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A Bayesian multivariate analysis of children’s
exposure to pesticides

N. Cressiea∗, M. Morarab, B. Buxtonb, N. McMillanb,

W. Straussb, N. Wilsonc

Summary: In this article, we present a multivariate Bayesian analysis of the relationships, in preschool

children, between environmental pathways of exposure to a non-persistent pesticide, chlorpyrifos (CPF), and

its corresponding biomarker in urine, trichloropyridinol (TCP). The analysis uses the three years of data

from the Pesticide Exposures of Preschool Children Over Time (PEPCOT) study. Hierarchical Bayesian

analysis of pathways of exposure has gained popularity in recent years, where missing and censored data

are modeled, and measurement and regression errors are accounted for in a single hierarchical statistical

model. Here we consider multivariate pathways, where CPF and its metabolite TCP are modeled jointly in

the environmental media. In this article, we analyze each of the three years of the study, focusing on the

within-year multivariate nature of the PEPCOT data set. We present the results in a way that allows for an

easy comparison of the fitted parameters over time.

Keywords: BHM; biomarker; environmental media; exploratory data analysis; PEPCOT study.

1. INTRODUCTION

George Casella and Noel Cressie were Past President and President, respectively, of the

American Statistical Association’s Section on Statistics and the Environment (ENVR) in

1998. We believe that George would have appreciated the science, the frequentist exploratory
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data analysis, and the Bayesian inference that underly the analysis below. He will be missed

in so many ways.

Environmental epidemiologic studies aim to characterize relationships between complex

and often subtle human exposures to environmental agents and adverse health effects within

target populations. Over the past 15 years, there has been significant research in developing

biomarkers of exposure in urine and blood, since they can be cost-effective metrics of exposure

along exposure pathways involving, for example, air, water, food, soil, and dust.

The study of Pesticide Exposures of Preschool Children Over Time (PEPCOT) sought

to estimate the changes in aggregate exposures to targeted pesticides for selected preschool

children over a three-year time period (Wilson et al., 2009). The targeted pesticides in the

PEPCOT study included pyrethroid and organophosphate pesticides and acid herbicides,

which are or have been used in homes, schools, and other settings in which young children

might be in contact with them. The PEPCOT study investigated the aggregate exposures

of sibling pairs, living in the same household, to the targeted pesticides. Data were collected

three times over the study period.

Children can be exposed to environmental pollutants through multiple contamination

pathways and multiple routes (inhalation, dietary ingestion, non-dietary ingestion, and

dermal absorption). Compared to adults and other children, young children may have

increased exposures to environmental pollutants, because of what the children eat and drink,

where they spend their time, and what they spend their time doing. Because young children’s

development changes so fast, relatively small differences in ages can result in relatively large

differences in total exposure. Furthermore, the impact of the exposures may be greater on

young children, because of their smaller body masses and immature body systems (Perera,

1977; Schettler, 2001; Mendola et al., 2002; Wigle et al., 2007). Very young children learn

about their environment by exploring not only the appearance and texture of objects, but

also their taste and smell. Thus, non-dietary ingestion may also play an important role

2



Bayesian MVA of pesticides exposure Environmetrics

in their exposures. Several questionnaire-based and epidemiologically based studies have

implicated pesticide exposures and exposures to other xenobiotics as possible causes of

children’s health problems (Goldman, 1995; Landrigan et al., 1999, 2004; Birnbaum and

Fenton, 2003; Eskenazi et al., 2007; Adams et al., 2009).

In this article, we consider the case of childhood exposure to a non-persistent pesticide,

chlorpyrifos (CPF), and its metabolite and corresponding biomarker of exposure in urine,

namely 3,5,6-trichloro-2-pyridinol, or trichloropyridinol (TCP). The PEPCOT study is one

of very few that measured both pesticide and metabolite concentrations in air, dust, soil,

and food, as well as the metabolite in urine in a repeated-measures study. Due to the fact

that the urinary TCP metabolite concentration is related to exposure to both CPF and TCP

in environmental media, any statistical analyses of the PEPCOT data must consider both

chemicals jointly.

The extent of one individual’s exposure depends on a large number of factors, including

physical and chemical properties of the toxic pollutants, environmental properties that

govern the fate and transport of the pollutants through different environmental media (e.g.,

air, water, food, soil, dust), and behavioral, nutritional, and other factors that determine

the extent to which an individual comes into contact with the pollutants. Historically,

quantitative (statistical) models were often pieced together. For example, fate and transport

might be modeled separately from behavior and human activities; then the models would

be combined, often without fully accounting for model uncertainties or correlations among

factors.

Over the past decade, Bayesian hierarchical models (BHMs) have been growing in

popularity for addressing complex quantitative problems, such as those posed by human-

exposure studies. One of the major advantages of a BHM for quantitative human-exposure

studies, is that it offers the flexibility to combine, in a single model, data from different

sources that inform different aspects of the exposure scenario and where there are different
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levels of variability. Also, as a practical matter, the BHM can deal coherently with the

censoring of data that often occurs when measuring the presence of chemicals in media and

in blood or urine.

The type of statistical problem posed by these exposure-biomarker studies has been recently

addressed by authors like Clayton et al. (2002), McMillan et al. (2006), Cressie et al. (2007),

Santner et al. (2008), and Craigmile et al. (2009). These articles considered human exposures

to toxic metals in the environment, focusing on one metal (arsenic or lead) at a time. While

this is a reasonable approach, humans are quite often simultaneously exposed to multiple

pollutants, and a model that considers all of them jointly could potentially provide more

accurate and precise predictions of exposure and inferences about significant pathways.

Morara et al. (2010) gave a BHM that accounted for multivariate exposures. In this paper,

we use that BHM to analyze bivariate (CPF and TCP) data from the PEPCOT study

of preschool children. To our knowledge, it represents the first time that a multivariate

statistical analysis has been applied within the context of exposure-biomarker pathways

investigations.

Section 2 describes the PEPCOT study and discusses the data used in the multivariate

analysis. Section 3 presents exploratory data analyses and associated data summaries of the

PEPCOT data. Section 4 presents the multivariate BHM, including data models, process

models, and priors. Section 5 presents the results from fitting the BHM, and a discussion of

these results is provided in Section 6.

2. PEPCOT STUDY

The PEPCOT study (Wilson et al., 2009) sought to estimate changes in exposure for a small

group of preschool-aged children over a three-year period. The changes considered were in

aggregate exposures to selected pesticides, and interpersonal variability in these exposures
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was assessed for children living in different homes and children living in the same home. The

study was conducted from June, 2002 to May, 2007, with field sampling in 2003, 2004, and

2005 in 50 households located within one-hour driving time from Durham, North Carolina.

In each of the 50 households, two (or more) children were recruited, such that one child was

age three years in the first sampling year, and the other child was a younger sibling.

In the age-range of the children in the study, a small difference in age can make a big

difference in the child’s stage of development. Thus, we expect that differences in aggregate

exposure between siblings will arise because they spend different time in different micro-

environments, their activities are different, they ingest different foods (and sometimes non-

foods), they have different breathing rates, they have different hand-to-mouth behaviors,

and so forth.

The sampling objective was to collect environmental and personal samples once a year for

three consecutive years (2003, 2004, 2005) in each of the 50 households. Each household was

sampled in the same season (spring, summer, or fall). Sampling in the second and third years

for each family was scheduled within two weeks of the date of the first sampling event. During

each annual visit, samples were collected over the course of 24 hours. Environmental samples

were collected from indoor and outdoor air, indoor-carpeted floor dust, soil, food-preparation

surface wipes, and uncarpeted-floor surface wipes. Personal samples collected from each child

(by the parents or other adult household members) included duplicate diet samples (liquid

and solid food eaten during the 24-hour period), hand-wipe samples, and first-morning-void

urine samples. Other supplemental questionnaire and survey information included food and

activity diaries, household characteristics, and other ancillary information. The multimedia

samples were extracted using Soxhlet, sonication, or accelerated solvent techniques; then

they were analyzed by gas chromatography/mass spectrometry in the selected ion monitoring

mode. Liquid food was not included in this analysis because most liquid food samples had

no discernible levels of the target analytes (including CPF and TCP).
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Prior to the analysis, all data were converted to molar concentrations to ensure that the

intake of one molecule of either CPF or TCP was considered to produce one molecule of TCP

in the urine, and then the data were transformed by taking natural logarithms. The units

of measurement for the various exposure and environmental samples are shown in Table 1.

Working on the log scale is a standard approach in statistical analysis of environmental and

biomarker data, since they usually follow a log-normal distribution. Moreover, working on

the log scale often makes the statistical errors additive and homoscedastic.

[Table 1 about here.]

3. EXPLORATORY DATA ANALYSIS (EDA) OF THE PEPCOT DATA

This section reports within-media and between-media summary statistics for the CPF and

TCP data in all environmental and biological media. In particular, simple regression models

were fitted for all pairs of variables (i.e., chemical concentrations in all media) separately for

the CPF data and the TCP data.

During this exploratory data analysis (EDA), for cases where the CPF or TCP level

in a sample was found to be below the laboratory method detection limit (MDL), the

concentration was set to log(MDL/
√
2) (see, for example, Hornung and Reed, 1990). Note

that this method may lead to biased estimates in a contamination analysis (Succop et al.,

2004; Baccarelli et al., 2005), and therefore we only used it in the EDA. Indeed, one of the

main features of the BHM presented in this paper (Section 4) is the ability to impute missing

and censored data from the probability-distributional models and the available data.

The summary statistics from our EDA are presented in Table 1 of the Supplemental

Material section, and they include the estimated mean on the log scale, µ̂, with associated

(2.5%, 97.5%) confidence limits (a bold value means it is statistically significantly different

from 0 at the 0.05 level), the estimated standard deviation on the log scale, σ̂, and
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sample size n (with the associated number of missing values in parentheses). Statistics

are provided for each sampling medium, each CPF and TCP analyte, and each sampling

year. The (approximate) sample size, n = 100, reflects sampling for two children in each of

50 households. Generally, the data indicate decreasing levels over time of CPF and TCP

in the environmental media (i.e., hand wipes, floor dust, indoor air, and outdoor air), but

either relatively flat or increasing levels in solid food and urine (the exposure measure).

Simple correlation coefficients, ρ̂, between CPF and TCP levels (on the log scale) are also

presented. Note that the correlations are generally high, especially in media like floor dust,

indoor air, and outdoor air. This feature of the data was part of the motivation for conducting

a multivariate statistical analysis, since such an approach is designed to take advantage of

various correlations and dependencies in the data.

The corresponding histograms are presented in Figures 1-3 of the Supplemental Material

section, which show the general range and shape of the univariate-data distributions. In most

cases, these histograms indicate reasonably symmetric distributions, although some cases of

skewness (e.g., CPF, TCP in outdoor air in all three years) are also evident.

The results of the regressions between pairs of media are shown in Table 2 of

the Supplemental Material section, and they include the intercept µ̂, with associated

(2.5%, 97.5%) confidence limits, slope β̂, with associated (2.5%, 97.5%) confidence limits

(a bold value means statistical significance at the 0.05 level), coefficient of determination R2,

and sample size n (with the associated number of missing values in parentheses). Each sub-

table represents the regression of the first medium listed as a function of the second medium.

The corresponding scatter plots are presented in Figures 4-9 of the Supplemental Material

section, which show the general shape of dependence among all pairs of environmental and

biological media, with tighter data clouds indicating a stronger correlation (e.g., floor-dust

and indoor-air CPF and TCP measurements in all three years). For the purposes of EDA,

potentially significant correlations between different media can be judged by examining the
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confidence bounds for the slope and highlighting cases where the bounds do not contain

the value of zero (shown in bold text in Table 2 of the Supplemental Material section).

These cases indicate strong correlations and hence are cases that might be expected to

result in important exposure pathways under the BHM analysis (Section 5). Of all the cases

highlighted in the regression table (a total of 41 cases), nearly half of them (18 cases) involve

correlations among CPF and TCP in hand wipes, floor dust, and indoor air. This could

indicate transport of the two analytes between floor dust and indoor air, and from there

onto the hands of children and the hand wipes. In addition, correlations with TCP levels

in urine, the biomarker of primary interest in this analysis, are seen in 12 cases, namely

correlation with TCP or CPF in solid food (3 cases), floor dust (2 cases), indoor air (3

cases), and outdoor air (4 cases). These findings were used to motivate the pathways model

shown in the next section (see Figure 1).

Because sampling in the PEPCOT study involved pairs of children within households, we

repeated the EDA using a mixed model to account for the within-household correlations.

However, the t-statistics calculated to test the significance of the regression parameters were

largely unaffected and did not warrant our modeling the within-household correlations in

the hierarchical Bayesian model.

4. MULTIVARIATE BAYESIAN HIERARCHICAL MODEL

The objective of this article is to use data from the PEPCOT study to assess the magnitude

and statistical importance of various environmental and personal exposure pathways, all the

way from the sources of pesticide contamination, CPF, to urinary TCP as a human-exposure

biomarker. The assessment is based on regression coefficients relating CPF and TCP levels

in different environmental and biological media using the multivariate BHM given by Morara

et al. (2010).
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Bayesian hierarchical modeling offers a coherent way to handle missing data, non-detects,

and measurement error simultaneously, by separating the data model from the “true process”

model (see, for example, Gelman et al., 2003). It makes use of conditional probability

distributions, where we write [A|B] to denote the conditional distribution of the variable

A given the variable B.

Consider a population of N I individuals from whom measurements of CPF and TCP are

collected in NX − 1 = 5 environmental media (solid food, hand wipe, floor dust, indoor air,

outdoor air), and measurements of TCP are taken in urine. In our case, N I = 100 and

NX = 5 + 1 = 6.

Let Yijs and Xijs represent the measured log value and the true log value associated

with individual i, medium j, and species s ∈ {1 = CPF, 2 = TCP}, respectively. Let Zijs

be the logarithm of the MDL. Use SA to indicate the set of indices (i, j, s) for which

there are measurements reported and SB to indicate the set of indices (i, j, s) for which

the measurements are censored and simply reported to be below the MDL. The data model

expresses the distribution of Data (here log measurements, including those that are left-

censored) given the Process (here log of the true CPF and TCP concentrations) and the

Parameters:

[Data|Process,Params] =
∏

(i,j,s)∈SA

N (Yijs, Xijs, ωjs)×
∏

(i,j,s)∈SB

Φ (Zijs, Xijs, ωjs) , (1)

where N(x,m, t) and Φ(x,m, t) =
∫ x

−∞N(y,m, t)dy denote the normal probability density

function and the normal cumulative distribution function, respectively, with mean m and

precision (i.e., the reciprocal of the variance) t. Notice that our notation emphasizes the

precision parameter rather than the variance parameter.

The log of the true value X defines the Process, and it is modeled using a pathways

model involving linear regression with normal errors. The pathways are defined using sets of

indices, indicating the conditional dependencies of one medium given the others, which we
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call selector sets:

Sj ⊆ {1, . . . , NX} \ {j}; j = 1, . . . , NX . (2)

The pathways model used for the PEPCOT data, which was motivated by the EDA results

given in Section 3, is displayed in Figure 1. Notice that the selector sets must define an acyclic

directed graph (see, for example, Lauritzen, 1996). If we index the media as:

urine = 1 ; solid food = 2 ; hand wipe = 3 ;

floor dust = 4 ; indoor air = 5 ; outdoor air = 6,

then the selector sets associated with the pathways in Figure 1 are:

S1 = {2, 3, 4, 5, 6} ; S2 = ∅ ; S3 = {4} ; S4 = {5} ; S5 = {6} ; S6 = ∅ .

[Figure 1 about here.]

The Process is made up of Biomarker (i.e., log of the true TCP values in urine) and

Environment (i.e., log of the true CPF and TCP values in the environmental media). Hence

the process model can be written as

[Biomarker|Environment,Params]× [Environment|Params]

We use univariate regressions to model the biomarker in urine, where we only have TCP

(the CPF is metabolized in the body), and bivariate regressions for the environmental media,

where both CPF and TCP are present.

Since the TCP in the urine comes from both CPF and TCP exposure, we write

[Biomarker|Environment,Params] =
NI∏
i=1

N

Xi12, µ12 +
∑
k∈S1

∑
s∈{1,2}

β1ksXiks, τ122

 , (3)

10
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where the subscript “1” indicates “urine,” followed by the subscript “2” or “22” to indicate

“TCP.” Further, µ12 ∈ R, β1ks ∈ R, and τ122 > 0 represent the intercept, the regression

coefficients, and the precision, respectively, of the univariate regression. In the environmental

media, we model CPF and TCP jointly as,

[Environment|Params] =
NI∏
i=1

NX∏
j=2

N

Xij, µj +
∑
k∈Sj

BjkXik, τj

 , (4)

where Xij =

 Xij1

Xij2

, µj =

 µj1

µj2

, Bjk =

 βjk1 0

0 βjk2

, and τj =

 τj11 τj12

τj21 τj22


represent the dependent variables, the intercepts, the regression coefficients, and the

precision matrices, respectively, of the bivariate regression models. Note that the model

captures the relationship between the pesticide CPF and the metabolite TCP within each

environmental medium j, through the off-diagonal covariance terms in τj. Then equations

(3) and (4) together define the process model. The joint distribution, conditional on the

parameters, is obtained by multiplying equations (1), (3), and (4).

The power of Bayesian hierarchical modeling lies in the possibility of using prior information

about the parameters in the model. This is called the parameter model (or the prior),

which we write here as [Params]. For linear regression models with normal errors, the

standard choices for prior distributions are gamma/Wishart for the precision, and normal

for the regression coefficients (including the intercept). Assuming independence between the

parameters, these priors, which are conjugate, result in,

[Params] = [ω, µ, β, τ ] =
∏
js

G(ωjs, s
ω
js, r

ω
js)×

∏
js

N(µjs,m
µ
js, t

µ
js)

×
∏
js

N(βjs,m
β
js, t

β
js)×

∏
j

W (τj, ν
τ
j , R

τ
j ) , (5)

where G(ω, s, r) denotes the gamma probability density function with shape s and rate (i.e.,
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the reciprocal of the scale); and W (τ, ν, R) denotes the Wishart probability density function

with degrees of freedom ν and rate matrix (i.e., the inverse of the scale matrix) R.

The parameters in the prior distributions are called hyper-parameters and are fixed. They

are usually set to values that give non-informative prior distributions or, if possible, to values

determined through subjective judgment or previous similar studies (Gelman et al., 2003).

In our case, we use extra documentation that was available with the data to provide values

for the measurement error. In particular, we set the prior data precision as follows:

ωjs =

(
2

ln(1 + ϵjs)

)2

, j = 1, . . . , NX , s = 1, 2, (6)

where ϵjs is the relative measurement error associated with medium j and analyte s. This

yields a degenerate prior distribution, which is numerically implemented by a tight gamma

distribution with mean ωjs and a very small variance, as discussed below. Table 2 shows

the relative measurement errors ϵjs for the levels of CPF and TCP in the various sampled

media. The factor 2 in equation (6) comes from setting twice the standard deviation of the

data model, 2/
√
ω, equal to the log measurement error, log(1 + ϵ).

[Table 2 about here.]

Bayesian models are usually fitted via Markov chain Monte Carlo (MCMC) sampling (see,

for example, Robert and Casella, 2004). As expected, we see that the stability of fitting our

BHM this way is controlled by both precisions, ω and τ . To achieve appropriate ergodic

behavior of the Markov chain, the prior hyper-parameters for τ were chosen based on the

assumption that the precision of the process model is unlikely to be greater than the precision

of the data model. The opposite assumption, aside from being conceptually hard to justify,

can lead to numerical instabilities during MCMC sampling. (Allowing the sampling of values

of τ significantly greater than ω can force X to over-fit the process model regardless of the

data; in the MCMC, this makes the process-model residuals very small, which in turn pushes

12



Bayesian MVA of pesticides exposure Environmetrics

τ to even larger values.) To make it unlikely for τ to take values larger than ω, we set the

rate matrix in the Wishart prior distributions for τj as follows:

Rτ
j ≡

 rτj1 0

0 rτj2

 =

 N I/ωj1 0

0 N I/ωj2

 ; j = 1, . . . , NX . (7)

Table 3 shows the values of the gamma and Wishart hyper-parameters. The shape and

rate hyper-parameters, sω and rω, for the gamma priors were chosen such that the mean

sω/rω = ω, and the variance sω/(rω)2 ≪ ω is very small relatively to the mean. The degrees

of freedom of the Wishart distribution, ντ , were set equal to the non-informative value of

0, resulting in an improper prior (notice that any small value for the degrees of freedom in

the Wishart prior distribution would not significantly affect the posterior distribution, since

that value is added to the population size N I), and the rate matrix was set according to

equation (7). Non-informative improper priors were chosen for µ and β.

[Table 3 about here.]

5. RESULTS

Samples from the posterior distribution, which is proportional to the product of (1), (3),

(4), and (5), were obtained via MCMC simulation. The MCMC sampler was implemented

in C++ using a dedicated C++ object library for MCMC sampling (Morara, 2008).

For each one of the three years in the study, 103 samples were obtained by drawing 106

samples and keeping one draw every 103 draws. This long thinning period was chosen to

break, as much as possible, the autocorrelation in the chain. Sources of autocorrelation in

the samples are: the high level of missing values and non-detects in some of the media (in

particular, floor dust); and the high correlation between CPF and TCP in some of the media.

A burn-in of 1 million MCMC iterations was also chosen before any samples were taken. The
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MCMC simulation, for a total of 33 million iterations (11 million for each of 3 years), ran in

about 8 hours on a PC with a 2.66 GHz Intel R⃝ CoreTM2 Duo CPU.

The marginal posterior parameter estimates obtained from the chains are presented in

Tables 4-9. Each estimate is made up of three values: the median and, in parentheses, the

2.5 and 97.5 percentiles. A bold median indicates that the 95% prediction interval does not

contain 0.

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]

Each sub-table represents the multivariate (CPF, TCP) regression in the indicated media.

Posterior summaries of the intercepts, slopes, and inverse precisions (i.e., variances) of the

two CPF, TCP components are shown, together with the correlation between CPF and

TCP. As described in the previous section, the urine regression model estimates TCP in

urine given CPF and TCP in the environmental media, while the environmental regression

models estimate CPF and TCP in one environmental medium given CPF and TCP in the

other environmental media, according to the modeled pathways.

One major strength of the multivariate BHM is that it simultaneously accounts for the

interdependence and cross-dependence between CPF and TCP in all the environmental

media, and for the cross-dependence of TCP in urine on both CPF and TCP in the

environmental media. Our multivariate hierarchical approach provides a more parsimonious

model (i.e., a simpler model including fewer parameters) than, for example, the series of
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regression analyses conducted as part of the EDA described in Section 2). In fact, while the

exploratory pairwise regressions indicated 41 possibly significant pathways, the multivariate

BHM indicated only 21 possibly important pathways. Generally, the important multivariate

BHM pathways were a subset of the pairwise regression pathways, although there were two

important BHM pathways (between indoor air and outdoor air) that were not significant in

the exploratory regressions.

6. DISCUSSION

From an exposure and environmental-protection perspective, an important objective of

the PEPCOT study, and other similar studies, is to sort through the data and try to

determine which pathways represent significant transport of pollutants through the part

of the environment where ultimately the study participants are exposed to them. If a more

simplistic regression approach were used to interpret the data, similar to the results of

the EDA shown in Table 3, then the findings would be somewhat mixed and inconclusive.

Significant regressions were indicated between the urine biomarker and four of the five

environmental media (i.e., all media except hand wipes), although no adjustments in the

EDA were made for multiple comparisons. In addition, significant regressions were also

indicated for virtually all pairs of environmental media, suggesting that CPF and TCP

move relatively freely around the entire household micro-environment. Faced with these

(exploratory) findings that suggest that everything is correlated with everything else, it

becomes more difficult to identify the environmental-protection priorities and determine

ways to limit exposures effectively. In contrast, our results from fitting a multivariate BHM

indicate simpler and more focused findings.

Only two important pathways of TCP to the urine biomarker are indicated: one pathway

comes directly from solid food, and a second pathway comes directly from outdoor air.
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Other strong pathways of both CPF and TCP are indicated within the four environmental

media, namely hand wipes, floor dust, indoor air, and outdoor air. However, none of the

environmental media, other than outdoor air, indicates an important pathway to the urine

biomarker. As such, the fitted BHM suggests that exposure-mitigation efforts in micro-

environments, like those in the PEPCOT study, should emphasize limiting exposures to

CPF and TCP in solid food and outdoor air.

It should be noted that only two of the participating households in the PEPCOT study

used CPF, and the measured concentrations of CPF in all environmental media were very

low. Indeed, the US Environmental Protection Agency required that CPF be phased out in

residential and other settings where children could be exposed, starting in 2000. The CPF in

the environment most likely came from the few agricultural uses that were still permitted,

and from the more persistent compound TCP from residual amounts in the environment.

Analogous multivariate BHMs for scenarios with greater pesticide use or use of current,

less-volatile, and less-persistent pesticides will likely indicate different pathways. Multivariate

statistical models and multivariate BHMs offer opportunities to combine disparate data for

different pollutants, measured in a variety of environmental media, into a single statistical

framework. In turn, this allows the model to simultaneously account for a multitude of

inter-correlations in a more efficient and logically consistent way than more traditional

approaches that use a series of bivariate analyses. In summary, our approach results in a more

parsimonious model containing fewer significant parameters and a simpler interpretation of

suggested pathways.
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Figure 1.Exposure Pathways for CPF and TCP
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Table 1. Units of Measurement

Medium Unit

urine nmol/mL
solid food nmol/g
hand wipe nmol/m2

floor dust nmol/g
indoor air nmol/m3

outdoor air nmol/m3
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Table 2.Measurement-Error Estimates

Medium ϵ Analyte

urine 11% CPF, TCP
solid food 18% CPF, TCP
hand wipe 6% CPF, TCP
floor dust 9% CPF, TCP
indoor air neutral 10% CPF
indoor air acid 18% TCP
outdoor air neutral 26% CPF
outdoor air acid 17% TCP
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Table 3. Hyper-Parameters for Gamma and Wishart Prior Distributions

Medium ln(1 + ϵ) ω sω rω ντ rτ

urine 0.10 3.67× 102 1018 2.72× 1015 0 2.78× 10−1

solid food 0.17 1.46× 102 1018 6.85× 1015 0 6.99× 10−1

hand wipe 0.06 1.18× 103 1018 8.49× 1014 0 8.66× 10−2

floor dust 0.09 5.39× 102 1018 1.86× 1015 0 1.89× 10−1

indoor air CPF 0.10 4.40× 102 1018 2.27× 1015 0 2.32× 10−1

indoor air TCP 0.17 1.46× 102 1018 6.85× 1015 0 6.99× 10−1

outdoor air CPF 0.23 7.49× 101 1018 1.34× 1016 0 1.36
outdoor air TCP 0.16 1.62× 102 1018 6.16× 1015 0 6.29× 10−1
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Table 4.MCMC Regression Estimates for the Urine pathway

Urine ∼ SolidFood + HandWipe + FloorDust + IndoorAir + OutdoorAir

Year 1 Year 2 Year 3

µ0,TCP 1.040 (-0.535, 2.627) -1.861 (-4.811, 1.195) -1.523 (-3.941, 0.992)
βSolidFood,CPF 0.116 (-0.080, 0.298) 0.049 (-0.140, 0.235) -0.013 (-0.154, 0.130)
βSolidFood,TCP 0.635 ( 0.362, 0.900) 0.285 (-0.035, 0.599) 0.271 ( 0.124, 0.416)
βHandWipe,CPF 0.065 (-0.120, 0.255) -0.060 (-0.631, 0.587) 0.143 (-0.276, 0.529)
βHandWipe,TCP -0.196 (-0.531, 0.119) -0.241 (-1.326, 0.882) 0.064 (-0.145, 0.273)
βFloorDust,CPF 0.039 (-0.247, 0.323) -0.196 (-0.664, 0.284) -0.131 (-0.430, 0.184)
βFloorDust,TCP 0.098 (-0.163, 0.350) 0.260 (-0.970, 1.491) 0.165 (-0.004, 0.320)
βIndoorAir,CPF 0.226 (-0.234, 0.664) 0.210 (-0.229, 0.634) 0.166 (-0.147, 0.484)
βIndoorAir,TCP 0.036 (-0.379, 0.472) 0.176 (-0.144, 0.498) -0.429 (-0.861, 0.011)
βOutdoorAir,CPF 0.026 (-0.200, 0.261) -0.179 (-0.385, 0.019) -0.084 (-0.389, 0.230)
βOutdoorAir,TCP 0.174 (-0.103, 0.443) 0.296 ( 0.029, 0.574) 0.506 ( 0.039, 0.960)
σ2
CPF 0.620 ( 0.439, 0.892) 0.854 ( 0.594, 1.215) 0.427 ( 0.301, 0.610)
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Table 5.MCMC Regression Estimates for the SolidFood pathway

SolidFood

Year 1 Year 2 Year 3

µ0,CPF -8.475 (-8.889, -8.133) -8.028 (-8.343, -7.740) -8.204 (-8.535, -7.923)
µ0,TCP -4.662 (-4.875, -4.452) -4.801 (-4.948, -4.657) -4.719 (-4.943, -4.499)
σ2
CPF 2.363 ( 1.551, 3.782) 1.949 ( 1.382, 2.858) 1.809 ( 1.221, 2.795)

σ2
TCP 1.060 ( 0.783, 1.484) 0.502 ( 0.379, 0.687) 1.223 ( 0.924, 1.662)

ρCPF,TCP 0.615 ( 0.434, 0.752) 0.307 ( 0.095, 0.495) 0.354 ( 0.140, 0.533)
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Table 6.MCMC Regression Estimates for the HandWipe pathway

HandWipe ∼ FloorDust

Year 1 Year 2 Year 3

µ0,CPF -0.865 (-1.299, -0.456) -0.688 (-0.987, -0.383) -0.691 (-1.067, -0.298)
µ0,TCP -0.942 (-1.141, -0.756) -1.378 (-1.627, -1.177) -1.563 (-2.007, -1.205)
βFloorDust,CPF 0.679 ( 0.444, 0.945) 0.422 ( 0.274, 0.569) 0.748 ( 0.565, 0.979)
βFloorDust,TCP 0.376 ( 0.248, 0.511) 1.017 ( 0.789, 1.309) 0.305 ( 0.115, 0.542)
σ2
CPF 1.450 ( 0.922, 2.417) 0.897 ( 0.621, 1.330) 0.375 ( 0.224, 0.684)

σ2
TCP 0.466 ( 0.306, 0.727) 0.355 ( 0.190, 0.714) 0.948 ( 0.534, 1.756)

ρCPF,TCP 0.088 (-0.183, 0.348) 0.727 ( 0.369, 0.895) 0.067 (-0.322, 0.435)
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Table 7.MCMC Regression Estimates for the FloorDust pathway

FloorDust ∼ IndoorAir

Year 1 Year 2 Year 3

µ0,CPF 1.789 ( 0.854, 2.698) 2.748 ( 1.918, 3.624) 2.179 ( 1.194, 3.188)
µ0,TCP 2.116 ( 1.009, 3.252) 2.571 ( 1.553, 3.580) 4.949 ( 2.834, 7.085)
βIndoorAir,CPF 0.781 ( 0.569, 0.990) 0.989 ( 0.804, 1.180) 1.016 ( 0.805, 1.232)
βIndoorAir,TCP 0.590 ( 0.382, 0.806) 0.652 ( 0.457, 0.847) 1.164 ( 0.782, 1.554)
σ2
CPF 1.109 ( 0.788, 1.643) 0.759 ( 0.524, 1.154) 1.163 ( 0.838, 1.705)

σ2
TCP 1.257 ( 0.886, 1.854) 0.786 ( 0.555, 1.147) 1.851 ( 1.246, 2.874)

ρCPF,TCP 0.389 ( 0.143, 0.592) 0.336 ( 0.080, 0.551) 0.441 ( 0.220, 0.623)

27



Environmetrics TABLES

Table 8.MCMC Regression Estimates for the IndoorAir pathway

IndoorAir ∼ OutdoorAir

Year 1 Year 2 Year 3

µ0,CPF -2.204 (-2.802, -1.598) -2.907 (-4.041, -1.761) -3.100 (-4.492, -1.678)
µ0,CPF -2.835 (-3.617, -2.037) -4.443 (-5.845, -3.028) -3.981 (-5.336, -2.537)
βOutdoorAir,CPF 0.312 ( 0.227, 0.397) 0.206 ( 0.047, 0.368) 0.215 ( 0.029, 0.404)
βOutdoorAir,TCP 0.332 ( 0.222, 0.447) 0.106 (-0.104, 0.318) 0.237 ( 0.041, 0.447)
σ2
CPF 1.424 ( 1.085, 1.920) 1.278 ( 0.968, 1.736) 1.415 ( 1.048, 1.965)

σ2
TCP 1.408 ( 1.065, 1.908) 1.040 ( 0.784, 1.415) 0.681 ( 0.510, 0.937)

ρCPF,TCP 0.913 ( 0.866, 0.945) 0.638 ( 0.499, 0.745) 0.862 ( 0.792, 0.909)
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Table 9.MCMC Regression Estimates for the OutdoorAir pathway

OutdoorAir

Year 1 Year 2 Year 3

µ0,CPF -6.574 (-6.913, -6.234) -6.938 (-7.201, -6.690) -7.396 (-7.666, -7.165)
µ0,TCP -6.959 (-7.297, -6.669) -6.616 (-6.806, -6.437) -6.888 (-7.052, -6.740)
σ2
CPF 2.865 ( 2.118, 3.989) 1.449 ( 1.057, 2.094) 1.225 ( 0.849, 1.840)

σ2
TCP 1.876 ( 1.304, 2.778) 0.738 ( 0.530, 1.074) 0.489 ( 0.339, 0.727)

ρCPF,TCP 0.634 ( 0.479, 0.753) 0.346 ( 0.139, 0.530) 0.806 ( 0.693, 0.880)
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