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Summary

A new approach to ecological regression for disease mapping is introduced, based on semi-
parametric M-quantile regression models. In particular, we define a Negative Binomial M-quantile
model as an alternative to Empirical Bayes or fully Bayesian approaches to disease mapping. The
area-level covariates used in ecological regression are usually measured with error, and the pro-
posed M-quantile modelling approach is easily made robust against outlying data in the model
covariates. Differences between the M-quantile model and the usual random effects models are
discussed, and these alternative approaches are compared using the well-known Scottish Lip can-
cer data and a simulation experiment. The Lip Cancer data example shows that the Negative
Binomial M-quantile model confirms results obtained by other methods, but also seems to have
less shrinkage than the Empirical Bayes method, so reducing the problem of oversmoothing. The
simulation experiment suggests that the new model leads to estimates with smaller mean square
error. We also show how the Negative Binomial M-quantile can be extended to account for spatial
correlation between areas using a Geographically Weighted Regression strategy.
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1. Introduction

Disease mapping involves the analysis of disease incidence or mortality data often available as
aggregate counts over a geographical region subdivided for administrative purposes. Such data
are often relatively easy to be obtained from government sources. More difficult is to obtain data,
at aggregated level, on explanatory covariates that could be considered as known or putative risk
factors.

Ecological regression on disease mapping mainly focuses on the estimation of risk in ad-
ministrative regions and on the analysis of the association between risk factors and disease. In
ecological analysis related to disease mapping, data usually exhibit overdispersion. Hence, Clay-
ton and Kaldor (1987) proposed the use of a Poisson-gamma model for relative risks using an
Empirical Bayes approach (referred to as EB below). This model was generalized by Besag and
others (1991) into a fully Bayesian setting using a Hierarchical Bayesian model with or without
a spatial structure (hereafter BYM). Ecological disease mapping typically relies on regression
models that use both covariates and random effects to explain variation between areas and to
take the overdispersion into account. These models depend on strong distributional assumptions
and require a formal specification of the random part of the model. On several real examples, the
use of spatial area data requires more flexible forms than the usual linear predictor for modelling
the dependence of responses on covariates (see, for example, space varying coefficients models:
Assuncao, 2003). Moreover, the standard models do not easily allow for outlier-robust inference
because of covariates at area level that could be measure-type error prone (i.e. MacNab, 2009;
MacNab, 2010; Wakefield, 2007).

Ecological regression on disease mapping can be regarded as a special case of application of
small area methodology (Rao, 2003, Chapter 9). The EB method provides reliable estimators of
risk by borrowing strength across areas. It belongs to the family of predictors obtained by fitting
generalized linear mixed models. EB is applicable to different models, ranging from models for
binary or count data to normal linear mixed models. In the latter case, EB and Empirical Best
Linear Unbiased Predictor estimators coincide (Rao, 2003, Chapter 9). In the case of a continuous
response variable, Chambers and Tzavidis (2006) proposed an approach based on M-quantile
regression to small area estimation that controls for the effect of outliers and relaxes some of the
conventional assumptions on the model. This approach requests weaker parametric assumptions
while the use of M-estimation guarantees outlier robust estimation. For these reasons, Chambers
and others (2012) proposed a new approach to small area estimation for discrete data based on a
M-quantile model extending the robust version of the estimating equations for generalized linear
models by Cantoni and Ronchetti (2001) to the M-quantile case.

In this paper, we extend the method by Chambers and others (2012) to the case of Negative
Binomial M-quantile regression (referred to as NBMQ below) for the ecological disease mapping.
Roughly speaking, the underlying idea is to model quantiles like parameters of the conditional
distribution of the target variable given the covariates. Unlike usual random effects models,
NBMQ models do not depend on strong distributional assumptions and are robust to the presence
of outliers due to measure-type error on covariates.

In disease mapping, data are usually spatially structured and the model should include a
suitable spatial component to take this fact into account. In the NBMQ models introduced in
this paper, the spatial structure is captured by appropriate weights at the estimation step (see
Salvati and others, 2012) using a Geographically Weighting Regression philosophy (referred to
as NBMQGWR below).

Negative Binomial M-quantile and usual random effects models are compared using the Scot-
tish Lip cancer example and a simulation experiment. The example shows that the Negative
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Binomial M-quantile model confirms results obtained by other methods, but it seems to have less
shrinkage effect than the Empirical Bayes method, so reducing the problem of oversmoothing.
The inclusion of the spatial structure in the model gives results very similar to Besag and others
(1991) spatial model. The simulation experiment suggests that the new model presents smaller
root mean square error.

This paper is organized as follows. In Section 2, the Negative Binomial model to describe
overdispersed count data and disease mapping is reviewed. In Section 3, the Negative Binomial
robust model, extending the class of models introduced by Cantoni and Ronchetti (2001), is in-
troduced. In Section 4, the Negative Binomial M-quantile model for overdispersed count data
is proposed and applied in disease mapping. Moreover, in the same Section, we propose a non-
parametric bootstrap method for estimating the MSE, that is easy to implement by extending
existing approach by Chambers and others (2012). In Section 5, differences between NBMQ and
random effects models such as EB and BYM are discussed and compared using the Scottish Lip
cancer example. In Section 6, for comparing bias and root mean squared error of the considered
models, a simulation study is conducted. In Section 7, the NBMQGWR is introduced and it is
compared with the Besag and others (1991) when a set of spatially structured random terms are
considered. Conclusions are reported in Section 8.

2. Overdispersed count data

Usually, the Poisson model is useful for describing the mean but underestimates the variance
of the data. The are essentially three ways for dealing with this fact. One is to use the same
estimating function for the mean, but to base inference on the more robust sandwich covariance
matrix estimator. The second is to use a Quasi-Poisson model. The third is modeling overdispersed
count data by a Negative Binomial distribution which can arise as a Gamma mixture of Poisson
distributions. This paper focus on the latter way.

Let Y ∼ Poisson(λ) and λ ∼ Gamma(θ, α). The compound model is a Negative Binomial
distribution

p(y; θ, α) =

(
y + θ − 1
θ − 1

)(
α

1 + α

)θ (
1

1 + α

)y
for y = 0, 1, 2, . . . (number of failure to obtain θ success), with p = α/(1 + α) the success
probability. We obtain E[Y ] = θ/α and Var[Y ] = θ/α+ θ/α2, so that θ/α2 represent the Poisson
overdispersion. Parameterizing according the mean value µ = θ/α, one obtains α = θ/µ and

p(y;µ, θ) =
Γ(y + θ)

Γ(θ)y!

(
θ

µ+ θ

)θ (
µ

µ+ θ

)y
where now E[Y ] = µ, Var[Y ] = V [µ] = µ+ µ2

θ . It must be noted that the variance is now equal
to the Poisson variance µ plus the extra-variance component. Because the variance is a quadratic
function of the mean, this model is referred to as the NEGBIN2 or NB2 model in Cameron and
Trivedi (1998). The value 1/θ is directly related to the amount of overdispersion in the data:
increasing values of 1/θ suggest increasing amounts of overdispersion. For every fixed θ, Negative
Binomial distribution is a member of the exponential family.

Since our interest is in ecological regression, when a log-linear specification is used, Y repre-
sents the response variable and x a p×1 vector of explanatory variables (including the constant).
A Poisson model would stipulate that the distribution of Yi given xi is Poisson with mean equal
to µ(xTi ) = exp ηi = exp(xTi β), with β is a vector of p regression parameters. Similarly, Nega-
tive Binomial regression model, where the link function is log(·) to easily compare with Poisson,
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considers as mean parameter µ(xi) = exp ηi = exp(xTi β). Considering n observations we have
log(µ) = η = Xβ. This is a special case of the Generalized Linear Model (GLM), while the
Negative Binomial model is an exponential family for θ fixed but not in general. However, in line
with a standard practice (McCullagh and Nelder, 1989; Breslow, 1984; Lawless, 1987), a GLM

methodology can be used as well, after replacing θ with a suitable estimate θ̂ (obtained, e.g.,

using the method of moments) and by iterating estimation of β given θ̂.
Log-linear models for count data represent the basic models to estimate relative risks of

mortality when a set of deaths counts are available at aggregate level on a map. In the next
section, the ‘standard’ methods used for disease mapping are reviewed. These methods will be
the cornerstone to evaluate the performances of our approach.

2.1 Models for disease mapping

Consider a region partitioned into n areas. Let yi denote the observed number of deaths for area
i = 1, . . . , n. Each yi is assumed to be a realization of a random variable Yi, where Y1, . . . , Yn
are independent with Yi ∼ Poisson(µi). Here, µi = Eiλi where Ei represents the expected
cases in area i-th and λi the relative risk. This is the basic model, when no covariates are
considered. The likelihood function for the entire data is the corresponding product of Poisson
terms. The MLE estimates for λi is SMRi = yi/Ei, the so called Standardized Mortality Rate.
Since this type of data typically exhibits substantial overdispersion, James-Stein type estimators
are preferred (see Efron and Morris, 1973). Following Clayton and Kaldor (1987) the λi are
assumed independently and identically distributed as a Gamma(θ, α). The compound model
is a Negative Binomial model with mean θ(Ei/α) and variance θ(Ei/α) + θ(Ei/α)2. Each λi,
conditionally to the others parameters and data, has a posteriori Gamma distribution with mean
E[λi | yi, θ, α] = (yi + θ)/(Ei + α). This is the empirical Bayes estimate once the parameters
α and θ are replaced by their estimates (using the method of moments or maximum likelihood
estimation). These values could be considered as a weighed mean between SMR and the prior
mean for λi, with the weights depend on Ei. We can easily include into the model a set of
covariates to perform an ecological regression.

The Empirical Bayes method has been extended to a fully Bayesian one by Besag and others
(1991). Following their standard model

log(λi) = β0 +

p−1∑
j=1

βjxij + ui + vi

where β0 represents an intercept, such as an overall risk level; β1, . . . , βp−1 is a set of coefficients;
ui is a spatially structured random effect (called clustering) and vi a spatially unstructured (called
heterogeneity) random effect. The prior distributions for the model parameters are as follows. The
intercept β0 is given a flat non-informative distribution. The coefficients βj are given an unin-
formative normal distribution with mean zero. The heterogeneity terms vi are independent, each
vi being Normal with mean 0 and variance ψ−1

v , where ψv represents the precision parameter.
The clustering terms ui, using Gaussian Markov random fields (GMRFs) models in order to cope
the spatial structure, are modeled conditionally on ul∼i terms, as Normal (ūi, (λuni)

−1) where
ūi =

∑
l∼i

ul

ni
. Here l ∼ i (l = 1, . . . , n) indicates adjacent areas to i-th ones (adjacent means

that two areas share an edge) and ni represents their number. The hyperprior distributions of
the precision parameters ψv and ψu are assumed to be Gamma (0.5, 0.0005) as suggested by
Kensall and Wakefield (1999). The marginal posterior distributions of the parameters of inter-
est are approximated by Monte Carlo Markov Chain methods. The model could be considered
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without any spatially structured random effects ui (named BYM) or considering these (hereafter
BYMspatial) to take into account for the spatial characteristic of the data.

3. Robust estimation for Negative Binomial model

Cantoni and Ronchetti (2001) propose a robust inference for generalized linear models based on
quasi-likelihood. They consider a general class of M-estimators of Mallows’s type, where the in-
fluence of deviations on y and on X are bounded separately. The robust version of the generalized
linear model estimating equations is

n−1
n∑
i=1

φ(yi, µi) = 0 (3.1)

where φ(yi, µi) = v(yi, µi)w(xi)µ
′
i − a(β), E[Yi] = µi, V [Yi] = V (µi), µi = µi(β) = g−1(xTi β),

µ′i is its derivative and a(β) = 1
n

∑n
i=1E[v(yi, µi)]w(xi)µ

′
i ensures the Fisher consistency of the

estimator. The bounded v(y, µ) function is introduced to control deviation in y-space, whereas
weights w(X) are used to down-weight the leverage points. When w(xi) = 1 ∀ i Cantoni and
Ronchetti (2001) call the estimator the Huber quasi-likelihood estimator. The authors present the
robust estimation for Binomial and Poisson models by using the Pearson residuals and the Huber
bounded function. The solution of the estimating equations (3.1) can be obtained numerically by
a Fisher scoring procedure.

In this Section we extend the robust estimation to the Negative Binomial model. This model,
when parametrized by the mean, with the parameter θ fixed, is an exponential family (see
Cameron and Trivedi, 1998). Under Negative Binomial model we use the estimating equations

Ψ(β) := n−1
n∑
i=1

ψ(yi, µi) = 0 (3.2)

where ψ(yi, µi) =
{
ψ(ri)w(xi)

1
V 1/2(µi)

µ′i − a(β)
}

, ri = yi−µi

V 1/2(µi)
are the Pearson residuals, ψ

is the Huber Proposal 2 influence function, ψ(r) = r I(−c < r < c) + c sgn(r) I(|r| > c), c is

the tuning constant, µi = ti exp (xTi β), ti is the offset term, µ′i = µix
T
i , V (µi) = µi +

µ2
i

θ and

θ > 0 is a shape parameter. The correction term a(β) = 1/n
∑n
i=1E[ψ(ri)]V

−1/2(µi)µ
′
i can be

computed explicitly for the Negative Binomial model, as shown in Appendix. The parameter θ
has to be estimated by using a robust method to maintain the robustness properties gained in
the estimation of β. We propose the robust scale Huber’s Proposal 2 estimator (Huber, 1981)
defined by

n−1
n∑
i=1

{
ψ2(ri)− E

[
ψ2

(
Yi − µi
V 1/2(µi)

)]}
= 0, (3.3)

where E
[
ψ2
(

Yi−µi

V 1/2(µi)

)]
is a constant that ensures Fisher consistency for the estimation of θ (see

the Appendix for its computation) and ψ can be chosen as in (3.2). The equations (3.2) and (3.3)
have to be solved simultaneously, but in practice a two-step procedure is often used: (i) starting
from a first guess for θ, an estimate of β is obtained, which in turn is used in (3.3), and so on
until convergence; (ii) estimating θ by using residuals of robust Quasi-Poisson model and then,
given this estimate, β is obtained by solving (3.2).

Following Cantoni and Ronchetti (2001) for estimating the variance of the estimated regression

coefficients β̂, assuming that ψ(·) is a bounded and non-decreasing function, we can write down
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a sandwich-type estimator as

Var(β̂) = W−1V(WT )−1. (3.4)

In expression (3.4) the matrices W and V can be computed for the Mallows quasi-likelihood
estimator:

V =
1

n
XTDX− a(β)a(β)T , (3.5)

where D is a diagonal matrix with elements di = E[ψ2(ri)]w
2(xi)

1
V (µi)

(
∂µi

∂ηi

)2

with ηi = g(xTi β) =

xTi β, and

W =
1

n
XTBX, (3.6)

where B is a diagonal matrix with elements bi = E[ψ(ri)
(

∂
∂µi

)
log h(yi|xi, µi)] 1

V 1/2(µi)
w(xi)

(
∂µi

∂ηi

)2

with h(·) is the conditional density of yi|xi and ∂ log(h(yi;θ,µi))
∂µi

=
∑n
i=1

yi−µi

V (µi)
and the elements of

D and B are computed in Appendix. An estimator of the first order approximation (3.4) is then

V̂ar(β̂) = Ŵ−1V̂(ŴT )−1. (3.7)

4. Negative Binomial M-quantile regression

We define an extension of linear M-quantile regression to overdispersed count data. To begin
with, the M-quantile regression (Breckling and Chambers, 1988) is a ‘quantile-like’ generalization
of regression based on the influence function (M-regression). The relationship between sample
M-quantiles and standard M-estimates of a regression function is the same as that between
sample quantiles and sample median. In fact, the M-quantile regression line of order q, q ∈ (0, 1),
of a random variable Y with continuous distribution function F (·) is defined as the solution
Qq(X;ψ) = Xβq to

E

[
ψq

(
Y −Qq(X;ψ)

σq

)]
= 0, (4.8)

where σq is a suitable measure of the scale of the random variable Y − Qq(X;ψ),
ψq(r) = 2ψ(r/σq) [q I(r > 0) + (1− q)I(r 6 0)] and ψ is an appropriately chosen influence func-
tion. Here βq is the p × 1 vector of the regression coefficients at quantile qth. The general M-
estimator of βq can be obtained by solving the set of estimating equations

n−1
n∑
i=1

ψq(riq)xi = 0, (4.9)

with respect to βq with riq = yi−xTi βq and σq is estimated by s, a robust estimate of scale, e.g.
the median absolute deviation estimate s = median|riq|/0.6745. Being a robust regression model,
it can be fitted using an IRLS algorithm that guarantees the convergence to a unique solution
(Kokic and others, 1997).

There are no agreed definitions of an M-quantile regression function when Y is overdispersed
count data (rates parameterized). The most appealing, of course, is using a log-linear specification
under the Negative Binomial model

Qq(X;ψ) = t exp(ηq), (4.10)
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where ηq = Xβq is the linear predictor and t is the vector of offset terms (expected cases of
death).

We consider the extensions of (3.1) to the M-quantile case. Under the M-quantile framework
the estimating equations can be written as

Ψ(βq) := n−1
n∑
i=1

ψq(yi, Qq(xi;ψ)) = 0, (4.11)

whereψq(yi, Qq(xi;ψ)) =
[
ψq(riq)w(xi)

Q′
q(xi;ψ)

V 1/2(Qq(xi;ψ))
−a(βq)

]
, riq =

yi−Qq(xi;ψ)

V 1/2(Qq(xi;ψ))
, V (Qq(xi;ψ)) =

Qq(xi;ψ)+
Qq(xi;ψ)2

θq
, θq > 0 is a shape parameter, Q′q(xi;ψ) = Qq(xi;ψ)xi. In addition, by using

the results in the Appendix for robust NEGBIN2,

a(βq) = n−1
∑n
i=1 2wq(riq)w(xi)

{
−c P (Yi 6 j1) + c P (Yi > j2 + 1) +

Qq(xi;ψ)

V 1/2(Qq(xi;ψ))
P (Yi = j1)

(
1 + j1

θq

)
−

− Qq(xi;ψ)

V 1/2(Qq(xi;ψ))
P (Yi = j2)

(
1 + j2

θq

)}
V −1/2(Qq(xi;ψ))Qq(xi;ψ)xi

where j1 = bQq(xi;ψ) − cV 1/2(Qq(xi;ψ))c, j2 = bQq(xi;ψ) + cV 1/2(Qq(xi;ψ))c and wq(riq) =
[q I(riq > 0) + (1− q)I(riq 6 0)]. The regression coefficients are estimated by the Fisher scoring.
As in previous Section, the parameter θq is estimated by a robust method:

n−1
n∑
i=1

{
ψ2
q (riq)− E

[
ψ2
q

(
Yi −Qq(xi;ψ)

V 1/2(Qq(xi;ψ))

)]}
= 0, (4.12)

where E
[
ψ2
q

(
Yi−Qq(xi;ψ)

V 1/2(Qq(xi;ψ))

)]
is a constant that ensures Fisher consistency for the estimation

of θq and ψq can be chosen to be the same as that in (4.11). The parameter θq is estimated by
using residuals of Poisson M-quantile model at quantile qth and then, given this estimate, βq
is obtained by solving (4.11). Alternative procedures can be implemented and this is an avenue
for future research. Routines R for estimation and inference on M-quantile regression models for
overdispersed count data data are available from the authors.

A drawback for all quantile-type fitted regression functions is the phenomenon of quantile
crossing. This occurs when two or more estimated quantile or M-quantile functions cross or
overlap. He (1997) proposed a posteriori restrict quantile regression to avoid the occurrence of
crossing and Pratesi and others (2009) adapted this procedure to p-splines M-quantile regression.
The issue of quantile crossing is addressed by adapting the posteriori technique proposed by He
(1997) to obtained NBMQ curves do not cross. This could be a direction for future research.

Hierarchical Bayesian models assume that variability associated with the conditional distri-
bution of Y given x can be explained (at least partially) by spatially structured and unstructured
terms (see Section 2). An alternative approach to modelling the variability in this conditional
distribution is via NBMQ regression, which does not depend on a hierarchical structure. A key
concept in the application of NBMQ methods to data in disease mapping is identification of a
unique ‘M-quantile coefficient’ associated with each observed datum.

For area i with values yi and xi, the area-specific M-quantile coefficient is the value qi such
that Q̂q(xi;ψ) ≈ yi. The M-quantile coefficients are estimated by defining a fine grid of values
on the interval (0, 1) and using the data to fit the NBMQ regression models at each value q on
this grid. In the continuous y case the M-quantile coefficient for area i is simply defined as the
unique solution qi to the equation Q̂q(xi;ψ) = yi. However,with count data and Qq(xi;ψ) defined
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by (4.10), observed values of yi can never be part of the strictly positive domain of Qq(xi;ψ)
(Chambers and others, 2012). To overcome this problem we suggest the following definition:

Q̂qi(xi;ψ) =

{
k(xi) yi = 0
yi yi = 1, 2, . . .

where k(xi) denotes an appropriate strictly positive boundary function for the data set. Note
that this cannot be its convex hull, since that will take the value zero where yi = 0. A possibility
is k(xi) = Q̂qmin

(xi;ψ) where qmin denotes the smallest q-value in the grid of q-values used to
determine the qi values of the observed units. However this mean that qi = qmin whenever yi = 0,
irrespective of the value of xi, which seems wrong. One way to tackle this is to follow the same
line of argument that Chambers and others (2012) used in motivating the definition of qi for
the Bernoulli case. This implies that an observation with value y1 = 0 corresponds to a smaller
q-value then another with value y2 = 0 when Q̂0.5(x1;ψ) > Q̂0.5(x2;ψ). This suggests that we
define k(xi) = min{1 − ε, [Q̂0.5(xi;ψ)]−1}, where ε > 0 is a small positive constant. This value
can be fixed equal to −median(xTi β0.5), i = 1, . . . , n, so that half the points with y = 0 have
q > 0.5 and the remainder have q 6 0.5. Then the M-quantile coefficient for area i is qi, where

Q̂qi(xi;ψ) =

{
min

{
1− ε, 1

tiexp(xT
i

ˆβ0.5)

}
yi = 0

yi yi = 1, 2, . . .

Note that under (4.10), solution of the above equation is identical to solution of

y?i = xTi β̂qi =

{
min

{
ln(1− ε) + ln(ti),−xTi β̂0.5

}
− 2 ln(ti) yi = 0

ln(yi)− ln(ti) yi = 1, 2, . . .

For a detailed discussion see Chambers and others (2012).
The NBMQ modelling approach captures the residual between-area variation by the deviation

of the area-specific M-quantile regression coefficient βqi from the ‘median’ M-quantile coefficient
β0.5. Following Chambers and Tzavidis (2006) this allows to write the NBMQ regression model
in a form that mimics the Hierarchical Bayesian Models form, via the identity

Qq(xi;ψ) = ti exp(xTi β0.5 + xTi (βqi − β0.5)). (4.13)

The last term on the right-hand side of (4.13) can be interpreted as a pseudo-random effect for
area i and it allows for capturing the area effects. The M-quantile predictor of the rate in area i
is then

Q̂qi(xi;ψ) = ti exp(xTi β̂qi). (4.14)

For estimating the MSE of the Q̂qi(xi;ψ) we propose a nonparametric bootstrap-based es-
timator (hereafter NPB) by constructing a finite artificial population of observed deaths count
that imitates the real population, and then from it the bootstrap estimators can be obtained.
This procedure is an extension for count data of the method proposed by Chambers and others
(2012).

Given the finite population of values yi (a count variable) the steps of the nonparametric
bootstrap procedure are summarized as follows:

step 1. Fit model (4.10) to the initial data and obtain predictors Q̂qi(xi;ψ). For each area compute

the pseudo-random effect ûNBMQ
i = x̄Ti (β̂qi − β̂0.5) and the θ̂NBMQ

qi at q = qi. It is

convenient to re-scale the elements ûNBMQ so that they have sample mean exactly equal
to zero.
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step 2. Sample with replacement from a set {1, . . . , n} in order to construct the vector ûNBMQ∗ =

{ûNBMQ∗
1 , . . . , ûNBMQ∗

n }T and θ̂
NBMQ∗

= {θ̂NBMQ∗
q1 , . . . , θ̂NBMQ∗

qn }T . In particular, ûNBMQ∗
i =

ûNBMQ
h and θ̂NBMQ∗

qi = θ̂NBMQ
qh

where h = srswr({1, ..., n}, 1).

step 3. Generate a bootstrap data of size n, by generating values of a Negative Binomial distribution
with

µ∗i = ti exp{xTi β̂0.5 + ûNBMQ∗
i },

θ∗qi = θ̂NBMQ∗
qi , i = 1, . . . , n,

and obtain the bootstrap quantity of interest y∗i , i = 1, . . . , n.

step 4. Fit model (4.10) to the bootstrap data and calculate bootstrap predictor Q̂∗qi(xi;ψ), i =
1, . . . , n.

step 5. Repeat steps 2-4 B times. In the bth bootstrap replication, let y
∗(b)
i be the quantity of

interest for area i, Q̂
∗(b)
qi (xi;ψ) be the bootstrap Negative Binomial M-quantile predictor.

step 6. A bootstrap estimator of MSE is

mseNPB(Q̂qi(xi;ψ)) = B−1
B∑
b=1

(
Q̂∗(b)qi (xi;ψ)− y∗(b)i

)2

. (4.15)

5. Real example

Clayton and Kaldor (1987) and many others (e.g. Breslow and Clayton, 1993 and Wakefield,
2007) analyzed observed and expected numbers of male lip cancer incidence data collected in the
56 administrative areas of Scotland over the period 1975-1980. The data consist of the observed
and expected numbers of cases (based on the age population in each county) and a covariate
measuring the proportion of the population engaged in agriculture, fishing, or forestry (AFF).
This covariate has been chosen because all three occupations involve outdoor work, exposure to
sunlight, the principal known risk factor for lip cancer. Values for the exposure variable AFF are
0 (for 5 areas), 1 (11 areas), 7 (14 areas), 10 (12 areas), 16 (10 areas) and 24 (4 areas). The values
are just six, since it was read from a map key, so AFF is a typical measured with error covariate
(as suggested also by Wakefield, 2007).

In the present paper, we analyse this data using EB, BYM (without spatially structured
random terms) and NBMQ models. As in many other papers, we consider the covariate values
divided by ten.

Estimates have been obtained using R software. For EB the eBayes function on SpatialEpi

library has been used, while for BYM model the BRugs library (an R interface to the OpenBUGS

software) has been used. For NBMQ model we have used an original R function, glm.mq.nb on
CountMQ library available from the authors.

Figure 1 shows how for each area we define the belonging quantile using a first estimation
M-quantile procedure considering a fine grid from 0.10 to 0.90, by step of 0.05. For a clearer
representation, we report in Figure 1 only three quantiles q = {0.25, 0.50, 0.75}. We consider that
each area is ascribed to the estimated quantile of the conditional distributions which is closest to
SMR (Yi/Ei) of the area itself. Geographical location of each area is showed on the right hand of
the Figure 1. Then, for each area estimation using NBMQ model for the belonging quantile has
been performed.
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Figure 1. Observed data and predicted values of quantiles q = {0.25, 0.50, 0.75} from NBMQ model

Figure 2 describes the conditional distribution of number of cases of male lip cancer at different
quantiles. In each plot of Figure 2, a dashed line interpolates 17 point estimates (filled dots) of
βqj , 0.010 6 q 6 0.90, j = 0, 1. The effect due to the AFF affects the distribution at the tails.
Most notably, the estimate of the parameter ‘jumps’ by a 50% increase in magnitude within the
relatively short interval of quantile points comprised between 0.65 and 0.80.

Figure 3 shows estimates of relative risk for considered models (EB, BYM and NBMQ). Re-
sults from different models are quite similar: estimates values lies closed the diagonal. Correlation
between estimates obtained from EB and NBMQ is 0.97. Figure 4 describes the box-plot for rel-
ative risks estimates using different methods. Negative Binomial M-quantile model seems to have
a minor oversmoothing effects than random effects models (behavior criticized among other by
Louis, 1984, Ghosh, 1992 and Green and Richardson, 2002). Figure 5 reports the maps for relative
risks estimates confirming the plausibility of suggested NBMQ model.

6. Model-Based Simulation Experiment

We carry out a model-based simulation experiment to compare the performance of the different
methods for estimating relative risks in disease mapping. The simulated data are generated from
model

yi = ti exp (−0.35 + 0.72xi + ui)

using expected cases ti, covariate xi of the previous example and values of the fitted coefficients
(−0.35, 0.72) using EB. Here ui is drawn from a normal distribution with zero mean and σ2 equal
to 0.15 or 0.25. In the simulation K = 1, 000 samples for counts data are generated and each
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Figure 2. Conditional NBMQ quantiles q = {0.10, 0.15, . . . , 0.50, . . . , 0.85, 0.90} estimated by model (4.10)

Figure 3. Relative risks estimates using different models: EB, BYM and NBMQ

sample, k = 1, . . . ,K, is perturbed for values of −0.8 on the measure of the covariate on four
areas (chosen randomly from the 51 that present a value for the covariate greater than 0.8).

Then, different models are fitted to each sample j for estimating the relative risks for disease
mapping: the Negative Binomial linear models under an M-quantile approach (NBMQ), the
Empirical Bayesian approach (EB) and the fully Bayesian non spatially structured model (BYM).

The performances of different estimators is evaluated with respect to two basic criteria: the
bias (Bias) and the root mean squared error (RMSE). In more details, the Bias is computed, for
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Figure 4. Relative risks estimates using different models: SMR, EB, BYM and NBMQ

estimator δ̂ik for k-th sample of the δi parameter in area i as:

Biasi =
1

K

K∑
k=1

(δ̂ik − δi),

where j indicates the iteration number, and the RMSE is obtained as

RMSEi =

√√√√ 1

K

K∑
k=1

(δ̂ik − δi)2.

The mean values of Bias and RMSE over areas are set out in Table 1. The bias results reported
in Table 1 confirm our expectations: under both scenarios (σ2=0.15, 0.25) the EB and the BYM
perform better than the NBMQ predictors, whereas from the RMSE results we see that claims in
the literature (Chambers and Tzavidis, 2006) about the superior outlier robustness of M-quantile
compared with the EB and BYM certainly hold true. A smearing-type estimator could reduce the
bias of the NBMQ predictor. Note, however, that the cost of this bias-adjusted estimator is the
inconsistency of (4.14), reflecting the usual bias-variance trade-off in outlier-robust estimation.

Table 1. Model-based simulation results: performances of predictors of relative risks for disease
mapping

σ2=0.15 σ2=0.25
Bias RMSE Bias RMSE

EB 0.001 0.520 -0.002 0.769
BYM 0.002 0.563 -0.001 0.819

NBMQ -0.036 0.417 -0.083 0.514

We now examine the performance of the nonparametric MSE estimator (4.15). Figure 6 shows
the area-specific values of RMSE and average-estimated RMSE in case of σ2 = 0.15, 0.25.
Estimator (4.15) performs well: it track the true RMSE, exhibiting a good stability and showing
only a small amount of over-coverage.
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Figure 5. Relative risks estimates using models: SMR, EB, BYM and NBMQ

7. Negative Binomial M-quantile Geographically Weighted regression

In environmental and epidemiological applications, observations that are spatially close may be
more alike than observations that are further apart. One approach for incorporating spatial in-
formation in a NBMQ regression model is to assume that the model coefficients themselves vary
spatially across the geography of interest. Geographically Weighted Regression (GWR) (Fother-
ingham and others, 1997; Fotheringham and others, 2002; Yu and Wu, 2004) models this spatial
variation by using local rather than global parameters in the regression model. The GWR model



14 Chambers, Dreassi and Salvati

Figure 6. Area-specific values of RMSE (solid line) and average-estimated RMSE (dashed line) under σ2

equal to 0.15 (left) and 0.25 (right)

is a linear model for the conditional expectation of y given X at location u. That is, a GWR model
assumes spatial non-stationarity of the conditional mean of the variable of interest. In this Section
we define a spatial extension to NBMQ regression based on Geographically Weighted regression by
using the same approach by Salvati and others (2012) for M-quantile GWR model. Given n obser-
vation at a set of L locations {ul; l = 1, . . . , L;L 6 n}, with nl data values {yil,xil; i = 1, . . . , nl}
observed at location ul, the NBMQGWR model can be defined by extending (4.10) to specify
a log-linear model for the M-quantile of order q of the conditional distribution of Y given X at
location u, writing

Qq(X;ψ, u) = t exp(ηq(u)), (7.16)

where ηq(u) = Xβq(u), the linear predictor, varies with u as well as with q. The parameter βq(u)
can be estimated by solving the following estimating equations

Ψ(βq(u)) := n−1
L∑
l=1

w(ul, u)

nl∑
i=1

ψq (yi, Qq(xi;ψ, u)) = 0, (7.17)

where ψq(yi, Qq(xi;ψ, u) =
{
ψq(rilq)w(xil)

Q′
q(xil;ψ,u)

V 1/2(Qq(xil;ψ,u))
− a(βq(u))

}
, w(ul, u) is a spatial

weighting function whose value depends on the distance from sample location ul to u in the sense
that sample observations with locations close to u receive more weight than those further away.
In this paper we use a Gaussian specification for this weighting function

w(ul, u) = exp
{
− d2

ul,u
/2b2

}
, (7.18)

where dul,u denotes the Euclidean distance between ul and u and b > 0 is the bandwidth. As the
distance between ul and u increases the spatial weight decreases exponentially. The bandwidth
b is a measure of how quickly the weighting function decays with increasing distance, and so
determines the ‘roughness’ of the fitted GWR function. A spatial weighting function with a
small bandwidth will typically result in a rougher fitted surface than the same function with
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a large bandwidth. Spatial weights that vary with q can be defined by allowing the bandwidth
underpinning these weights to vary with q. Such a q-specific optimal bandwidth b can be obtained
by minimising the following function with respect to b

L∑
l=1

nl∑
i=1

[
yil − Q̂q(xil;ψ, uil, b)

]2
, (7.19)

where Q̂q(xil;ψ, u, b) is the estimated value of the right hand side of (7.17) at quantile q and lo-
cation uil, using bandwidth b when the observation yil is omitted from the model fitting process.
However, using this q-specific cross-validation criterion can significantly increase the computa-
tional time. For this reason, in this paper we use the optimal bandwidth at q = 0.5 for all other
values of q for our extension of GWR to NBMQ regression. That is, the spatial weights w(ul, u)
in (7.17) do not depend on q. This is a reasonable first approximation to the q-specific optimal
bandwidth that can be computed reasonably quickly, even if this choice could potentially lead to
oversmoothing for small or large values of q and hence bias. The parameter θq(u) depends from
the location and can be estimated by solving

n−1
L∑
l=1

w(ul, u)

nl∑
i=1

{
ψ2
q (rilq)− E

[
ψ2
q

(
Yil −Qq(xil;ψ, u)

V 1/2(Qq(xil;ψ, u))

)]}
= 0, (7.20)

where the expectation E[·] in (7.20) is a constant that ensures Fisher consistency for the estima-
tion of θq(u). The parameter θq(u) varies by locations and quantiles. To reduce the computational
time, an alternative approach is to use a value of global θq(u) that varies by quantiles, but it is
fixed over space. For example, the θq estimated by equation (4.12). Given the spatial weights and
θq(u), the regression coefficients are estimated by the Fisher scoring for each location u.

The M-quantile predictor of the rate in area i is then

Q̂qil(xil;ψ, uil) = til exp(xTi β̂qil(uil)), (7.21)

where fitted regression surface Q̂qil(xil;ψ, uil) = xTilβ̂q(uil) defines the fit of the NBMQGWR
model for the NB regression M-quantile of order qil of yil given xil at location uil. Here qil is the
M-quantile GWR coefficient for area i with values yil and xil at location uil. It is calculated as
the unique value qil such that Q̂qil(xil;ψ, uil) ≈ yil.

We have considered the Scottish real example dataset. For NBMQGWR we used informa-
tions about centroids of each area under the Great Britain National Grid projection system. For
BYMspatial model a BRugs library (a R interface to the OpenBUGS software) has been used. For
NBMQGWR we have used an original R function available from the authors. Figure 7 shows the
relative risk maps for both spatially structured models. Figure 8 describes as using NBMQGWR
the relative risks for some areas became more similar then obtained from BYMspatial: areas with
higher relative risks considering spatial structure move on the diagonal.

8. Conclusion

In this paper, a class of robust Negative Binomial models and their extension to M-quantile
approach have been proposed. The application to disease mapping of the M-quantile models is
introduced and investigated. These models offer a natural way of modeling between area variabil-
ity in data without imposing prior assumptions about the source of this variability. In particular,
with M-quantile models there is no need to explicitly specify the random components of the
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Figure 7. Relative risks estimates using models: NBMQGWR and BYMspatial

Figure 8. Relative risks estimates using different models: NBMQ, NBMQGWR and BYMspatial

model; rather, inter-area differences are captured via area-specific M-quantile coefficients. As a
consequence, the M-quantile approach reduces the need for parametric assumptions. In addition,
estimation and outlier robust inference under these models is straightforward. The proposed
approach appears to be suitable for estimating a wide range of parameters and our simulation
results show that it is a reasonable alternative to mixed effects models for ecological analysis on
disease mapping.

To take the spatial structure of data into account, we consider the possibility to define a
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Negative Binomial M-quantile Geographically Weighted Regression model. The choice of the
model is crucial for the results of disease mapping. Further research seems to be necessary in
order to develop tools for model selection of NBMQ based on robust quasi-deviance. Recently
Machado and Santos Silva (2005) and Lee and Neocleous (2010) have proposed quantile regression
for count data and they overcome the problem with estimating conditional quantiles by adding to
the count outcome noise generated from a Uniform(0, 1). This form of jittering creates artificial
smoothness in the outcome and allows for modeling the continuos outcome by quantile regression
because there is a one-to-one relationship between the conditional quantiles of the count outcome
and those of the artificially generated continuos outcome. An alternative approach to modeling
count data was proposed by Efron (1992) using asymmetric maximum likelihood estimation.
Future research will be addressed to investigate these alternative methods and to compare these
approach with the M-quantile method.
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Appendix

We have to evaluate:

(i)E

[
ψ

(
Yi − µi
V 1/2(µi)

)]
; (ii)E

[
ψ

(
Yi − µi
V 1/2(µi)

)
Yi − µi
V (µi)

]
; (iii)E

[
ψ2

(
Yi − µi
V 1/2(µi)

)]
;

where Yi is distributed according to a NEGBIN2 distribution (see Cameron and Trivedi, 1998),
that is,

P (Yi = yi) =
Γ(yi + θ)

Γ(θ) yi!

(
µi

µi + θ

)yi ( θ

µi + θ

)θ
for yi = 0, 1, 2, . . .

Here, θ is a positive integer, µi = E(Yi) and V (µi) = var(Yi) = µi +
µ2
i

θ . Such Yi can be regarded
as the number of failures for having θ successes in a sequence of Bernoulli trials. From now on,
to make the notation easier, the index i is suppressed. Accordingly, we write µ instead of µi, y
instead of yi, and so on.

First, we evaluate E
[
Y I(Y ∈ A)

]
and E

[
Y 2 I(Y ∈ A)

]
, where A = {a, . . . , b− 1}, 0 6 a < b

are integers. Let A+ 1 = {a+ 1, . . . , b}. Then,

E
[
Y I(Y ∈ A+ 1)

]
= E

[
Y I(Y ∈ A)

]
− aP (Y = a) + b P (Y = b).

By the transformation z = y − 1, one also obtains

E
[
Y I(Y ∈ A+ 1)

]
=
∑
y∈A+1 y

Γ(y+θ)
Γ(θ) y!

(
µ
µ+θ

)y ( θ
µ+θ

)θ
= µ

µ+θ

∑
z∈A(z + θ) Γ(z+θ)

Γ(θ) z!

(
µ
µ+θ

)z ( θ
µ+θ

)θ
= µ

µ+θ

∑
z∈A(z + θ)P (Y = z)

= µ
µ+θ E

[
Y I(Y ∈ A)

]
+ µ θ

µ+θ P (Y ∈ A).

Equating such expressions, one finally obtains

E [Y I(Y ∈ A)] =
µ+ θ

θ
[aP (Y = a)− bP (Y = b)] + µP (Y ∈ A). (8.22)

We next apply the same argument for calculating E
[
Y 2 I(Y ∈ A)

]
. Then,

E
[
Y 2 I(Y ∈ A+ 1)

]
= E

[
Y 2 I(Y ∈ A)

]
− a2 P (Y = a) + b2 P (Y = b)

and

E
[
Y 2 I(Y ∈ A+ 1)

]
=
∑
y∈A+1 y

2 Γ(y+θ)
Γ(θ) y!

(
µ
µ+θ

)y ( θ
µ+θ

)θ
= µ

µ+θ

∑
z∈A(z + 1)(z + θ) Γ(z+θ)

Γ(θ) z!

(
µ
µ+θ

)z ( θ
µ+θ

)θ
= µ

µ+θ

∑
z∈A

(
z2 + (θ + 1)z + θ

)
P (Y = z)

= µ
µ+θ E

[
Y 2 I(Y ∈ A)

]
+ µ (θ+1)

µ+θ E
[
Y I(Y ∈ A)

]
+ µ θ

µ+θ P (Y ∈ A).

Again, equating the above expressions yields

E
[
Y 2 I(Y ∈ A)

]
= µ+θ

θ

[
a2P (Y = a)− b2P (Y = b)

]
+ µ(θ+1)

θ E [Y I(Y ∈ A)] + µP (Y ∈ A) =

= µ
θ [θ + µθ + µ]P (Y ∈ A) + µ+θ

θ

[
a2 P (Y = a)− b2 P (Y = b)

]
+

+µ(µ+θ)(θ+1)
θ2 [aP (Y = a)− bP (Y = b)] .

(8.23)
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Finally, the previous results, for a particular choice of A allow to evaluate (i)-(ii)-(iii).
Define

ψ(r) =

 r −c 6 r 6 c
c r > c
−c r < −c

and set r = Y−µ
V 1/2(µ)

.

Let j1 = bµ − c V 1/2(µ)c and j2 = bµ + c V 1/2(µ)c. Final results may change depending on
whether µ− c V 1/2(µ) is integer or noninteger. In what follows, we consider the not integer case;
the integer case can be handled similarly.

i)

E

[
ψ

(
Y − µ
V 1/2(µ)

)]
= −c P

(
Y − µ
V 1/2(µ)

< −c
)

+ c P

(
Y − µ
V 1/2(µ)

> c

)
+

+E

[
Y − µ
V 1/2(µ)

I(−c 6 Y − µ
V 1/2(µ)

6 c)

]
=

Because Y−µ
V 1/2(µ)

> c means Y > µ + c V 1/2(µ), as Y should be integer, we have Y >

bµ+ c V 1/2(µ)c+ 1 = j2 + 1. Analogously, Y−µ
V 1/2(µ)

< −c means Y < µ− c V 1/2(µ), which,

when µ− c V 1/2(µ) is not integer leads to Y 6 bµ− c V 1/2(µ)c = j1 (when µ− c V 1/2(µ) is
integer to Y 6 j1−1). Moreover, −c 6 Y−µ

V 1/2(µ)
6 c means µ−c V 1/2(µ) 6 Y 6 µ+c V 1/2(µ)

which, when µ− c V 1/2(µ) is not integer is j1 + 1 6 Y 6 j2 (when µ− c V 1/2(µ) is integer
is j1 6 Y 6 j2). So, we obtain

= −c P (Y 6 j1) + c P (Y > j2 + 1) +

+
1

V 1/2(µ)
E [Y I(j1 + 1 6 Y 6 j2)]− µ

V 1/2(µ)
P (j1 + 1 6 Y 6 j2).

Considering A = {j1 + 1, . . . , j2} and also that

µ+ θ

θ
(y + 1)P (Y = y + 1) =

µ

θ
yP (Y = y) + µP (Y = y) (8.24)

we obtain

E [Y I(j1 + 1 6 Y 6 j2)] = µP (j1 6 Y 6 j2 − 1)− µ

θ
j2P (Y = j2) +

µ

θ
j1P (Y = j1) (8.25)

and finally

E
[
ψ
(

Y−µ
V 1/2(µ)

)]
= −c P (Y 6 j1) + c P (Y > j2 + 1) +

+ µ
V 1/2(µ)

P (Y = j1)
(
1 + j1

θ

)
− µ

V 1/2(µ)
P (Y = j2)

(
1 + j2

θ

)
ii)

E

[
ψ

(
Y − µ
V 1/2(µ)

)
Y − µ
V (µ)

]
= − c

V (µ)
E [(Y − µ) I(Y 6 j1)]+

c

V (µ)
E [(Y − µ) I(Y > j2 + 1)] +

+
1

V 3/2(µ)
E
[
(Y − µ)2 I(j1 + 1 6 Y 6 j2)

]
=
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=
µ c

V (µ)
P (Y 6 j1) +

µ c

V (µ)
P (Y 6 j2) +

µ2

V 3/2(µ)
P (j1 + 1 6 Y 6 j2) +

− c

V (µ)
E [Y I(Y 6 j1)]− c

V (µ)
E [Y I(Y 6 j2)]− 2µ

V 3/2(µ)
E [Y I(j1 + 1 6 Y 6 j2)] +

+
1

V 3/2(µ)
E
[
Y 2 I(j1 + 1 6 Y 6 j2)

]
Considering result (8.25), A = {0, . . . , j1} in (8.22) with (8.24)

E [Y I(Y 6 j1)] = −µ
θ
j1 P (Y = j1) + µP (Y 6 j1 − 1), (8.26)

and A = {0, . . . , j2} in (8.22) with (8.24)

E [Y I(Y 6 j2)] = −µ
θ
j2 P (Y = j2) + µP (Y 6 j2 − 1) (8.27)

and again A = {j1 + 1, . . . , j2} in (8.23) with (8.24)

E
[
Y 2 I(j1 + 1 6 Y 6 j2)

]
=
µ

θ
j2
1P (Y = j1)− µ

θ
j2
2P (Y = j2) + (8.28)

+µP (j1 6 Y 6 j2 − 1) +
µ(θ + 1)

θ
E [Y I(j1 6 Y 6 j2 − 1)]

substituting (8.25, 8.26, 8.27, 8.28)

E

[
ψ

(
Y − µ
V 1/2(µ)

)
Y − µ
V (µ)

]
=

µ c

V (µ)

[
P (Y = j1)

j1 + θ

θ
+ P (Y = j2)

j2 + θ

θ

]
+

+
µ

V 3/2(µ)

[
P (Y = j1)

j1
θ

(θ + 1 + j1)− P (Y = j2)
j2
θ

(θ + 1 + j2) + P (j1 6 Y 6 j2 − 1)

]
+

+
µ2

V 3/2(µ)

{
P (Y = j1)

[
j1 − j1θ − θ2

θ2

]
− P (Y = j2)

[
j2 − j2θ − θ2

θ2

]
+

1

θ
P (j1 6 Y 6 j2 − 1)

}
iii)

E

[
ψ2

(
Y − µ
V 1/2(µ)

)]
= c2 [P (Y 6 j1) + P (Y > j2 + 1)] +

+
1

V (µ)
E
[
(Y − µ)2 I(j1 + 1 6 Y 6 j2)

]
=

= c2 [1− P (j1 + 1 6 Y 6 j2)] +
µ2

V (µ)
P (j1 + 1 6 Y 6 j2)+

− 2µ

V (µ)
E[Y I(j1 + 1 6 Y 6 j2)] +

1

V (µ)
E[Y 2 I(j1 + 1 6 Y 6 j2)] =

Substituting the values of the expected values (8.25, 8.28) we arrive to

E

[
ψ2

(
Y − µ
V 1/2(µ)

)]
= c2 [1− P (j1 + 1 6 Y 6 j2)]+

+
µ

V (µ)

[
P (Y = j1)

j1
θ

(θ + 1 + j1)− P (Y = j2)
j2
θ

(θ + 1 + j2) + P (j1 6 Y 6 j2 − 1)

]
+

+
µ2

V (µ)

{
P (Y = j1)

[
j1 − j1θ − θ2

θ2

]
− P (Y = j2)

[
j2 − j2θ − θ2

θ2

]
+

1

θ
P (j1 6 Y 6 j2 − 1)

}
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