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Chapter 1

Environmental Informatics:
Uncertainty Quantification
in the Environmental
Sciences

Noel Cressie1

Distinguished Professor
National Institute for Applied Statistics Research Australia (NIASRA)
School of Mathematics and Applied Statistics
University of Wollongong, NSW 2522
Australia
e-mail: ncressie@uow.edu.au

1.1 Introduction

This exposition of environmental informatics is an attempt to bring current
thinking about uncertainty quantification to the environmental sciences. Envi-
ronmental informatics is a term that I first heard being used by Bronwyn Harch
of Australia’s Commonwealth Scientific and Industrial Research Organisation to
describe a research theme within her organisation. Just as bioinformatics has
grown and includes biostatistics as a sub-discipline, environmental informat-
ics, or EI, has the potential to be much broader than classical environmental
statistics (e.g., [3]).

1I would like to thank Eddy Campbell for his comments on an earlier draft, Rui Wang for
his help in preparing Figure 1.1, Emily Kang for her help in preparing Figure 1.2, and Andrew
Holder for his help in preparing the manuscript. This research was partially supported by the
NASA Program, NNH11ZDA001N-OCO2 (Science Team for the OCO-2 Mission).
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Which came first, the hypothesis or the data? In EI, we start with en-
vironmental data, but we use them to reveal, quantify, and validate scientific
hypotheses with a panoply of tools from statistics, mathematics, computing,
and visualisation.

There is a realisation now in science, including the environmental sciences,
that there is uncertainty in the data, the scientific models, and the parameters
that govern these models. Quantifying that uncertainty can be approached in a
number of ways. To some, it means smoothing the data to reveal interpretable
patterns; to data miners, it often means looking for unusual data points in a sea
of “big data”; and to statisticians, it means all of the above, using statistical
modelling to address questions like, “Are the patterns real?” and “Unusual in
relation to what?”

In the rest of this chapter, I shall develop a vision for EI around the belief that
Statistics is the science of uncertainty, and that behind every good data-mining
or machine-learning technique is an implied statistical model. Computing even
something as simple as a sample mean and a sample variance can be linked back
to the very simplest of statistical models with a location parameter and additive
homoskedastic errors. The superb book by Hastie, Tibshirani, and Friedman
[20] shows the fecundity of establishing and developing such links. EI is a young
discipline, and I would like to see it develop in this modern and powerful way,
with uncertainty quantification through Statistics at its core.

In what follows, I shall develop a framework that is fundamentally about
environmental data and the processes that produced them. I shall be partic-
ularly concerned with big, incomplete, noisy datasets generated by processes
that may be some combination of non-linear, multi-scale, non-Gaussian, multi-
variate, and spatio-temporal. I shall account for all the uncertainties coherently
using hierarchical statistical modelling, or HM (e.g., [6]), which is based on a
series of conditional-probability models. Finally, through loss functions that as-
sign penalties as a function of how far away an estimate is from its estimand, I
shall use a decision-theoretic framework (e.g., [5]) to give environmental policy-
makers a way to make rational decisions in the presence of uncertainty, based
on competing risks (i.e., probabilities).

1.2 Hierarchical statistical modelling

The building blocks of HM are the data model, the (scientific) process model,
and the parameter model. If Z represents the data, Y represents the process,
and θ represents the parameters (e.g., measurement-error variance and reaction-
diffusion coefficients), then the data model is:

[Z|Y, θ], (1.1)

the process model is:
[Y |θ], (1.2)

and the parameter model is:
[θ], (1.3)
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where [A|B,C] is generic notation for the conditional-probability distribution
of the random quantity A given B and C.

A statistical approach represents the uncertainties coherently through the
joint-probability distribution, [Z, Y, θ]. Using the building blocks (1.1)–(1.3),
we can write:

[Z, Y, θ] = [Z|Y, θ] · [Y |θ] · [θ]. (1.4)

The definition of entropy of a random quantity A is E(log[A]); by re-writing
(1.4) as:

E(log[Z, Y, θ]) = E(log[Z|Y, θ]) + E(log[Y |θ]) + E(log[θ]),

we can see that the joint entropy can be partitioned into data-model entropy,
process-model entropy, and parameter-model entropy. This results in a “divide
and conquer” strategy that emphasises where scientists can put effort into un-
derstanding the sources of uncertainty and into designing scientific studies that
control (and perhaps minimise some of) the entropy components.

The process Y and the parameters θ are unknown, but the data Z are known.
(Nevertheless, the observed Z is still thought of as one of many possible that
could have been observed, with a distribution [Z].) At the beginning of all
statistical inference is a step that declares what to condition on, and I propose
that EI follow the path of conditioning on what is known, namely Z. Then the
conditional probability distribution of all the unknowns given Z is:

[Y, θ|Z] = [Z, Y, θ]/[Z] = [Z|Y, θ] · [Y |θ] · [θ]/[Z], (1.5)

where the first equality is known as Bayes’ Theorem [4]; (1.5) is called the poste-
rior distribution, and we call (1.1)–(1.3) a Bayesian hierarchical model (BHM).
Notice that [Z] on the right-hand side of (1.5) is a normalising term that ensures
that the posterior distribution integrates (or sums) to 1.

There is an asymmetry associated with the role of Y and θ, since (1.2)
very clearly emphasises that [Y |θ] is where the “science” resides. It is equally
true that [Y, θ] = [θ|Y ] · [Y ], however probability models for [θ|Y ] and [Y ]
do not follow naturally from the way that uncertainties are manifested. The
asymmetry emphasises Y as the first priority for inference. As a consequence,
we define the predictive distribution, [Y |Z], which can be obtained from (1.5)
by marginalisation:

[Y |Z] =
∫

[Z|Y, θ] · [Y |θ] · [θ] dθ/[Z]. (1.6)

Then inference on Y is obtained from (1.6). While (1.5) and (1.6) are con-
ceptually straightforward, in EI we may be trying to evaluate them in global
spatial or spatio-temporal settings where Z might be on the order of Gb or Tb,
and Y might be of a similar order. Thus, HM requires innovative conditional-
probability modelling in (1.1)–(1.3), followed by innovative statistical computing
in (1.5) and (1.6). Leading cases involve spatial data (e.g., [1, 9]) and spatio-
temporal data (e.g., [13]). Examples of dynamical spatio-temporal HM are given
in Chapter 9 of Cressie and Wikle [13], and we also connect the literature in
data assimilation, ensemble forecasting, blind-source separation, and so forth to
the HM paradigm.
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1.3 Decision-making in the presence of uncer-
tainty

Let Ŷ (Z) be one of many decisions about Y based on Z. Some decisions are
better than others, which can be quantified through a (non-negative) loss func-

tion, L(Y, Ŷ (Z)). The Bayes expected loss is E(L(Y, Ŷ )), and we minimise this

with respect to Ŷ . Then it is a consequence of decision theory (e.g., [5]) that
the optimal decision is:

Y ∗(Z) = arg inf
Ŷ

{
E(L(Y, Ŷ )|Z)

}
, (1.7)

where for some generic function g(·), the notation E(g(Y )|Z) is used to represent
the conditional expectation of g(Y ) given Z.

Sometimes E(L(Y, Ŷ )|θ) is called the risk, but I shall call it the expected

loss; sometimes E(L(Y, Ŷ )) is called the Bayes risk, but see above where I have
called it the Bayes expected loss. In what follows, I shall reserve the word risk
to be synonymous with probability.

Now, if θ were known, only Y remains unknown, and HM involves just
(1.1)–(1.2). Then Bayes’ Theorem yields:

[Y |Z, θ] = [Z|Y, θ] · [Y |θ]/[Z|θ]. (1.8)

In this circumstance, (1.8) is both the posterior distribution and the predictive
distribution; because of the special role of Y , I prefer to call it the predictive
distribution. The analogue to (1.7) when θ is known is, straightforwardly,

Y ∗(Z) = arg inf
Ŷ

{
E
(
L(Y, Ŷ )|Z, θ

)}
. (1.9)

Clearly, Y ∗(Z) in (1.9) also depends on θ.
Using the terminology of Cressie and Wikle (2011), an empirical hierarchical

model (EHM) results if an estimate θ̂(Z), or θ̂ for short, is used in place of θ in
(1.8): Inference on Y is then based on the empirical predictive distribution,

[Y |Z, θ̂] = [Z, Y, θ̂] · [Y |θ̂]/[Z|θ̂], (1.10)

which means that θ̂ is also used in place of θ in (1.9).
BHM inference from (1.5) and (1.6) is coherent in the sense that it emanates

from the well defined joint-probability distribution (1.4). However, the BHM
requires specification of the prior [θ], and it often consumes large computing
resources to obtain (1.5) and (1.6). The EHM’s inference from (1.10) can be
much more computationally efficient, albeit with an empirical predictive distri-
bution that has smaller variability than the BHM’s predictive distribution (e.g.,
[39]). Bayes’ Theorem applied to BHM or EHM for spatio-temporal data re-
sults in a typically very-high-dimensional predictive distribution, given by (1.6)
or (1.10), respectively, whose computation requires dimension reduction (e.g.,
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[2, 10, 11, 22, 25, 29, 31, 41, 42]) and statistical-computing algorithms such as
EM (e.g., [30]), MCMC (e.g., [34]), and INLA [36].

In the last 20 years, methodological research in Statistics has seen a shift
from mathematical statistics towards statistical computing. Deriving an ana-
lytical form for (1.6) or (1.10) is almost never possible, but being able to sample
realisations from them often is. This shift in emphasis has enormous potential
for EI.

For economy of exposition, I feature the BHM in the following discussion.
First, if I can sample from the posterior distribution, [Y, θ|Z], I can automat-
ically sample from the predictive distribution, [Y |Z], by simply ignoring the
θ’s in the posterior sample of (Y, θ). This is called a marginalisation property
of sampling. Now suppose there is scientific interest in a summary g(Y ) of Y
(e.g., regional averages, or regional extremes). Then an equivariance property
of sampling implies that samples from [g(Y )|Z] are obtained by sampling from
[Y |Z] and simple evaluating each member of the sample at g(·). This equiv-
ariance property is enormously powerful, even more so when the sampling does
not require knowledge of the normalising term [Z] in (1.5). The best known
statistical computing algorithm that samples from the posterior and predictive
distributions is MCMC (e.g., [34]).

Which summary of the predictive distribution [g(Y )|Z] will be used to es-
timate the scientifically interesting quantity g(Y )? Too often, the posterior
mean,

E(g(Y )|Z) =
∫
g(Y )[Y |Z] dY,

is chosen as a “convenient” estimator of g(Y ). This is an optimal estimator when
the loss function is squared-error: L(g(Y ), ĝ) = (ĝ − g(Y ))2; see, for example,
Berger [5]. However, squared-error loss assumes equal consequences (i.e., loss)
for under-estimation as for over-estimation. When a science or policy question
is about extreme events, the squared-error loss function is strikingly inadequate,
yet scientific inference based on the posterior mean is ubiquitous.

Even if squared-error loss were appropriate, it would be incorrect to com-
pute E(Y |Z) and produce g(E(Y |Z)) as an optimal estimate, unless g(·) is a
linear functional of Y . However, this is also common in the scientific literature.
Under squared-error loss, the optimal estimate is E(g(Y )|Z), which is defined
above. Notice that aggregating over parts of Y defines a linear functional g,
but that taking extrema over parts of Y results in a highly non-linear functional
g. Consequently, the supremum/infimum of the optimal estimate of Y (i.e.,
g(E(Y |Z))) is a severe under-estimate/over-estimate of the supremum/infimum
of Y (i.e., g(Y )).

1.4 Smoothing the data

EI is fundamentally linked to environmental data and the questions that resulted
in their collection. Questions are asked of the scientific process Y , and the data
Z paint an imperfect and incomplete picture of Y . Often, the first tool that
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comes to a scientist’s hand is a “data smoother,” which here I shall call f .
Suppose one defines

Ỹ ≡ f(Z); (1.11)

notice that f “de-noises” (i.e., filters out highly variable components) and “fills
in” where there are missing data. The scientist might be tempted to think
of Ỹ as data coming directly from the process model, [Y |θ], and use classical

statistical likelihoods based on [Y = Ỹ |θ] to fit θ and hence the model [Y |θ]. But
this paradigm is fundamentally incorrect; science should incorporate uncertainty
using a different paradigm. Instead of (1.11), suppose I write

Z̃ ≡ f(Z). (1.12)

While the difference between (1.11) and (1.12) seems simply notational, con-
ceptually it is huge.

The smoothed data Z̃ should be modelled according to [Z̃|Y, θ], and the
process Y can be incorporated into an HM through [Y |θ]. Scientific inference

then proceeds from [Y |Z̃] in a BHM according to (1.6) or from [Y |Z̃, θ̂] in
an EHM according to (1.10). The definition given by (1.12) concentrates our
attention on the role of data, processes, and parameters in an HM paradigm
and, as a consequence, it puts uncertainty quantification on firm inferential
foundations [13, Chapter 2].

Classical frequentist inference could also be implemented through a marginal
model (i.e., the likelihood), [Z̃|θ] =

∫
[Z̃|Y, θ]·[Y |θ] dY , although this fact is often

forgotten when likelihoods are formulated. As a consequence, these marginal
models can be poorly formulated or unnecessarily complicated when they do
not recognise the role of Y in the probability modelling.

1.5 EI for spatio-temporal data

This section of the chapter gives two examples from the environmental sciences
to demonstrate the power of the statistical-modelling approach to uncertainty
quantification in EI.

1.5.1 Satellite remote sensing

Satellite remote sensing instruments are remarkable in terms of their optical
precision and their ability to deliver measurements under extreme conditions.
Once the satellite has reached orbit, the instrument must function in a near
vacuum with low-power requirements, sensing reflected light (in the case of a
passive sensor) through a highly variable atmospheric column.

The specific example I shall discuss here is that of remote sensing of atmo-
spheric CO2, a greenhouse gas whose increase is having, and will have, a large
effect on climate change. The global carbon cycle describes where carbon is
stored and the movement of carbon between these reservoirs. The oceans and
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vegetation/soil are examples of CO2 sinks, and fires and anthropogenic emis-
sions are examples of CO2 sources; of the approximately 8 Gt per year that
enters the atmosphere, about half is anthropogenic. About 4 Gt stays in the
atmosphere and the other 4 Gt is absorbed roughly equally by the oceans and
terrestrial processes. This global increase of approximately 4 Gt of atmospheric
CO2 per year is unsustainable in the long term.

It is of paramount importance to be able to characterise precisely where
and when sinks (and sources) occur. Because of a lack of globally extensive, ex-
tremely precise, and very densely sampled CO2 data, these are largely unknown.
Once the spatial and temporal variability of the carbon cycle is understood,
regional climate projections can be made, and rational mitigation/adaptation
policies can be implemented.

Although the atmosphere mixes rapidly (compared to the oceans), there is a
lot of spatial variability as a function of both surface location and (geopotential)
height. There is also a lot of temporal variability at any given location, as is
clear from the US National Oceanic and Atmospheric Administration’s CO2

daily measurements from their Mauna Loa (Hawaii) observatory. Hence, we
define atmospheric CO2 as a spatio-temporal process, Y (s; t), at spatial co-
ordinates s and time t. Here, s consists of (lon, lat) = (x, y) and geopotential
height h, that belongs to the spatial domain Ds, the extent of the atmosphere
around Earth; and t belongs to a temporal domain Dt (e.g., t might index days
in a given month).

There are several remote sensing instruments that measure atmospheric CO2

(e.g., NASA’s AIRS instrument and the Japanese space agency’s GOSAT in-
strument); to improve sensitivity to near-surface CO2, NASA built the OCO-2
instrument. (The original OCO satellite failed to reach orbit in 2009.) It al-
lows almost pinpoint spatial-locational accuracy (the instrument’s footprint is
1.1×2.25 km), resulting in high global data densities during any given month.
However, its small footprint results in quite a long repeat-cycle of 16 days, mak-
ing it harder to capture daily temporal variability at high spatial resolution. I
am a member of NASA’s OCO-2 Science Team that is concerned with all com-
ponents of the data-information-knowledge pyramid referred to below in Section
1.6.

The physics behind the CO2 retrieval requires measurements of CO2 in the
so-called strong CO2 and weak CO2 bands of the spectrum, and of O2 in the
oxygen A-band [14]. The result is a data vector of radiances Z(x, y; t), where
(x, y) = (lon, lat) is the spatial location on the geoid, Dg ≡ (−180◦,+180◦) ×
(−90◦,+90◦), of the atmospheric column from footprint to satellite; and t is
the time interval (e.g., a day or a week) during which the measurements (i.e.,
radiances) for that column were taken, where t ranges over the period of interest
Dt. This vector is several-thousand dimensional, and there are potentially many
thousands of such vectors per time interval. Hence, datasets can be very large.

The data are “noisy” due to small imperfections in the instrument, ubiqui-
tous detector noise, and the presence of aerosols and clouds in the column. After
applying quality-control flags based on aerosol, cloud, albedo conditions, some
data are declared unreliable and hence “missing.” The ideal is to estimate the
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(dry air mole fraction) CO2 amount, Y (x, y, h; t) in ppm, as h varies down the
atmospheric column centred at (x, y), at time t. When the column is divided
up into layers centred at geopotential heights h1, . . . , hK , we may write:

Y0(x, y; t) ≡ (Y (x, y, h1; t), . . . , Y (x, y, hK ; t))′, (1.13)

as the scientific process (i.e., state) of interest. The dimension of the state vector
(1.13) is 20 for OCO-2, although 40 or so additional state variables, Y1(x, y; t),
are incorporated into Y(x, y; t) ≡ (Y0(x, y; t)′,Y1(x, y; t)′)′, from which the
radiative-transfer relation can be modelled as:

Z(x, y; t) = Fθ(Y(x, y; t)) + ε(x, y; t). (1.14)

In (1.14), the functional form of Fθ is known (approximately) from the physics,
but typically it requires specification of parameters θ. If θ were known, (1.14) is
simply the data model, [Z(x, y; t)|Y, θ] on the right-hand side of (1.4). The pro-
cess model, [Y |θ], on the right-hand side of (1.4) is the joint distribution of Y ≡
{Y(x, y; t) : (x, y) ∈ Dg, t ∈ Dt}, whose individual multivariate distributions
are specified by OCO-2 ATB Document [32] to be multivariate Gaussian with
mean vectors and covariance matrices calculated from forecast fields produced
by the European Centre for Medium-Range Weather Forecasting (ECMWF).
However, this specification of the multivariate marginal distributions does not
specify the joint distribution, [Y |θ]. Furthermore, informed guesses are made
for the parameters in θ. The predictive distribution is given by (1.8), but this
is not computed; a summary is typically used (e.g., the predictive mode). For
more details, see Crisp et al. [15] and O’Dell et al. [33]. Validation of the
estimated CO2 values is achieved through TCCON data from a globally sparse
but carefully calibrated network of land-based, upward-looking CO2 monitoring
sites (e.g., [43]).

Ubiquitously in the literature on remote sensing retrievals (e.g., [35]), it is
the predictive mode of [Y(x, y; t)|Z(x, y; t), θ] that is chosen as the optimal es-
timator of Y(x, y; t). The subsequent error analysis in that literature is then
concerned with deriving the mean vector and the covariance matrix of this esti-
mator assuming that Fθ is a linear function of its state variables [8]. However,
the atmosphere involves highly complex interactions, and the radiative transfer
function is known to be highly non-linear.

In Cressie and Wang [12], we enhanced the linear approximation by in-
cluding the quadratic term of a second-order Taylor-series approximation, and
we calculated the non-linearity biases of retrievals of CO2 that were obtained
from data collected by the GOSAT satellite at the locations in Australia shown
in Figure 1.1. For the six retrievals (i.e., predictive modes), we calculated
the following biases of column-averaged CO2, or XCO2 (in units of ppm):
0.86, 1.15, 0.19, 1.15,−0.78, and 1.40. Biases of this order of magnitude are
considered to be important, and hence a systematic error analysis of remote
sensing retrievals should recognise the non-linearity in Fθ.

It is important to note here that the predictive distribution, [Y(x, y; t)|Z(x, y; t), θ],
is different from the predictive distribution, [Y(x, y; t)|Z, θ], and I propose that
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Figure 1.1: Locations of six GOSAT soundings where retrievals of XCO2 were
obtained (between June 5, 2009 and July 26, 2009)

it is the latter that we should use when computing the optimal estimate of
Y(x, y; t) from (1.9). This is based on the left-hand side of (1.8), which rep-
resents the “gold standard” to which all approximations should be compared. In
practice, it would be difficult to obtain the predictive distribution, [Y(x, y; t)|Z, θ],
for every retrieval, so it makes sense to summarise it with its first two moments.
In future research, I shall compare the linear approximations of Connor et al. [8]
to the quadratic approximations of Cressie and Wang [12] by comparing them
to the gold standard.

The mode should be considered to be just one possible summary of the
predictive distribution; its corresponding loss function is

L(Y, Ŷ ) =

{
0, if Y = Ŷ

1, if Y 6= Ŷ ;

see, for example, Berger [5]. I shall refer to this as the 0-1 loss function. That is,
should even one element of the approximately 60-dimensional estimated state
vector miss its target, a fixed loss is declared, no matter how close it is to the
missed target. And the same fixed loss is declared when all or some the elements
miss their targets, by a little or a lot. From this decision-theoretic point of view,
the predictive mode looks to be an estimate that in this context is difficult to
justify.

The next phase of the analysis considers the dry air mole fraction (in ppm) of
CO2 averaged through the column from Earth’s surface to the satellite, which
we saw is denoted as XCO2. Let Y∗0(x, y; t) denote the predictive mode ob-
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tained from (1.8), which is the optimal estimate given by (1.9) with the 0-1 loss
function. Then XCO2(x, y; t) is estimated by

X̂CO2(x, y; t) ≡ Y∗0(x, y; t)′w, (1.15)

where the weights w are given in OCO-2 ATB Document [32]. From this point

of view, X̂CO2(x, y; t) is the result of applying a smoother f to the raw ra-
diances Z(x, y; t). The set of “retrieval data” over the time period Dt are

{X̂CO2(xi, yi; ti) : i = 1, . . . , n} given by (1.15), which we saw from (1.12) can

be written as Z̃; and Y is the multivariate spatio-temporal field {Y(x, y; t) :
(x, y) ∈ Dg, t ∈ Dt}, where recall that Dg is the geoid and the period of interest
Dt might be a month, say.

The true column-averaged CO2 field over the globe is a function of Y :

gV (Y ) ≡ {XCO2(x, y; t) : (x, y) ∈ Dg, t ∈ Dt} , (1.16)

where the subscript V signifies vertical averaging of Y through the column of
atmosphere from the satellite’s footprint on the Earth’s surface to the satel-
lite. Then applying the principles set out in the previous sections, we need to
construct spatio-temporal probability models for [Z̃|Y, θ] and [Y |θ], and either

a prior [θ] or an estimate θ̂ of θ. This will yield the predictive distribution of
Y and hence that of gV (Y ). Katzfuss and Cressie [25, 26] have implemented
both the EHM where θ is estimated and the BHM where θ has a prior dis-
tribution, to obtain respectively, the empirical predictive distribution and the
predictive distribution of gV (Y ) based on Z̃. The necessary computational effi-
ciency is achieved by dimension reduction using the Spatio-Temporal Random
Effects (STRE) model (e.g., [25]). Animated global maps of the predictive
mean of gV (Y ) using both approaches, based on AIRS CO2 column averages,
are shown in the SSES Web-Project, “Global Mapping of CO2” (see Figure 2
at www.stat.osu.edu/∼sses/collab co2.html). The regional and seasonal nature
of CO2 becomes obvious by looking at these maps. Uncertainty is quantified
by the predictive standard deviations, and their heterogeneity (due to different
atmospheric conditions and different sampling rates in different regions) is also
apparent from the animated maps.

It is worth pointing out that the “smoothed” data, Z̃ ≡ {X̂CO2(xi, yi; ti) :
i = 1, . . . , n}, are different from the original radiances, Z ≡ {Z(xi, yi; ti) : i =

1, . . . , n}. Thus, [Y |Z̃, θ] is different from [Y |Z, θ]. Basing scientific inference
on the latter, which contains all the data, is to be preferred, but practical
considerations and tradition mean that the information-reduced, Z̃ = f(Z), is
used for problems such as flux estimation.

Since there is strong interest from the carbon-cycle-science community in
regional surface fluxes, horizontal averaging should be a more interpretable
summary of Y than vertical averaging. Let g1(Y(x, y; t)) denote the surface
CO2 concentration with units of mass/area. For example, this could be obtained
by extrapolating the near-surface CO2 information in Y0(x, y; t). Then define

Y (x, y; t) ≡
∫
R(x,y)

g1(Y (u, v; t)) dudv
/∫

R(x,y)
dudv,
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and
gH(Y ) ≡ {Y (x, y; t) : (x, y) ∈ Dg, t ∈ Dt}, (1.17)

where the subscript H signifies horizontal averaging, and where R(x, y) is a
prespecified spatial process of areal regions on the geoid that defines the hori-
zontal averaging. (It should be noted that R could also be made a function of
t, and indeed it probably should change with season.) For a prespecified time
increment τ , define

∆(x, y; t) ≡ {Y (x, y; t+ τ)− Y (x, y; t)}/τ,

with units of mass/(area× time). Then the flux field is

gF (Y ) ≡ {∆(x, y; t) : (x, y) ∈ Dg, t ∈ Dt}. (1.18)

At this juncture, it is critical that the vector of estimated CO2 in the column,
namely, Y∗0(xi, yi; ti), replaces X̂CO2(xi, yi; ti) to define the smoothed data,

Z̃. Then the data model [Z̃|Y, θ] changes, but critically the spatio-temporal
statistical model for [Y |θ] is the same as that used for vertical averaging. Recall
the equivariance property that if Y is sampled from the predictive distribution
(1.6) or (1.8), the corresponding samples from gH(Y ) and gF (Y ) yield their
corresponding predictive distributions. The HM paradigm allows other data
sources (e.g., in situ TCCON measurements, data from other remote sensing

instruments) to be incorporated into Z̃ seamlessly (e.g., [31]).
The choice of τ is at the granularity of Dt, and the choice of R depends

on the question being asked and the roughness of Earth’s surface relative to
the question. In a classical bias-variance trade-off, one wants R(x, y) to be large
enough for gF (x, y; t) to capture the dominant variability and small enough that
the flux in R(x, y) is homogeneous.

Carbon-cycle science has accounted for much of the dynamics of CO2, but
the carbon budget has consistently shown there to be a missing sink (or sinks).
The OCO-2 instrument, with its almost pinpoint accuracy and high sensitivity
near Earth’s surface, offers an unprecedented opportunity to accurately estimate
the sinks. From that point of view, the parts of Y that are of interest are lower
quantiles of gF (Y ), along with the (lon, lat)-regions where those quantiles occur.
In Section 1.6, I argue that these queries of the process gF (Y ) can be formalised
in terms of loss functions; Zhang et al. [45] give an illustration of this for decadal
temperature changes over the Americas.

This different approach to flux estimation is centrally statistical, and it is
based on a spatio-temporal model for [Y |θ]. There is another approach, one
that bases [Y |θ] on an atmospheric transport model to incorporate the physical
movement of voxels in the atmosphere and, consequently, the physical movement
of CO2 (e.g., [7, 19, 21, 28]). Motivated by articles such as Gourdji et al.
[19], I expect that the two approaches could be combined, creating a physical-
statistical model.

When [Y |θ] is different, the predictive distribution given by (1.8) is different,
and clearly when L in (1.9) is different, the optimal estimate given by (1.9) is
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different. This opens up a whole new way of thinking about flux estimation and
quantifying its uncertainty, which is something I am actively pursuing as part
of the OCO-2 Science Team.

1.5.2 Regional climate change projections

Climate is not weather, the latter being something that interests us on daily
basis. Generally speaking, climate is the empirical distribution of temperature,
rainfall, air pressure, and other quantities over long time scales (30 years, say).
The empirical mean (i.e., average) of the distribution is one possible summary,
often used for monitoring trends, although empirical quantiles and extrema may
often be more relevant summaries for natural-resource management. Regional
climate models (RCMs) at fine scales of resolution (20–50 km) produce these
empirical distributions over 30-year time periods and can allow decision-makers
to project what environmental conditions will be like 50–60 years in the future.

Output from an RCM is obtained by discretising a series of differential equa-
tions, coding them efficiently, and running the programs on a fast computer.
From that point of view, an RCM is deterministic, and there is nothing stochas-
tic or uncertain about it. However, uncertainties in initial and boundary con-
ditions, in forcing parameters, and in the approximate physics associated with
the spatial and temporal discretisations (e.g., [17, 18, 44]), allow us to introduce
a probability model for the output, from which we can address competing risks
(i.e., probabilities) of different projected climate scenarios. The RCM output
can certainly be summarised statistically; in particular, it can be mapped. There
is a small literature on spatial statistical analyses of RCMs, particularly of out-
put from the North American Regional Climate Change Assessment Program
(NARCCAP), administered by NCAR in Boulder, Colorado [23, 24, 27, 38]. My
work in this area has involved a collaboration with NCAR scientists.

Kang and Cressie [23] give a comprehensive statistical analysis of the 11,760
regions (50×50 km pixels) in North America, for projected average temperature
change, projected out to the 30-year-averaging period, 2041–2070. The technical
features of our article are: it is fully Bayesian; data dimension is reduced from
the order of 100,000 down to the order of 100 through a Spatial Random Effects,
or SRE, model [11]; seasonal variability is featured; and consensus climate-
change projections are based on more than one RCM. Suppose that the quantity
of scientific interest Y is temperature change in degrees Celsius by 2070, which
is modelled statistically as,

Y (s) = µ(s) + S(s)′η + ξ(s); s ∈ North America, (1.19)

where µ(·) captures large-scale trends, and the other two terms on the right-
hand side of (1.19) are Gaussian processes that represent, respectively, small-
scale spatially dependent random effects and fine-scale spatially independent
variability. The basis functions in S(·) include 80 multi-resolutional bisquare
functions and five indicator functions that capture physical features such as
elevation and proximity to water bodies. This defines [Y |θ].
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Importantly, the 30-year-average temperature change obtained from the
NARCCAP output (i.e., the data, Z) is modelled as the sum of a spatial process
Y and a spatial error term that in fact captures spatio-temporal interaction:

Z(s) = Y (s) + ε(s); s ∈ North America, (1.20)

where ε(·) is a Gaussian white-noise process with a variance parameter σ2
ε . This

defines [Z|Y, θ]. The target for inference is the spatial climate-change process
Y , which is “hidden” behind the spatio-temporal “noisy” process Z. A prior
distribution, [θ], is put on θ, and (1.6) defines the predictive distribution.

Here, θ is made up of the vector of spatial-mean effects µ, cov(η), var(ξ(·)),
and σ2

ε , and the prior [θ] is specified in the Appendix of Kang and Cressie
[23]. From (1.6), we can deduce the “red zone” of North America in Figure 1.2.
There, with 97.5% probability calculated pixel-wise, any 50×50 km pixel’s Y (s)
that is above a 2◦C sustainability threshold is coloured red. Here, Y and θ
together are over 100, 000 dimensional, but the computational algorithms based
on dimension reduction in the SRE model do not “break.”

Since MCMC samples are taken from a (more than) 100,000-dimensional
posterior distribution, many such probability maps like Figure 1.2 can be pro-
duced. For example, there is great interest in extreme temperature changes, so
let k denote a temperature-change threshold; define the spatial probability field,

Pr (Y (·) > k|Z); k ≥ 0. (1.21)

As k increases in (1.21), the regions of North America that are particularly
vulnerable to climate change stand out. Decision-makers can query the BHM
where, for NARCCAP, the query might involve the projected temperature in-
crease in the 50 × 50 km pixel containing Columbus, Ohio. Or, it might involve
the projected temperature increase over the largely agricultural Olentangy River
watershed (which contains Columbus). From (1.6), one can obtain the probabil-
ities (i.e., risks) of various projected climate-change scenarios, which represent
real knowledge when weighing up mitigation and adaptation strategies at the
regional scale.

This HM approach to uncertainty quantification opens up many possibili-
ties: Notice that the occurrence-or-not of the events referred to above can be
written as I(Y (sC) > k) and I(

∫
O
Y (s) ds/

∫
O

ds > k), where I(·) is an in-
dicator function, sC is the pixel containing Columbus, and O is the set of all
pixels in the Olentangy River watershed. Then squared-error loss implies that
E(I(Y (sC) > k)|Z) = Pr(Y (sC) > k|Z) given by (1.21) is optimal for estimat-
ing I(Y (sC) > k). Critically, other loss functions would yield different optimal
estimates, since (1.7) depends on the loss function L. A policy maker’s question
translated into a loss function yields a tailored answer to that question. Quite
naturally in statistical decision theory, different questions are treated differently
and result in different answers.

More critically, the average (climate change over 30 years) Y can be replaced
with an extreme quantile, say the 0.95 quantile, which I denote here as g(.95)(Y );
this hidden process corresponds to temperature change that could cause extreme
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Figure 1.2: Regions of unsustainable (> 2◦C with predictive probability 0.975)
temperature increase obtained from pixel-wise predictive distributions, [Y (s)|Z],
where s ∈ North America.

stress to agricultural production in, for example, the Hunter Valley, NSW, Aus-
tralia. Such projections for farmers in the “stressed” regions would be invaluable
for planning crop varieties that are more conducive to higher temperature/lower
rainfall conditions. That is, I propose making inference directly on extremal pro-
cesses, and decisions should be made with loss functions that are tailor-made to
the typical “what if” queries made by decision-makers.

Furthermore, output could have non-Gaussian distributions; for example,
quantiles of temperature or rainfall would be skewed, for which spatial gener-
alised linear models [16, 39] would be well suited: In this framework, (1.20) is
replaced with the data model,

[Z(s) = z|Y, θ] = Exp(z; E(Z(s)|Y (s), θ)), (1.22)

which are conditionally independent for pixels s ∈ North America. In (1.22),
Exp denotes the one-parameter exponential family of probability distributions.
Now consider a link function `(·) that satisfies, `(E(Z(s)|Y (s), θ)) = Y (s); on
this transformed scale, climate change Y (·) is modelled as the spatial process
given by (1.19). In Sengupta and Cressie [39] and Sengupta et al. [40], we have
developed spatial-statistical methodology for very large remote sensing datasets
based on (1.22), that could be adapted to RCM projections. That methodology
gives the predictive distribution, (1.10), which is summarised by mapping the
predictive means, the predictive standard deviations (a measure of uncertainty),
and the predictive extreme quantiles. Other data models could also be used in
place of (1.20), such as the extreme-value distributions.
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Increases in temperature generally lead to decreases in water availability,
due to an increase in evaporation. By developing conditional-probability dis-
tributions of [Temperature] and [Rainfall|Temperature], we can infer the joint
behaviour of [Rainfall,Temperature]. This is in contrast to the bivariate analysis
in Sain et al. [37], and it is a further example of the utility of a conditional-
probability modelling approach, here embedded in a multivariate hierarchical
statistical model.

1.6 The knowledge pyramid

The knowledge pyramid has data at its base, information at its next tier, knowl-
edge at its third tier, and decision-making at its apex. In the presence of un-
certainty, I propose that EI have at its core the following steps: convert data
into information by exploring the data for structure; convert information into
knowledge by modelling the variability and inferring the etiology; and prepare
the knowledge for decision-makers by translating queries into loss functions.
These may not be the usual squared-error and 0-1 loss functions, which are
often chosen for convenience. They may be asymmetric and multivariable, to
reflect society’s interest in extreme environmental events. Associated with each
loss function (i.e., a query) is an optimal estimator (i.e., a wise answer) based
on minimising the predictive expected loss; see (1.7) where the predictive risks
(i.e., probabilities) and loss interact to yield an optimal estimator.

The societal consequences of environmental change, mitigation, and adapta-
tion will lead to modelling of complex, multivariate processes in the social and
environmental sciences. Difficult decisions by governments will involve choices
between various mitigation and adaptation scenarios, and these choices can be
made, based on the risks together with the losses that are built into EI’s uncer-
tainty quantification.

1.7 Conclusions

Environmental Informatics has an important role to play in quantifying uncer-
tainty in the environmental sciences and giving policy-makers tools to make so-
cietal decisions. It uses data on the world around us to answer questions about
how environmental processes interact and ultimately how they affect Earth’s
organisms (including Homo sapiens). As is the case for bioinformatics, environ-
mental informatics not only requires tools from statistics and mathematics, but
also from computing and visualisation. Although uncertainty in measurements
and scientific theories mean that scientific conclusions are uncertain, a hierarchi-
cal statistical modelling approach gives a probability distribution on the set of
all possibilities. Uncertainty is no reason for lack of action: Competing actions
can be compared through competing Bayes expected losses.

The knowledge pyramid is a useful concept that data analysis, HM, optimal
estimation, and decision theory can make concrete. Some science and policy
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questions are very complex, so I am advocating an HM framework to capture
the uncertainties and a series of queries (i.e., loss functions) about the scientific
process to determine an appropriate course of action. Thus, a major challenge is
to develop rich classes of loss functions that result in wise answers to important
questions.
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