
University of Wollongong
Research Online

Centre for Statistical & Survey Methodology
Working Paper Series Faculty of Engineering and Information Sciences

2013

Bootstrap p-values for cochran's Q, stuart and
bowker tests
D Best
University of Newcastle

John Rayner
University of Wollongong, reklaw@uow.edu.au

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Recommended Citation
Best, D and Rayner, John, Bootstrap p-values for cochran's Q, stuart and bowker tests, Centre for Statistical and Survey Methodology,
University of Wollongong, Working Paper 12-13, 2013, 10.
http://ro.uow.edu.au/cssmwp/116

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/cssmwp
http://ro.uow.edu.au/cssmwp
http://ro.uow.edu.au/eis


Copyright © 2013 by the National Institute for Applied Statistics Research Australia, UOW. 
Work in progress, no part of this paper may be reproduced without permission from the Institute. 
 

National Institute for Applied Statistics Research Australia, University of Wollongong, 
Wollongong NSW 2522. Phone +61 2 4221 5435, Fax +61 2 4221 4845. Email: 

anica@uow.edu.au 

 
 
 
 
 
 

National Institute for Applied Statistics Research 
Australia 

 

The University of Wollongong 
 

 

Working Paper 
 
 

12-13 
 

 

BOOTSTRAP P-VALUES FOR COCHRAN’S Q , 
STUART and BOWKER TESTS 

   
 
 
 

D. J. BEST and J.C.W RAYNER 
 

mailto:anica@uow.edu.au�


* Author to whom correspondence should be addressed. 
Telephone: 61 2 49215737; Fax: 02 4921 6898; e-mail: John.Rayner@newcastle.edu.au 
1 School of Mathematical and Physical Sciences, University of Newcastle, NSW 2308, Australia 
2 Centre for Statistical and Survey Methodology, School of Mathematics and Applied Statistics, 
University of Wollongong, NSW 2522, Australia 

 
BOOTSTRAP P-VALUES FOR COCHRAN’S Q,  

STUART and BOWKER TESTS 
 
 

D.J. BEST1 and J.C.W. RAYNER*1,2 

University of Newcastle and University of Wollongong 

 
 

Summary 

Cochran’s Q assesses treatment differences in randomized block designs with binary 
data. We suggest using bootstrap p-values rather than p-values based on the chi-squared 
distribution for tests based on Q. These chi-squared p-values for Q are the only ones 
usually given in statistical software and can be inaccurate. The same approach allows 
improved p-values to be given for sparse two-way cross-classification data. 
 
Key Words: Binary data, cross-classification data, marginal homogeneity, nonparametric, 
symmetry in two-way tables.  
 
 
1. Introduction 
 

For binary data in randomized blocks we obtain improved p-values for Cochran’s 
Q test. Cochran’s Q is available in many statistical packages or else can be calculated by 
a Friedman’s rank test routine which adjusts for ties. However the distribution of 
Cochran’s Q can be poorly approximated by the chi-squared distribution. See, for 
example, Bhapkar and Somes (1977) and section 4 below. For two treatments and binary 
data Suissa and Shusta (1991) and Berger and Sidik (2003) have given exact 
unconditional p-values but we are unaware that such has been given for more than two 
treatments. For t treatments and binary data there are 2t possible responses for each block. 
Following Bennett (1967) we can use maximum likelihood and a multinomial model to 
estimate the probabilities of each of these 2t responses. These can be used in a parametric 
bootstrap simulation which, we suggest, improves upon the chi-squared p-values. 
Sometimes the iterations needed for the maximum likelihood estimates (MLEs) do not 
converge. In such cases the approximation of Bhapkar and Somes (1977) can be used. 
We do not advocate conditional p-values as these assume that in a repetition of an 
experiment or trial that the number of ‘successes’ will be fixed within each block. This 
seems unreasonable. 

For completeness we now give an explicit formula for Cochran’s Q. Suppose we 
have a randomised block design in which t treatments are applied to r blocks. Let Xij be 
the outcome for treatment i on block j, and suppose that Xij = 1 if the outcome is a 
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‘success’, and Xij = 0 otherwise. Using standard ‘dot’ notation, j
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For t = 2 we can also define Q in terms of the frequencies n1, n2, n3 and n4 for the 
responses (1, 1), (1, 0), (0, 1) and (0, 0). This gives Q = (n2 – n3)2/(n2 + n3). Similarly for t 
= 3 we can also define Q in terms of the frequencies n1, … , n8 of the responses (1, 1, 1), 
(1, 1, 0), (1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1) and (0, 0, 0). This gives 
 

)(3 765432 nnnnnn +++++ Q = 
2

743652
2

765432 )22()22( nnnnnnnnnnnn −−−+++−−−++  + 
2

642753 )22( nnnnnn −−−++ . 
 

Sections 2 and 3 look at the cases of two and three treatments. Davis (2002, 
p.169) says the underlying multinomial model implies Cochran’s Q is a nonparametric 
statistic and hence the basis of a robust procedure. Section 4 looks at the Bhapkar and 
Somes (1977) approximation while section 5 considers cross-classified data. 
 
 
2. Two treatments 

 
Following Simonoff (2003, p.291), Table 1 classifies 261 boys under five years of 

age in Ngamiland, Botswana on the basis of the W (WHO) standard and the E 
(Ehrenberg) standard. In Table 1 A represents malnourished (1) and B represents normal 
(0).  

The information in Table 1, a 2 × 2 table, can be displayed in Table 2, a 2 × 4 
table. 

 
Table 1. Frequencies for W and E 
 E  
W A B  
A 20 (n1) 0 (n2) 20 (nπS) 
B 4 (n3) 237 (n4) 241 

 24 (nπT) 237 261 
 

Table 2. Frequencies for the classifications W and E for candidates A and B 
W A A B B 
E A B A B 

 20 (n1) 0 (n2) 4 (n3) 237 (n4) 
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In Table 2 classification A is shown as A and classification B is shown as B. The 

research question is, “Is the proportion (πW) who are classified A by the W standard 
different to the proportion (πE) who are classified A by the E standard?”  

For i = 1, 2, 3 and 4 let p̂i  be the maximum likelihood estimator (MLE) of pi, the 
unknown probability of cell i in Tables 1 and 2. We seek to test the marginal 
homogeneity hypothesis H0: πW – πE = 0 against K: πW – πE ≠ 0. Bennett (1967) assumes 
a multinomial model with ni, i = 1, 2, 3 and 4 counts in Tables 1 and 2 and shows that p̂i  
= )/( 21 iin aλλ + , where λ1 and λ2 are Lagrange multipliers and ai is the ith column of 
matrix A = (0, 1, –1, 0). 

If p = (p1, p2, p3, p4)T then marginal homogeneity implies Ap = 0. To see this 
observe that πW = p1 + p2, πE = p1 + p3, and so H0 requires πW – πE = p2 – p3 = 0. Matrix 
A gives the coefficients of pi in H0 and so here the coefficient of p1 is 0, while the 
coefficients for p2, p3 and p4 are 1, –1 and 0 respectively. Here A has only one row as the 
null hypothesis only involves one linear constraint. In maximizing the likelihood by 
choice of p we need to involve the marginal homogeneity constraint Ap = 0 and this 
implies the need to involve the Lagrange multipliers λ1 and λ2. As p1 + p2 + p3 + p4 = 1 it 
follows as in Bennett (1967) that λ1 = n. Alternatively we could put p4 = 1 – ∑ =

3

1i ip  in 
the multinomial. 

Under marginal homogeneity p̂2 ! p̂3  = 0, whence n2/(n + λ2) – n3/(n – λ2) = 0 
giving λ2 = n(n2 – n3)/(n2 + n3) and ultimately p̂1  = n1/n, p̂2  = (n2 + n3)/(2n) = p̂3  and p̂4  
= n4/n.  

Cases i = 1, 2, 3 and 4 in Tables 1 and 2 are independent because different boys 
are classified. We can test H0 using the Pearson statistic X2 = (ni ! np̂i )

2 / np̂ii=1

4
"  = (n2 – 

n3)2/(n2 + n3) = Q = 4.000 for these data. The test statistic is called McNemar’s statistic 
after McNemar (1947). McNemar’s statistic has an approximate !1

2  distribution. Thus an 
approximate p-value for these data would be P(X2 > 4.000) = 0.046. There is some 
evidence that classification differs from W to E. Notice that this X2 statistic reflects 
neither Pearson’s test for independence nor Pearson’s test for homogeneity as the same 
boys are classified by standards W and E. 

We note that H0 is often examined assuming np̂2 + np̂3  to be fixed. This is the 
basis of the so-called exact conditional test of H0 providing an ‘exact’ conditional p-value 
as opposed to a bootstrap p-value to be described shortly. For the Table 1 data the exact 
two-sided conditional p-value 0.125, found using binomial probabilities with n = 4 and p 
= 0.5. 

We consider a better p-value would be based on a parametric bootstrap approach. 
Suppose we generate many Table 1 type data sets using random multinomials with n = 20 
and ( p̂1 , p̂2 , p̂3 , p̂4 ) = (0.0766, 0.0076, 0.0076, 0.9080) and calculate new X2 values for 
each such table. The proportion of these new tables with X2 > 4.000 is then a bootstrap 
estimate of the p-value. When 100,000 such tables were generated we found a bootstrap 
p-value of 0.043. Berger and Sidik (2003) discuss unconditional p-values which should 
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be similar to those of Suissa and Shusta (1991). Our experience is that our bootstrap p-
values are very close to these unconditional p-values. 
 
 
3. Three treatments 
 

Table 3 gives data from Davis (2002, p.186) concerning three drugs A, B, and C 
from 46 patients who respond with either an F (favourable) or U (unfavourable). There 
are 23 = 8 possible responses for each of the 46 patients and we assume that for each 
patient a response is independent of the response of every other patient. 
 
Table 3. Response triples for drug therapy 

Drug Response triples  
A F F F F U U U U  
B F F U U F F U U  
C F U F U F U F U  

Frequency 6 (n1) 16 (n2) 2 (n3) 4 (n4) 2 (n5) 4 (n6) 6 (n7) 6 (n8) 46 (n) 
 
The marginal homogeneity null hypothesis is H0: πA = πB = πC = π, say, where the π’s 
refer to F’s and not U’s. 

Under marginal homogeneity H0: πA – πC = 0 and πB – πC = 0. We have 
 

πA = p1 + p2 + p3 + p4, πB =  p1 + p2 + p5 + p6, and πC =  p1 + p3 + p5 + p7, 
 
where pi is the unknown probability associated with ni in Table 3. Thus under H0  
 

πA – πC = p2 + p4 – p5 – p7 = 0 and πB – πC = p2 + p6 – p3 – p7 = 0, 
 
and so we can define the constraint matrix 
 

A = 0 1 0 1 !1 0 !1 0
0 1 !1 0 0 1 !1 0

"

#
$

%

&
'  

 
corresponding to the coefficients of the pi in πA – πC and πB – πC. 

To find the MLEs of the pi we need to maximize the likelihood subject to Ap = 0. 
As in the previous section, following Bennett (1967) but now using three Lagrange 
multipliers λ1, λ2 and λ3, we find λ1 = n and now if λ  = (λ2, λ3)T and ai is the ith column 
of A, then we consider 

 

p̂2 + p̂4 ! p̂5 ! p̂7  = n2
n+!Ta2

+
n4

n+!Ta4
!

n5
n+!Ta5

!
n7

n+!Ta7
 = 0 and  

p̂2 + p̂6 ! p̂3 ! p̂7  = n2
n+!Ta2

+
n6

n+!Ta6
!

n3
n+!Ta3

!
n7

n+!Ta7
 = 0. 
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These two non-linear equations can be solved simultaneously for λ2 and λ3 to obtain the 
MLE of p. Other approaches for obtaining the MLE are available. See, for example, 
Bergsma et al. (2009). However we do not discuss such approaches here. 

We find λ2 = λ3 = 11.040 and so p̂T  = (0.130, 0.236, 0.057, 0.070, 0.057, 0.070, 
0.249, 0.130). For the data here Cochran’s Q = 8.470 with chi-squared p-value 0.015. 
Using the p̂  just given we find, after 100,000 simulations, that the bootstrap p-value is 
0.021. As above tests based on Q may be considered nonparametric, and so have the 
advantage of making few assumptions. Observe that unlike the t = 2 case discussed above 
Q ≠ X2 when t = 3. We will not compare Q and X2 here. 
 
 
4. The Bhapkar and Somes approximation 

 
Depending on the counts ni, when t > 2 the maximum likelihood estimates of the 

cell probabilities may fail to converge. In such cases approximate p-values due to 
Bhapkar and Somes (1977) can be used. In their Table 2 they show that a 2

φθχ  

distribution gives better sizes for Q than a 2
3χ  distribution for t = 4. As they only used 

1,000 simulations some of their test sizes are slightly in error. Further, they only 
presented values for n = 100. Our Table 4 below looks at n = 10, 30, 50, 100 and 1,000 
with nominal test size 5% and uses 100,000 Monte Carlo simulations. The asymptotic 
distribution of Q does not appear to be 2

3χ . Clearly the 2
φθχ  approximation does better 

than 2
3χ  for n = 30, 50, 100 and 1,000. For n = 10 the discrete nature of the distribution of 

Q can defeat both approximations. See, for example, the results for P3 and P4. The 2
φθχ  

approximation is reasonable for n > 30 and excellent for n > 50. 
 
Table 4. Test sizes for nominal 5% sizes for 2

3χ  and 2
φθχ  approximations 

Simulation n = 10 n = 30 n = 50 n = 100 n = 1000 
Approximation 2

3χ  2
φθχ  2

3χ  2
φθχ  2

3χ  2
φθχ  2

3χ  
2
φθχ  

2
3χ  

2
φθχ  

P1 0.070 0.043 0.070 0.047 0.072 0.048 0.070 0.048 0.072 0.049 
P2 0.074 0.043 0.075 0.047 0.076 0.048 0.076 0.050 0.076 0.050 
P3 0.057 0.038 0.061 0.045 0.061 0.047 0.061 0.048 0.062 0.050 
P4 0.061 0.040 0.065 0.047 0.065 0.047 0.065 0.048 0.065 0.050 
P5 0.085 0.043 0.083 0.048 0.084 0.049 0.084 0.048 0.083 0.049 
P6 0.085 0.044 0.086 0.049 0.086 0.049 0.087 0.050 0.088 0.050 
P7 0.046 0.034 0.050 0.045 0.052 0.048 0.052 0.049 0.052 0.050 
P8 0.046 0.034 0.052 0.046 0.053 0.048 0.053 0.049 0.053 0.050 

 
The parameters θ and φ in 2

φθχ  are estimated by  
 

2
12 /)1(ˆ SSt −=θ  and 2

2
1 /ˆ SS=φ  

 
where 
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S1 = tr(BV*) and S2 = tr(BV*)2 

 
in which, putting Tjk = total number of simultaneous ‘successes’ (‘1’ or ‘F’ above) in the 
jth and kth treatments, for j and k = 1, …, t, pjk = Tjk/n, p  = ∑ =

t

i ii tp
1
/ , V* = (pjk – 2p ) 

and B = It – T
tt11 /t. 

In Table 4 we use a subset of the p given in Bhapkar and Somes (1977, Table 1). 
There are a few obvious typographical errors in this table. We look at p = (p1, …, p16)T 
defined by P1, …, P8 where  
 

P1 = (.03, .03, .03, .03, .03, .03, .03, .29, .29, .03, .03, .03, .03, .03, .03, .03), 
P2 = (.03, .03, .03, .29, .03, .03, .03, .03, .03, .03, .03, .03, .29, .03, .03, .03), 
P3 = (.04, .04, .04, .04, .04, .04, .04, .22, .22, .04, .04, .04, .04, .04, .04, .04), 
P4 = (.04, .04, .04, .22, .04, .04, .04, 04, .04, .04, 04, .04, .22, .04, .04, .04), 
P5 = (.02, .02, .02, .02, .02, .02, .02, .36, .36, .02, .02, .02, .02, .02, .02, .02), 
P6 = (.02, .02, .02, .36, .02, .02, .02, 02, .02, .02, .02, .02, .36, .02, .02, .02), 
P7 = (.07, .07, .07, .07, .07, .07, .07, .01, .01, .07, .07, .07, .07, .07, .07, .07) and 
P8 = (.07, .07, .07, .01, .07, .07, .07, .01, .01, .07, .07, .07, .01, .07, .07, .07). 

 
We estimated θ and φ from the simulated data sets for each of the 100,000 Monte 

Carlo trials. It isn’t apparent that Bhapkar and Somes (1977) did this. The results in Table 
4 are typical of other scenarios we have investigated. Even for n = 10,000 the 2

3χ  
approximation can be poor. Notice that, as required by H0, πA = πB = πC = πD for P1, …, 
P8. Wallenstein and Berger (1981, Table 2) also give test sizes for P2 and P6. Their 
results are similar to ours but again they only use 1,000 simulations. 

In the two examples of sections 2 and 3 the chi-squared and bootstrap p-values for 
Q are similar; see Table 5. Although it is not a dramatic effect, we see that the p-value 
from 2

φθχ  is equal to or closer to the bootstrap p-value than 2
1−tχ  is. We would expect 

sometimes that 2
1−tχ , 2

φθχ  and bootstrap would not agree on significance at a given level. 
In such cases we suggest using the bootstrap p-value. 
 
Table 5. P-values for Q for the examples of sections 2 and 3 
Example ! t!1

2  2
φθχ  Bootstrap 

1, with t = 2 0.035 0.035 0.041 
2, with t = 3 0.015 0.021 0.021 

 
It is apparent from Table 4 that the Bhapkar and Somes (1977) approximation can 

be safely used when n > 30 and the MLEs have convergence problems. For n < 30 and 
MLEs having convergence problems it also appears from Table 4 that the Bhapkar and 
Somes (1977) approximation, while not always having the correct test size, is a better 
approximation than the ! t!1

2  approximation for obtaining p-values. 
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5. Two-way cross-classifications 
 

Suppose 33 consumers were asked to rate two coffees X and Y for their flavour 
on a three point ‘just right’ category scale: too weak, just right and too strong. Table 6 
gives a cross classification of their responses. Further discussion of ‘just right’ data is 
given, for example, in Lawless and Heymann (2010, 334-339). 
 
Table 6. Cross-classification of coffee responses 
Coffee Y\Coffee X Too weak Just right Too strong 

Too weak 4 (n1) 10 (n2) 4 (n3) 
Just right 3 (n4) 3 (n5) 4 (n6) 

Too strong 1 (n7) 2 (n8) 2 (n9) 
 
Table 7. Alternative display of coffee responses 

i 1 2 3 4 5 6 7 8 9 
Coffee X 1 1 1 2 2 2 3 3 3 
Coffee Y 1 2 3 1 2 3 1 2 3 

ni 4 10 4 3 3 4 1 2 2 
 

Date like that in Table 6 are discussed, for example, in Lawless and Heymann 
(2010, pp334-339). The marginal frequencies for coffee X are (8, 15, 10), and for coffee 
Y are (18, 10, 5). Barplots of these frequencies would give a visual comparison of these 
two sets of marginal frequencies, indicating the flavour of coffee Y is too weak. To more 
formally check marginal homogeneity of the responses we can calculate the Stuart (1955) 
statistic, which, for two treatments, and three categories may be given as 
 

S = 
)(2 133221

2
13

2
22

2
31

cccccc
dcdcdc

++
++  = 6.069 here, 

 
where c1 = (n2 + n4)/2, c2 = (n3 + n7)/2, c3 = (n6 + n8)/2, d1 = n2 + n3 – n4 – n7, d2 = n4 + n6 
– n2 – n8 and d3 = n7 + n8 – n3 – n6. Using the 2

2χ  approximation S has a p-value of 0.048. 
A bootstrap p-value can be calculated as above. First, rewrite Table 6 as in Table 7. 

In Table 7 we have coded too weak as ‘1’, just right as ‘2’ and too strong as ‘3’. 
The marginal homogeneity null hypothesis is H0: 

11 XY ππ −  = 0 and 
22 XY ππ −  = 0. In H0, 

Yj and Xj, j = 1, 2 refer to each coffee being scaled or scored as 1 or 2. Thus, for example, 
! X2  is the probability coffee X is scaled as 2: just right.  

To find the MLEs of the pi one approach, as above, involves simultaneously 
solving the two non-linear equations 
 

7432 ˆˆˆˆ pppp −−+  = 0 and 8264 ˆˆˆˆ pppp −−+  = 0 
 
for λ2 and λ3 where ip̂  = ni/(n + λTai), in which ai, as above, is the ith column of the 
constraint matrix A given by 
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A = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−

−−

010101010
001001110

. 

 
We find λ2 = 22.722 and λ3 = 6.570 from which 
 

Tp̂  = (0.121, 0.203, 0.072, 0.178, 0.091, 0.101, 0.097, 0.076, 0.061). 
 
The bootstrap p-value is 0.042, which is not too different from the chi-squared p-value 
0.048 given above. There is some evidence the marginal distributions of the two coffees 
differ, in agreement with the visual inspection of the marginal frequencies.  

Had the MLE iteration not converged a bootstrap p-value would no longer be 
available. The Bhapkar and Somes approximation is not available because it has only 
been developed and validated for binary data. The ! t!1

2  approximation is still available 
even if we may prefer something more robust.  

Our example here is for two products scaled on three categories. Extensions to 
more products and/or more categories are possible. See, for example, Rayner and Best 
(2001, section 6.8) 

Suppose we now consider testing for symmetry. We will use the coffee data 
example. The maximum likelihood estimator p̂  under the null symmetry hypothesis has 
elements given by  
 

1p̂  = n1/n, 2p̂  = (n2 + n4)/(2n), 3p̂  = (n3 + n7)/(2n), 4p̂  = 2p̂ , 

5p̂  = n5/n, 6p̂  = (n6 + n8)/(2n), 7p̂  = 3p̂ , 8p̂  = 6p̂ , 9p̂  = n9/n. 
 
Clearly, when testing for symmetry no iteration is needed. We find 
 

Tp̂  = (4/33, 13/66, 5/66, 13/66, 1/11, 1/11, 5/66, 1/11, 2/33). 
 
We can now proceed as before by generating many sets of random multinomial counts 
using a multinomial distribution with n = nii=1

9
!  and p̂  as parameters. For each such set 

of counts calculate the Bowker (1948) statistic  
 

B = 2{(n2 – 2p̂n )2/( 2p̂n ) + (n3 – 3p̂n )2/( 3p̂n ) + {(n6 – 6p̂n )2/( 6p̂n )} = )ˆ/()ˆ( 2
9

1
i

i
ii pnpnn∑

=

−  

 
and find a bootstrap p-value as the proportion of the statistics greater than or equal to 
6.236, the value of B for the Table 6 data. We find the bootstrap p-value to be 0.091 
compared with the usual chi-squared p-value of 0.101. Following Rayner and Thas 
(2005) we also note that 2(n2 – 2p̂n )2/( 2p̂n ) = 3.769 and so this is the major component of 
the B value for the Table 6 data. The chi-squared p-value for this component is 0.052 
with corresponding bootstrap p-value 0.044. As above, as the chi-squared p-value is an 
approximation and we suggest routinely validating it with the bootstrap p-value, 
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particularly for sparse tables. Simonoff (2003, p.288) gives a sparse table where use of 
the chi-squared approximation for the B test gives a p-value of 0.545, while our bootstrap 
p-value is 0.036.  

We previously noted that for the Table 6 data coffee Y has a too weak flavour. 
Although we do not give details here, the test for conditional symmetry as defined, for 
example, in Simonoff (2003, p.301), is not significant for the Table 6 with a p-value of 
0.854.  

The reader with an r × r table with r > 3 should be able to adapt the above 
discussion. 
 
 
6. Conclusion 

 
We have explained how to obtain a bootstrap p-value for Cochran’s Q and 

illustrated its use in examples involving two and three treatments. For some data sets the 
chi-squared p-values for Q commonly given in software can be inaccurate and so our 
bootstrap p-value can be used to validate the accuracy of the chi-squared p-values. 
Sometimes an approximation due to Bhapkar and Somes (1977) is needed. We hope that 
our explanation would guide the reader who had four or more treatments to compare. 
Brief illustrations of how to employ the same bootstrap technique to cross-classified data 
were also given. Our bootstrap p-values are not permutation p-values or conditional p-
values and rely on few assumptions. Our approach could be labelled as nonparametric. 
Finally we note that some bootstrap procedures are becoming more accessible and, for 
example, recent versions of the SPSS statistical software package have some bootstrap 
procedures available. 
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