MIMO block spread OFDMA system for next generation mobile communications

Yiwei Yu
University of Wollongong

2008

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
MIMO Block Spread OFDMA System for
Next Generation Mobile Communications

A thesis submitted in partial fulfilment of the requirements for the award of the
degree

Master of Engineering by Research

from

UNIVERSITY OF WOLLONGONG

by

Yiwei Yu
Master of Engineering Studies

School of Electrical, Computer and Telecommunications Engineering

March 2008
Statement of Originality

I, Yiwei Yu, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Master of Engineering - Research, in the School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Yiwei Yu

March 26, 2008
Contents

Acronyms

Abstract

Acknowledgments

1 Introduction

1.1 Research objectives ... 2

1.2 Thesis organization ... 4

1.3 Contributions ... 5

1.4 Publication ... 6

2 Overview of 4G

2.1 Evolution towards 4G ... 8

2.1.1 History of wireless communications 9

2.1.2 4G features .. 10

2.2 Modulation techniques for 4G 13

2.2.1 Multicarrier systems 13

2.2.2 OFDM ... 15
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>OFDM spectrum with four subcarriers.</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>OFDM modulator and demodulator.</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Two possible strategies for allocating subcarrier groups in an OFDMA system.</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Spread spectrum modulator and demodulator.</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>MC-CDMA modulator.</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>MC-DS-CDMA modulator.</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Block diagram for the convolutional interleaver.</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Block diagram for the convolutional deinterleaver.</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Block diagram of a block spread OFDM system model.</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Diagram of a MIMO wireless transmission system.</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>Transmitter block diagram for Alamouti STBC.</td>
<td>38</td>
</tr>
<tr>
<td>3.6</td>
<td>Receiver block diagram for Alamouti STBC.</td>
<td>40</td>
</tr>
<tr>
<td>3.7</td>
<td>Block diagram for Alamouti STBC with OFDM system.</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Block spread STC-MIMO OFDMA transmitter model.</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Process of BS-OFDMA implementation.</td>
<td>50</td>
</tr>
</tbody>
</table>
4.3 Block spread OFDMA signal model in the frequency domain. 51

4.4 Process in the time domain to implement STC-MIMO. 52

4.5 Block spread STC-MIMO OFDMA receiver model with one antenna. 54

4.6 Block spread STC-MIMO OFDMA receiver model with two antennas. 56

4.7 The N factor down-sampling for a specific user with index K. 61

5.1 Performance comparison between OFDMA system, STC-MIMO OFDMA system and BS-OFDMA system. 71

5.2 Performance comparison between STC-MIMO OFDMA system, BS-OFDMA system and STC-MIMO BS-OFDMA system. 72

5.3 Performance comparison between OFDMA system, STC-MIMO OFDMA system and BS-OFDMA system with a larger symbol group size. 74

5.4 Performance comparison between STC-MIMO OFDMA system, BS-OFDMA system and STC-MIMO BS-OFDMA system with a larger symbol group size. 75

5.5 Performance comparison between STC-MIMO BS-OFDMA systems with one receive antenna and two receive antennas. 76

5.6 Performance comparison between different linear equalizations. 78
List of Tables

2.1 Mobile communication history and status. 11
2.2 4G visions summary. ... 13
2.3 Parameters in the UMTS and IEEE 802.16 standards. 18

3.1 Alamouti transmit diversity in the frequency domain. 42
3.2 Alamouti transmit diversity implemented in the time domain. ... 42

4.1 STC-MIMO in the time domain 53
4.2 STC-MIMO in the frequency domain 53
4.3 Channels between the transmit and receive antennas 57
4.4 Received signals at the two receive antennas 57

5.1 Parameters for Simulations ... 69
Acronyms

1G First-generation
2G Second-generation
3G Third-generation
4G Fourth-generation

AWGN Additive white Gaussian noise
BER Bit error rate
BPSK Binary phase shift keying
BS-OFDM Block spread OFDM
BS-OFDMA Block spread orthogonal frequency division multiple access
CDMA Code division multiple access
CP Cyclic prefix
DFE Decision feedback equalizer
DFT Discrete Fourier transform
DMB Digital multi media broadcasting

DVB Digital video broadcasting

DVB-C DVB-cable

DVB-H DVB-handheld

DVB-S DVB-satellite television and satellite Internet

DVB-T DVB-terrestrial

EC Eurppean Commission

FFT Fast Fourier transform

FWA Fixed wireless access

GSM Global system for mobile communications

HAP High altitude platforms

ICI Inter-carrier interference

IFFT Inverse fast Fourier transform

ISDB Integrated services ditial broadcasting

ISDB-C ISDB-cable

ISDB-S ISDB-satellite television

ISI Intersymbol interference

M2M Machine-to-machine
MAC Media access control

MAGIC Mobile multimedia; Anytime, anywhere, anyone; Global mobility support; Integrated wireless solution; and Customized personal service

MC-CDMA Multicarrier CDMA

MC-DS-CDMA multicarrier direct sequence CDMA

MIMO Multi-input and multi-out

MISO Multiple input and single output

MLSE Maximum likelihood sequence estimator

MMSE Minimum mean square error

M-PSK M phase shift keying

M-QAM M quadrature amplitude modulation

NLOS non-line-of-sight

OFDM Orthogonal frequency division multiplexing

OOB Out of band

PAN Personal area network

PAPR Peak to average power ratio

PHY Physical layer

PN Pesudo-noise
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P/S</td>
<td>Parallel to serial</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of service</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature phase shift keying</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to noise ratio</td>
</tr>
<tr>
<td>S/P</td>
<td>Serial to parallel</td>
</tr>
<tr>
<td>SS</td>
<td>Spread spectrum</td>
</tr>
<tr>
<td>STBC</td>
<td>Space-time block coding</td>
</tr>
<tr>
<td>STC-MIMO</td>
<td>Space-time coded MIMO</td>
</tr>
<tr>
<td>STTC</td>
<td>Space-time trellis coding</td>
</tr>
<tr>
<td>TCM</td>
<td>Trellis-coded modulation</td>
</tr>
<tr>
<td>TD-SCDMA</td>
<td>Time division synchronous CDMA</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunication system</td>
</tr>
<tr>
<td>WCDMA</td>
<td>Wideband CDMA</td>
</tr>
<tr>
<td>W-CPN</td>
<td>Wireless customer premise network</td>
</tr>
<tr>
<td>WiMAX</td>
<td>Worldwide interoperability for microwave access</td>
</tr>
<tr>
<td>W-LAN</td>
<td>Wireless local area network</td>
</tr>
<tr>
<td>WLL</td>
<td>Wireless local loop</td>
</tr>
<tr>
<td>ZF</td>
<td>Zero-forcing</td>
</tr>
</tbody>
</table>
Abstract

Wireless communications are developing at a booming speed, with plenty of research emerging on the next generation wireless communications. This thesis presents an advanced system for the next generation wireless communications. The proposed system is called block spread OFDMA combined with STC-MIMO (STC-MIMO BS-OFDMA). The system is based on OFDM, which is able to deliver high data rates in highly dispersive channels and is thereby considered as a good candidate of modulation techniques for 4G. The block spreading technique and STC-MIMO scheme are used to provide the system with frequency and spatial diversity, therefore significantly improving system performance.

In this system, there are two stages to combine block spreading and STC-MIMO with OFDMA. Firstly, a novel block spreading approach is applied to effectively achieve frequency diversity in the OFDMA system without any explicit precoding process. The STC-MIMO using Alamouti code is then incorporated on block basis and performs in space and frequency. Accordingly, the signal model and architectures of the proposed system are presented. Two receiver architectures are designed for different STC-MIMO schemes: the receiver with one antenna and receiver with two antennas.
Simulations are carried out to demonstrate the expected performance improvement. The BER performance comparisons indicate that the proposed system can achieve significant performance improvement. The research project also investigates the system performance when different parameters are used. Our results show that using a larger block spreading size and more receive antennas can further improve system performance because of higher order of diversity advantages. In terms of linear equalizations, the MMSE equalization achieves better performance than the ZF equalization.
Acknowledgments

I would like to express my gratitude to my parents and girlfriend for their support in the duration of my research studies.

Next, I sincerely appreciate my principal supervisor, Associate Professor Xiaojing Huang, for all of his academic guidance and helpful advice in doing the research project and in writing the thesis.

I would also like to thank my co-supervisor, Professor Eryk Dutkiewicz, for his counsel, assistance and time devoted for this work.

I gratefully acknowledge the staff of the School of Electrical, Computer and Telecommunications Engineering for providing me with support and convenience during my studies at the University of Wollongong.

Finally, thanks go to my fellow students and friends, who have helped me during my research studies.