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Statistical Modeling of MODIS Cloud Data Using the Spatial Random Effects
Model

Aritra Sengupta∗ Noel Cressie∗† Richard Frey‡ Brian H. Kahn§

Abstract

Remote sensing of the earth by satellites yields datasets that can be massive in size. To overcome
computational challenges, we make use of the reduced-rank Spatial Random Effects (SRE) model
in our statistical analysis of cloud mask data from NASA’s Moderate Resolution Imaging Spectrora-
diometer (MODIS) instrument on board NASA’s Terra satellite, launched in December 1999. A set
of retrieval algorithms has been developed by members of theMODIS atmospheric team for detect-
ing clouds. Clouds play an important role in climate studies, and hence an accurate quantification of
the the spatial distribution of clouds is necessary. In thispaper, we build a statistical model for the
underlying clear-sky-probability (or conversely, the cloud-probability) process, and we quantify the
uncertainty in our predictions. We consider a hierarchicalstatistical model for analyzing the cloud
data, where we postulate a hidden process for the probability of clear sky that makes use of the SRE
model. Its advantages are considerable: It can represent many types of spatial behavior, it permits
fast computations when datasets are very large, and it has attractive change-of-support properties.

Key Words: empirical hierarchical model (EHM); massive dataset; optimal spatial prediction;
spatial GLMM; uncertainty quantification

1. Introduction

Clouds are generally characterized by higher reflectances and lower temperatures than
Earth’s surface (Ackerman et al., 2010). They play an important role in climate research
and must be accurately described in order to properly assessclimatic processes and cli-
mate change. The accuracy of remote sensing retrievals of several atmospheric quantities
can be affected by cloud contamination of the atmospheric column. If it is highly cloud-
contaminated, no retrievals are reported for atmospheric quantities that require a clear sky
(e.g., aerosols). The Moderate Resolution Imaging Spectroradiometer (MODIS) offers the
opportunity for multispectral approaches to cloud detection.

Our interest is in the MODIS instrument on board the Terra satellite, which was launched
by NASA in December 1999. The Level-2 MODIS cloud mask product (Platnick et al.,
2003) is produced for pixel arrays at a spatial resolution of1 km×1 km. Each MODIS
product file covers data collected over a five-minute time interval, which is called a granule,
that contains data on approximately 2.75× 106 pixels of 1 km×1 km resolution. In this
proceedings paper, a granule of Terra MODIS data will be usedto illustrate our statistical-
modeling approach. The granule corresponds to June 29, 2006, 12:45 UTC. A true-color
composite image of the granule is shown in Figure 1. The processing of this granule is
available at the Goddard Data and Information Services Center (DISC) (seehttp://daac.
gsfc.nasa.gov/).
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Figure 1: An example of a granule image obtained by the MODIS instrument on board
NASA’s Terra satellite (June 29, 2006, 12:45 UTC). The insetshows the location of the
granule on a world map. (Source:modis-atmos.gsfc.nasa.gov.)

The MODIS instrument collects data on spectral radiances that are then processed at
NASA using the MODIS cloud detection algorithm (e.g., Platnick et al., 2003; Ackerman
et al., 1998, 2010) to produce a Level-2 cloud mask classification (MOD06 product). The
MODIS cloud detection algorithm is based on a number of spectral tests; different tests can
have different results for a particular pixel. The results from all tests are then combined to
determine an overall “confidence,”Q(s), for a pixel located ats to be clear (i.e., cloud free).
If Q(s) = 1, it signifies high confidence for the pixel to be clear, and ifQ(s) = 0, it signifies
high confidence for the pixel to be cloudy. Then, “clear-sky restoral” tests are performed
that check for unambiguous clear-sky signals. We denote MODIS’s cloud mask product as
Q(·), and we review the algorithm that results inQ(·) in Section 2.

In this proceedings paper, we propose a hierarchical spatial statistical model for ana-
lyzing MODIS cloud data. Our goal is to produce optimal spatial-prediction maps for the
underlying clear/cloudy process, along with measures of prediction uncertainties. We con-
centrate on the particular granule discussed above (see Figure 1). Our data are the MODIS
cloud mask product,Q(·), which is available on 1 km×1 km pixels. Henceforth, each of
these pixels will be called a “basic areal unit” (BAU). The number of BAUs in the granule
shown in Figure 1 isN = 2,748,620.

In general, we assume that we have data forn BAUs, wheren≤ N. For the particular
granule that we consider in this paper, we haven=N (i.e., there are no BAUs without data).
A full-rank spatial-statistical modeling approach for thegranule would require specifying
anN×N covariance matrix for the underlying spatial (transformed) clear-sky-probability
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process. To produce optimal spatial statistical predictions, we would need to invert the
N×N covariance matrix, something that is not computationally feasible forN larger than
several thousand.

The computational bottleneck that arises due to the computational cost of inverting
the N×N covariance matrix referred to above, is often referred to asa “big N” problem.
When the data appear to be Gaussian, reduced-rank-modelingapproaches have been devel-
oped to deal with this computational challenge (e.g., Wikleand Cressie, 1999; Wikle et al.,
2001; Cressie and Johannesson, 2006, 2008; Banerjee et al.,2008; Stein, 2008; Lopes et al.,
2008). For data appearing to come from the exponential family of distributions, Lopes et al.
(2011) took the hierarchical generalized linear mixed modeling framework proposed by
Diggle et al. (1998), and they introduced a new class of spatio-temporal models using a
latent factor-analysis structure; their fully Bayesian model allows for dimension reduction
and hence fast computations. A number of spatial and spatio-temporal applications for
very-large-to-massive datasets center around these reduced-rank representations of a hid-
den continuous Gaussian process (e.g., see the review in Wikle, 2010).

To solve the “bigN” problem that arises in our application, we shall use the reduced-
rank modeling approach developed by Cressie and Johannesson (2006, 2008), although our
data are bimodal and constrained to[0,1]. Our modeling approach is a combination of the
GLMM framework of Diggle et al. (1998) and use of the Spatial Random Effects (SRE)
model of Cressie and Johannesson (2006, 2008), although they developed it for Gaussian
data with a continuous spatial index. We take an empirical hierarchical modeling (EHM) ap-
proach and, unlike a Bayesian hierarchical modeling (BHM) approach, we treat the model’s
parameters as fixed but unknown. We estimate these parameters using an EM algorithm
(e.g., Dempster et al., 1977). Computation of optimal spatial predictions are feasible, and
no prior specification of parameters is needed. For a more complete discussion of the EHM
and BHM approaches, see Cressie and Wikle (2011, Chapter 2).

Cressie and Johannesson (2006, 2008) developed the SpatialRandom Effects (SRE)
model for optimal spatial predictions from continuous, symmetric data with a continuous
spatial index, a methodology that is known as Fixed Rank Kriging (FRK). Cressie and
Johannesson (2008) took an EHM approach and gave a method-of-moments estimator for
the parameters of the SRE model, and Katzfuss and Cressie (2009) gave an EM algorithm
to obtain maximum-likelihood (ML) estimates. A Bayesian version of the SRE model is
given in Kang and Cressie (2011). In Sengupta and Cressie (2012a) and Sengupta and
Cressie (2012b), a hierarchical spatial statistical modelthat includes the SRE model as a
component of the process model is developed for big, spatial, discrete, and continuous data.

With regard to applications, the SRE model and the methodologies associated with
it have been successful in analyzing massive remote sensingdatasets (e.g., Cressie and
Johannesson, 2006, 2008; Shi and Cressie, 2007; Kang et al.,2010; Katzfuss and Cressie,
2011). The models were Gaussian and additive. In Sengupta and Cressie (2012b), the
SRE model was used in a hierarchical framework to analyze highly skewed, non-negative,
remotely sensed Aerosol Optical Depth data, where the models were non-Gaussian and
non-additive.

The plan of the rest of this paper is as follows: In Section 2, we describe the MODIS
cloud mask product. Details of the hierarchical spatial statistical model are presented in
Section 3. In Section 4, we analyze the granule of MODIS clouddata shown in Figure 1, us-
ing the modeling framework proposed in Section 3; we produceoptimal-spatial-prediction
maps for the underlying clear-sky/cloudy process, along with maps showing the prediction
uncertainties. Discussion and conclusions follow in Section 5.
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2. MODIS Cloud Mask Product

The MODIS cloud mask algorithm (e.g., Ackerman et al., 1998,2010) identifies different
conceptual domains according to surface type and solar illumination. Once a pixel is as-
signed to a domain, a battery of spectral tests is applied, where each test attempts to detect
the presence of cloud in the pixel, by returning a confidence level for the pixel to be clear,
ranging from 1 (high-confidence clear), to 0 (low-confidenceclear, that is, high-confidence
cloudy). Individual spectral tests are based on an upper andlower bound (see below).

Tests capable of detecting similar conditions are grouped together. Denote the total
number of groups byNG, and assume that there aremi spectral tests within thei-th group;
i = 1, . . . ,NG. For the j-th test within thei-th group, if the observed light radiance falls
below (above) the lower (respectively, upper) bound, then the clear-sky confidence level,
Fi j , is 0 (respectively, 1). A pictorial illustration of such a spectral test in the MODIS cloud
mask algorithm is given in Figure 2: If the observed radianceof the reflected light falls in
the “high-confidence cloudy” region (i.e., below the lower bound), thenFi j is assigned a
value 0 (i.e., cloudy), and if the observed light radiance falls in the “high-confidence clear”
region (i.e., above the upper bound), thenFi j is assigned a value 1 (i.e., clear). When the
observed value falls in the “intermediate” region (i.e., between the lower and upper bounds),
Fi j is assigned a value between 0 and 1 using linear interpolation; see Figure 2.

Figure 2: A pictorial illustration of a MODIS cloud mask spectral test, which is based on
an upper and lower bound.

For a given pixel, a minimum confidence level is determined for the i-th group as:

Gi = min
{

Fi j : j = 1, . . . ,mi
}

, for i = 1, . . . ,NG. (1)

The overall clear-sky confidence value,Q, for that pixel, is then defined as:

Q≡

{

NG

∏
i=1

Gi

}1/NG

. (2)
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This approach is clear-sky conservative in the sense that ifone of the tests concludes that
the pixel is cloudy (i.e., if oneFi j = 0), then the overall clear-sky confidence value is 0.

The Q-values obtained above (called the “initial” Q-values) are then subject to “clear-
sky restoral tests” (e.g., Ackerman et al., 2010; Heidinger, 2010). These tests check for
unambiguous clear-sky signals. For example, spectral tests might indicate that a pixel lo-
cated ats is cloudy (i.e.,Q(s) = 0); but, if all its neighboring pixels are clear, then the pixel
is restored as “probably clear” by settingQ(s) = 0.96. Here “cloudy,” “probably cloudy,”
“clear,” and “probably clear” are the possible classifications for a pixel, and they are based
on thresholding the Q-values (e.g., Platnick et al., 2003).There are other clear-sky restoral
tests for different land surfaces, coastal waters, and sun glint. Final Q-values are obtained
after applying the clear-sky restoral tests; see Figure 3 for the difference between initial and
final Q-values obtained for the granule shown in Figure 1. Noticeable in Figure 1 is a strip
of sun glint reflecting off the ocean, which appears in the toppanel of Figure 3 (initial Q-
values) but not in the bottom panel (final Q-values). Thus, restoral tests are important, since
there are geophysical conditions and viewing geometries where the cloud-mask algorithm
tends to over-predict clouds (e.g., regions with sun-glint).

In this proceedings paper, we analyze the spatial dataset offinal Q-values(denoted
by Q(·)), which we refer to as theMODIS cloud data. In the next section, we develop a
hierarchical spatial statistical modeling framework thatis used in Section 4 for predicting
the underlying clear-sky-probability process, given the data. Our approach also allows us
to quantify the uncertainty associated with our predictions. These models allow for spatial
change-of-support, where our goal is to predict cloud-fraction at any desired resolution
coarser than 1 km×1 km; see the discussion in Section 5.

3. Hierarchical Model for the MODIS Cloud Data

In this section, we propose an empirical hierarchical modelfor final Q-values obtained
from the MODIS cloud mask product. We index the the set of BAUswith data asDO ≡
{s1, . . . ,sn}, and the complimentary set of BAUs without data asDU ≡ {sn+1, . . . ,sN}.
Hence, our data are{Q(si) : i = 1, . . .n} (see Section 2), where recall that for the gran-
ule shown in Figure 1, we haven= N = 2,748,620. We introduce a hidden variableW(si),
that denotes the state of a pixel, namely 0 or 1 (cloudy or clear), located atsi ; i = 1, . . . ,N.
Then we assume a hidden spatial processY(·) that controls the probability ofW(·) being 1,
where bothW(·) andY(·) are defined over the entire spatial domain,D ≡ DO∪DU .

Our hierarchical spatial statistical model consists of a data model and a two-stage pro-
cess model. We model the pixel-level conditional probabilities,{[Q(si)|W(si), parameters] :
i = 1, . . . ,n}, using a “zero-one inflated” Beta distribution. Conditional onW(si) = 0, Q(si)
will be modeled using a zero-inflated Beta distribution; andconditional onW(si) = 1, Q(si)
will be modeled using a one-inflated Beta distribution. The zero-one inflation deals with
those{Q(si)} that are exactly zero or one. Then ourdata modelis: For i = 1, . . . ,n, inde-
pendently,

[Q(si)|W(si) = 0,P0,α0] =

{

P0I(Q(si) = 0)+ (1−P0) f1,α0(Q(si))

}

; (3)

and, fori = 1, . . . ,n, independently,

[Q(si)|W(si) = 1,P1,α1] =

{

P1I(Q(si) = 1)+ (1−P1) f1,α1(Q(si))

}

. (4)

Section on Statistics and the Environment – JSM 2012

3115



Figure 3: Initial Q-values (top panel) and final Q-values (bottom panel) corresponding to
the granule shown in Figure 1.

In (3) and (4),

fa,b(Q(si)) =
Γ(a)Γ(b)
Γ(a+b)

Q(si)
a−1(1−Q(si))

b−1I(0< Q(si)< 1), (5)

which is the density of a Beta(a,b) random variable, wherea> 0 andb> 0. The parameters
P0, α0, P1, andα1 in the data model are unknown and need to estimated.

Next, we specify thetwo-stage process model. “Process model 1” represents the distri-
bution of{W(si) : i = 1, . . . ,N}, conditional on the hidden spatial processY(·). We assume
a set of independent Bernoulli random variables forprocess model 1: For i = 1, . . .N, inde-
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pendently,

W(si)|Y(·)∼ Bernoulli

(

exp(Y(si))

1+exp(Y(si))

)

, (6)

where recall thatW(si) = 1 (respectively, 0) means that the pixel located atsi is clear (re-
spectively, cloudy). ThenY(·) is the logit transform of the clear-sky-probability process,
p(·), and conversely,

p(·) =

(

exp(Y(·))
1+exp(Y(·))

)

. (7)

At the second stage of the process model (“process model 2”),we use the reduced-rank
Spatial Random Effects (SRE) model (e.g., Cressie and Johannesson, 2006, 2008) to define
the smooth spatial dependence inY(·). Process model 2is:

Y(si) = X(si)
>βββ+S(si)

>ηηη+ξ(si); i = 1, . . .N, (8)

whereX(si) is a vector of known covariates;βββ denotes the set of unknown regression co-
efficients; S(·) ≡ (S1(·), . . . ,Sr(·))

> is a vector ofr (not necessarily orthogonal) spatial
basis functions, wherer << N is fixed;ηηη is anr-dimensional vector of spatial random ef-
fects assumed to have a Gau(0,K) distribution, where the covariance matrixK is unknown
and needs to be estimated;ξ(·) is a fine-scale-variation process modeled as independent
Gau(0,σ2

ξ) random variables, whereσ2
ξ is unknown and needs to be estimated.

4. Spatial Statistical Analysis of MODIS Cloud Data

In this section, we carry out a spatial statistical analysisof the granule of MODIS data
shown in Figure 1, using the hierarchical model specified in Section 3. For the purpose of
this analysis, we selected as basis functions,S(·), the bisquare functions (e.g., Cressie and
Johannesson, 2006, 2008). The generic form of a bisquare function is,

b(s) =

{

1−

(

||s− c||
w

)2
}2

I(||s− c||< w), (9)

wherec is the center of the basis function,I(A) is an indicator function that is 1 ifA is
true, and 0 otherwise. Centers{ci} in D are usually chosen according to a multi-resolution
scheme (e.g., a quad-tree). Then the “aperture”w is given by,

w= 1.5×shortest great arc distance between like-resolution center points

A pictorial illustration of the bisquare basis function is given in Figure 4. Other choices for
basis functions are also possible (e.g., EOFs in Wikle and Cressie, 1999; W-wavelets in Shi
and Cressie, 2007).

As in Cressie and Johannesson (2008), we employ several resolutions of the basis func-
tions to capture the different scales of spatial variability; here we use three scales of res-
olutions to obtain{bi(s) : i = 1, . . . ,(r1+ r2+ r3)}, wherer1 = 12, r2 = 34, andr3 = 102,
are the number of basis functions at the three resolutions. The centers of the bisquare basis
functions were selected using a quad-tree structure (e.g.,Cressie and Kang, 2010), ensuring
that the centers for the different resolutions do not match.The number of basis functions
were determined to ensure full coverage of the spatial domain. We also included centers
of the bisquare function outside the study region to accountfor the boundary effects (e.g.,
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Figure 4: A two-dimensional bisquare function as a 3-D plot (left) and as an image plot
(right).

Cressie and Kang, 2010). We further standardized the bisquare functionbi(·) to obtain the
i-th basis function,

Si(s)≡
bi(s)−aves∈D (bi(s))

{vars∈D (bi(s))}
1/2

; i = 1, . . . ,(r1+ r2+ r3), (10)

where aves∈D(·) and vars∈D(·) are spatial moments taken over the domain of interestD. The
locations of the basis-function centers for all three resolutions are shown in Figure 5.

Consider now the covariatesX(·) in (8). We include the vector 111 and latitude as a
covariate. Further, instead of using the coarsest-resolution S1(·), . . . ,Sr1(·) as spatial basis
functions in the SRE model, we use them as covariates inX(·) (e.g., Shi and Cressie, 2007).

The second term of (8) involves anr-dimensional vector,S(·), of spatial basis functions,
which in our case is made up of the bisquare functions at the second and the third resolutions
(see Figure 5). Now, there are regions in the study region that are affected by sun-glint (see
Figure 1), which the MODIS cloud algorithm attempts to account for by doing clear-sky
restoral tests. Nevertheless, the presence or absence of sun glint is a source of variability
that exists for the granule we consider. Hence, we include the sun-glint indicator flag (which
takes a value 1 if a pixel is affected by sun glint, and is 0 otherwise) as a column inS(·).
That is,r = 1+ r2+ r3 = 1+34+102= 137.

Recall that our goal is to produce optimal spatial-prediction maps for the underlying
clear-sky-probability process, along with measures of prediction uncertainty. This can
be achieved by generating samples from the predictive distribution, [W,Y|QO,θθθ], where
QO ≡ (Q(s1), . . . ,Q(sn))

>, W ≡ (W(s1), . . . ,W(sN))
>, Y ≡ (Y(s1), . . . ,Y(sN))

>, andθθθ ≡
{

P0,α0,P1,α1,βββ,K,σ2
ξ

}

. (Recall that for the data shown in Figure 3,n = N, and hence
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Figure 5: Centers of the basis function; ’o’, ’+’, and ’x’ are use to distinguish the three
scales of resolution.

the set of pixels where there are no observations,DU , is empty.) This can be achieved
by equivalently generating samples from the predictive distribution, [W,ηηη,ξξξ|QO,θθθ], where
ξξξ ≡ (ξ(s1), . . . ,ξ(sN))

>. Using Bayes’ Theorem, this predictive distribution is

[W,ηηη,ξξξ|QO,θθθ] ∝ [QO|W,θθθ][W|ηηη,ξξξ,θθθ][ηηη,ξξξ|θθθ]. (11)

However, due to the unknown proportionality constant (which is a function of the dataQO),
the predictive distribution is not available in closed form, nor are the parameters,θθθ, known.
Here we use a combination of EM estimation ofθθθ to yield θ̂θθEM, and an MCMC algorithm
(e.g., Robert and Casella, 2004) to yield samples from the (empirical) predictive distribution
[W,ηηη,ξξξ|QO,θθθ], whereθ̂θθEM is substituted in forθθθ.

The EM algorithm is employed for estimation of the parameters θθθ; for more details on
the methodology, see the review in McLachlan and Krishnan (2008). For the hierarchical
model described in Section 3, the process vectorW, the random effectηηη, and the fine-
scale-variation componentξξξ are not observed, but can be considered as missing data. The
EM algorithm involves iterating between an E (expectation)step and an M (maximization)
step. Here, the E-step is the most problematic, which we resolve by using Laplace approx-
imations to evaluate the expectations. In the M-step, maximization with respect to (wrt)
P0, P1, K, andσ2

ξ is easy and is available in closed form. However, since maximization
wrt α0, α1, andβββ are not available in closed form, we use a one-step Newton-Raphson
update in each of the iterations of the EM algorithm. Technical details of the EM algorithm
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used in this and related problems can be found in Sengupta (2012, Ch. 4) and Sengupta
and Cressie (2012a,b). Estimates,θ̂θθEM, obtained for the MODIS cloud data are given in
Sengupta (2012, Ch. 4).

Once we obtain the parameter estimates,θ̂θθEM, we substitute them into the MCMC al-
gorithm to obtain samples from the (empirical) predictive distribution, [W,ηηη,ξξξ|QO, θ̂θθEM].
We generated 10,000 MCMC samples, after discarding 1,000 samples as burn-in. Because
of storage issues involved with storing theN-dimensional vectorξξξ, we saved every fifth
MCMC sample generated. The EM algorithm converged after 14 iterations, and the com-
putational time for the EM algorithm was 27.76 minutes. The computational time for the
MCMC was 12.73 hours. All the computations were performed ona dual quad core 2.8
GHz 2x Xeon X5560 processor, with 96 Gbytes of memory.

Figure 6: Maps showing the predictive mean (top-left panel), the pixelwise predictive
standard-deviation (top-right panel), the pixelwise 2.5 percentile (bottom-left panel) and
the pixelwise 97.5 percentile (bottom-right panel) for thepredictive distribution of the clear-
sky-probability process.

Using the MCMC samples refered to above, we computed the predictive mean and
the predictive standard deviation of the clear-sky-probability process,p(si), given by (7).
We also obtained the pixelwise 2.5 and 97.5 percentiles of each of theN elements ofp ≡
(p(s1), . . . , p(sN))

>. These summaries were obtained from[p|QO, θ̂θθEM]. Figure 6 shows
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maps of the pixelwise predictive mean, the pixelwise predictive standard deviation, and the
pixelwise 2.5 and 97.5 percentiles, respectively; the latter two quantities are the end-points
of a pixelwise 95% prediction interval.

5. Discussion

In this proceedings paper, we have developed a hierarchicalspatial statistical model for
analyzing a remote sensing dataset on clouds from NASA’s MODIS instrument. The data
are at a very fine scale of resolution (1 km×1 km), and they are massive in size (n =
2,748,620). However, use of the reduced-rank SRE model to capture the spatial covariance
of the latent processY(·) allows for very fast computations. For such a massive dataset,
we were able to perform EM estimation in 27.76 minutes and then implement the MCMC
algorithm in 12.73 hours.

We took an empirical hierarchical modeling (EHM) approach,where the unknown
model parameters were estimated using an EM algorithm. Alternatively, one could take
a Bayesian hierarchical modeling (BHM) approach, where a prior distribution is put on the
parameters. In the context of the SRE model, Kang and Cressie(2011) developed a “Givens
angle prior” forK, which could be adapted to the cloud data in much the same way as was
done for count data in Sengupta and Cressie (2012b). They found that while the prediction
intervals obtained using an EHM approach tended to be too liberal when compared to those
using a BHM approach, EHM was an order of magnitude faster.

Within the hierarchical-modeling framework that we developed in this article, we used
the SRE model to define an underlying Gaussian field for the hidden processY(·). These
models do not rely on specifying a spatial-weights matrix, and no assumptions of homo-
geneity, stationarity, or isotropy were made. The SRE modelused forY(·) is particularly
adept at handling change-of-support, which involves inferring cloud fraction at any desired
scale coarser than 1 km×1 km.

To our knowledge, this is the first attempt to develop a hierarchical spatial statistical
model for a cloud dataset at such a fine resolution. The spatial model developed here could
be extended to a spatio-temporal setting that might be useful for the evaluation of climate
model processes, as well as for improvements in their subgrid-scale physical parameteriza-
tion. In the long term, we would like to develop data-fusion methodology to incorporate
cloud data (e.g., fuse water vapor from AIRS with cloud data from MODIS).
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