenarios (0) and (M), Contamination: 2%, 5%, 10%, D = 54.

Predictor/Scenario (0) (M) 2% (M) 5% (M) 10%
Median values of Absolute Bias

EBPP 0.0024 0.0360 0.0863 0.1814
M-quantile 0.0085 0.0095 0.0299 0.0699
Direct 0.0147 0.0318 0.0828 0.1785

Maximum value of Absolute Bias
EBPP 0.0809 0.1050 0.1356 0.1974
M-quantile 0.0112 0.0775 0.1826 0.3837
Direct 0.0970 0.1431 0.2891 0.5553

Median values of RMSE
EBPP 0.0973 0.1217 0.1624 0.2548
M-quantile 0.1072 0.1088 0.1163 0.1410
Direct 0.1272 0.1562 0.1966 0.2790

Regarding the second purpose of the simulation study, i.e. the evaluation of
the performance of the bootstrap MSE estimator (15) proposed in Section 4.2, we
use the data generated for scenarios (0) and (M)-10% and a subset of small areas:
D = 14, the HDs of the Region Liguria. The results of the MSE estimator, based
on 500 bootstrap iterations, for each scenario are shown in Table 6 where we report
the median values of their area specific biases and their root mean squared errors,
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expressed in relative terms (%). The MSE estimator shows small bias and a good
stability under both scenarios. In particular, under scenario (M)-10% tend to be
biased up and its Relative RMSE increases not much respect the no-contaminated
scenario. Examination of Table 6 shows that MSE estimation method generate
nominal 95 per cent confidence intervals with a small under coverage. A bootstrap
bias correction term could be included in expression (15). This term will be a part
of a future research.

Table 6: Model-based simulation results: performance of bootstrap MSE estimator
(15). Scenarios (0) and (M)-10%, D = 14, Median values.

Indicator/Scenario (0) (M) 10%
Relative bias -3.05 1.61
Relative RMSE 27.44 31.09
Coverage rate (95% nominal) 90% 86%

7 Final remarks
To carry on SAE for count data, Poisson M-quantile models are introduced and in-
vestigated. Such models offer a natural way of modeling between-area variability
in the data, without imposing prior assumptions on the source of this variabil-
ity or a pre-specified hierarchical structure. In particular, with M-quantile models
there is no need to explicitly specify the random components of the model. Rather,
inter-area differences are captured via area-specific M-quantile coefficients. As a
consequence, the M-quantile approach reduces the need for parametric assump-
tions. In addition, estimation and outlier robust inference is straightforward under
these models.

The proposed approach looks suitable for estimating a wide range of parame-
ters and the model-based simulation suggests that it is a reasonable alternative to
mixed effects models. In fact, M-quantile regression-based methods outperform
GLMM-based methods when data include outliers. And, in case there are no out-
liers, there is no noticeable loss in efficiency.

The occurrence of this type of data in real situations, as well as the usefulness
of the suggested approach, have been described by a real application. The model
allows us to estimate the average number of recourse to physicians for each HDs,
stratified for age and gender, for three Italian regions with older population.

Even though the suggested approach provides encouraging results, further in-
vestigation is still necessary. A first topic of future research is the choice of the
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area quantile coefficients, trying alternative estimation of qdj . Second, an analyt-
ical estimator of MSE (instead of a nonparametric bootstrap estimator) could be
attempted. Third, because of additivity of the Poisson distribution, on a small area
estimation perspective, benchmarking at different size level could be achieved.

Another important issue is how to take overdispersion on data into account.
One possibility could be using Quasi-Poisson M-quantile models. Another option
is Negative Binomial M-quantile models (see Chambers et al., 2012a). In the real
application considered in this paper, Poisson M-quantile models seem to be able to
account for overdispersion. In fact, Poisson and Quasi-Poisson M-quantile models
provide comparable results. So, it could be interesting to evaluate when Quasi-
Poisson models are really necessary in real applications.

Finally, other newsworthy topics for future research are: (i) to develop zero-
inflated M-quantile Poisson regression in order to take the excess of zero on the
data into account; (ii) to adapt the suggested model to complex sampling designs.
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