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A faster and computationally more efficient REML (PX)EM algorithm for linear
mixed models
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Summary: Residual maximum likelihood is the preferred method for estimating variance parameters associated with a linear
mixed model. Typically an iterative algorithm is required for the estimation of these parameters. Two algorithms which can
be used for this purpose are the EM algorithm and the PX-EM algorithm. Both require specification of the complete data
which comprises the incomplete and missing data. We consider a new incomplete data specification which is computationally
more efficient than alternative specifications. In the example considered the new incomplete data specification results in the
algorithm converging in 30% fewer iterations than the alternative specification. We describe the conditions necessary for this
faster rate of convergence to apply in other cases.

Key words: EM algorithm; PX-EM algorithm; Linear mixed model; Variance components; Residual maximum likelihood.

1. Introduction

Linear mixed models are routinely applied to biological data
arising from designed experiments. The preferred method
for estimating the parameters associated with these mod-
els is residual maximum likelihood (REML) (Patterson and
Thompson, 1971). Many statistical software packages avail-
able for the REML estimation of parameters associated with
linear mixed models implement a Newton-Raphson type al-
gorithm such as the Fisher scoring algorithm or the aver-
age information algorithm (Gilmour, Thompson, and Cullis,
1995). There are two problems with these types of algorithms.
Firstly, successive iterations of these algorithms are not guar-
anteed to increase the residual log-likelihood function. Sec-
ondly, parameter updates may not remain in their parameter
space. Either may result in the algorithm failing to converge
to a solution.

The EM algorithm (Dempster, Laird, and Rubin, 1977)
and the parameter expanded EM (PX-EM) algorithm (Liu,
Rubin, and Wu, 1998) have the desirable properties of mono-
tonic convergence and parameter updates remaining in their
parameter space. Dempster et al. (1977) and Liu et al.
(1998) only consider maximum likelihood estimation although
REML estimation is briefly mentioned by Dempster et al.
(1977) in their variance components example. A REML EM
algorithm to estimate the parameters associated with a linear
mixed model applied to longitudinal data was considered by
Laird and Ware (1982) and Foulley, Jafrezic, and Robert-
Cranie (2000). A REML PX-EM algorithm for linear mixed
models was considered by Foulley and Van Dyk (2000). In
all the aforementioned papers REML estimates of variance
parameters were obtained by considering the vector of fixed
effects to have a variance tending to infinity. This is the
approach briefly described by Dempster et al. (1977).

Before the REML EM or REML PX–EM algorithm can

be considered practical alternatives to Newton-Raphson type
algorithms two issues need to be addressed. Firstly, they can
be notoriously slow to converge, particularly the REML EM
algorithm. Secondly, compared to the average information
algorithm, current implementations of these two algorithms
are computationally more expensive at each iterate. This
increased computational expense relates to calculating the
trace of a matrix of the same order as the length of the
observed data vector.

The purpose of this paper is to present a new incomplete
data specification of a REML EM and REML PX–EM al-
gorithm for linear mixed models. This new incomplete data
specification is computationally more efficient and we describe
the conditions under which this new specification will have a
faster rate of convergence than current specifications.

This paper proceeds in four parts. First, we provide a
statistical background which consists of a linear mixed model
formulation, Henderson’s mixed model equations (Henderson
et al., 1959), and a conditional derivation of REML (Verbyla,
1990). Second, we consider two alternative complete data
specifications for a REML EM algorithm. This consists of the
complete data specification used in current implementations
of a REML EM algorithm for linear mixed models and a
new implementation based on a new incomplete data spec-
ification. We compare the computational requirements of the
new implementation to current implementations. We sketch a
proof that this new implementation will converge to a (local)
maximum of the residual log–likelihood function and present
the conditions necessary for the new implementation to have
a faster rate of convergence. Third, we consider a REML
PX–EM algorithm for linear mixed models using the new
implementation. Fourth, we illustrate the use of the current
and new implementation of both a REML EM and REML



PX–EM algorithm for linear mixed models by considering an
example.

2. Statistical background

2.1 Linear mixed model formulation

The linear mixed model can be written as

yo = Xβ +Zu+ e (1)

where yo is a n×1 vector of observed data, β is a t×1 vector
of fixed effects and X is its associated design matrix and is
assumed to be of full column rank. The n×b design matrixZ is
associated with the vector of random effects u ∼ N{0,G(γ)}.
The matrix G(γ) is assumed positive definite and depends
on the parameter vector γ. It is assumed that e ∼ N(0,R)
where R = σ2Σ(ϕ) and the matrix Σ(ϕ) is assumed positive
definite and depends on the parameter vector ϕ. The joint
distribution of yo, u, and e is(

yo

u
e

)
∼ N

{(
Xβ
0
0

)
,

(
H ZG R

GZT G 0
R 0 R

)}
.

(2)

where H = ZGZT + R. The superscript T denotes matrix
transpose. The aim is to estimate the parameter vector θ =
(βT ,κT )T where κ = (γT , σ2,ϕT )T is a vector of variance
parameters.

2.2 Henderson’s mixed model equations

Dempster et al. (1977) in Section 4.4 of their paper provide an
example of an EM algorithm for a linear mixed model. They
note that

in the context of linear models...the relevance of incomplete-
data concepts is at first sight remote.

We believe Henderson’s mixed model equations is a natural
place to start when considering an EM algorithm for the linear
mixed model. A maximum likelihood (ML) EM algorithm for
a linear mixed model and Henderson’s mixed model equations
are both derived by considering the same log-density function.
Furthermore, we use the coefficient matrix associated with
Henderson’s mixed model equations and its inverse to com-
pare the computational requirements of alternative REML
EM and REML PX–EM algorithms.

Henderson’s mixed model equations are derived by consid-
ering the log joint density function of yo and u, i.e.

log{f(yo,u;θ)} = log{f(yo|u;θ)}+ log{f(u;γ)}.

Obtaining the conditional distribution f(yo|u;θ) requires
a well known result in multivariate normal statistics and using
the joint distribution given in (2). The conditional distribution
f(yo|u;θ) is

yo|u ∼ N(Xβ +Zu,R).

The log joint density function of yo and u is therefore
(excluding constants)

log{f(yo,u;θ)} = −1

2

[
log{det(R)}+ log{det(G)}

+(yo −Xβ −Zu)TR−1(yo −Xβ −Zu) + uTG−1u
]
.

(3)

Maximising (3) with respect to β and u and equating to
zero gives Henderson’s mixed model equations

XTR−1Xβ̂ −XTR−1Zũ = XTR−1yo

ZTR−1Xβ̂ − (ZTR−1Z +G−1) = ZTR−1yo,

where β̂ is the best linear unbiased estimator (BLUE) of β
and ũ is the best linear unbiased predictor (BLUP) of u.
When expressed in matrix notation the coefficient matrix of
Henderson’s mixed model equations can be written

C =

(
XTR−1X XTR−1Z
ZTR−1X ZTR−1Z +G−1

)
=

(
CXX CXZ

CZX CZZ

)
and the inverse of the coefficient matrix as

C−1 =

(
CXX CXZ

CZX CZZ

)
where CXX = (XTH−1X)−1, CXZ = CZXT

=
−(XTH−1X)−1XTH−1ZG, CZZ = (ZTSZ + G−1)−1,
and S = R−1−R−1X(XTR−1X)−1XTR−1. We will define
the conditional variances required for computation of the E–
step in the REML EM and REML PX–EM algorithm for
linear mixed models in terms related to the coefficient matrix
of Henderson’s mixed model equations.

2.3 A conditional derivation of REML

The preferred method for estimating the variance parame-
ters associated with a linear mixed model is residual or re-
stricted maximum likelihood (REML). The original reference
for REML is the paper by Patterson and Thompson (1971),
however the new implementation of a REML EM and REML
PX–EM algorithm for linear mixed models is based on the
conditional derivation of REML presented in Verbyla (1990).
The conditional derivation of REML begins by considering
the transformation

LTyo =

(
LT

1 yo

LT
2 yo

)
=

(
y1

y2

)
where L = (L1,L2) is a non-singular matrix, L1 and L2 are
n× t and n×(n− t) matrices respectively, both of full-column
rank and chosen to satisfy LT

1 X = It and LT
2 X = 0. The

distribution of the transformed data is(
y1

y2

)
∼ N

{(
β
0

)
,

(
LT

1 HL1 LT
1 HL2

LT
2 HL1 LT

2 HL2

)}
The joint distribution of y1 and y2 can be expressed as the

product of the marginal distribution of y2 and the conditional
distribution y1|y2. Therefore, the log-likelihood function of
LTyo can be expressed as

ℓ(θ;LTyo) = ℓ(κ;y2) + ℓ(θ;y1|y2) (4)
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Since the vector y1 is of length t the conditional log-
likelihood function ℓ(θ;y1|y2) is used to estimate the fixed
effects, after which there is no information left for the esti-
mation of variance parameters. Therefore, the log-likelihood
function associated with the marginal density of κ, i.e.,
ℓ(κ;y2) is used for the REML estimation of variance param-
eters and can be expressed as

ℓ(κ;y2) = − 1
2

[
(n− t) log(2π) + log{det(LTL)}

+ log{det(H)}+ log{det(XTH−1X)}+ yT
o Pyo

]
(5)

where P = H−1 − H−1X(XTH−1X)−1XTH−1. Ignoring
the constant log{det(LTL)} in (5) results in the form of the
residual log-likelihood function most commonly presented.

3. Two alternative complete data specifications

3.1 Current implementations of a REML EM algorithm for
the linear mixed model

Current implementations of REML EM and REML PX–EM
algorithms for linear mixed models consider the vector of fixed
effects β to be a random effect with variance tending to infin-
ity. We will refer to this implementation as the random effects
approach. Using this approach we will consider β ∼ N(0,B)
and the complete data to be defined as y(P )

c = (yT
o ,β

T ,uT )T

where the superscript P on yc will be used to distinguish
this complete data specification from the new complete data
specification presented shortly. The random effects approach
is the approach briefly described by Dempster et al. (1977)
and followed by others including Laird and Ware (1982),
Foulley et al. (2000), and Foulley and Van Dyk (2000). We
define the joint distribution of yo, β, u, and e as yo

β
u
e

 ∼ N


 0

0
0
0

 ,

 F XB ZG R
BXT B 0 0
GZT 0 G 0
R 0 0 R




,

(6)

where

F = XBXT +ZGZT +R

= XBXT +H

and F−1 = H−1 − H−1X(B−1 + XTH−1X)−1XTH−1.
The random effect approach assumes that the variance of β
tends to infinity, i.e., B−1 → 0. Therefore

F−1 → H−1 −H−1X(XTH−1X)−1XTH−1,

F−1 → P .

We will assume that if B−1 → 0 then F−1 can be approx-
imated by P . The complete data log–density function can be
written

log{f(yc;θ)} = −1

2

[
log{det(R)}+ log{det(G)}

+uTG−1u+ eTR−1e
]
, (7)

which is equivalent to the log–joint density function of yo

and u used to derive Henderson’s mixed model equations and
presented in (3) except we have used the substitution e =
yo −Xβ −Zu.

The E–step of a REML EM algorithm using y(P )
c involves

taking the conditional expectation of the complete data log
density function in (7) with respect to yo and at the current
iterate of θ, denoted θ(w), i.e.,

Q(P )(θ;θ(w)) = E
[
log{f(y(P )

c ;θ)}|yo;θ
(w)
]

= E
[
log{f(e;θ)}|yo;θ

(w)
]

+E
[
log{f(u;γ)}|yo;θ

(w)
]

= Q(P )(σ2,ϕ;θ(w)) +Q(P )(γ;θ(w)).

Computation of Q(P )(σ2,ϕ;θ(w)) and Q(P )(γ;θ(w)) re-
quires the conditional distributions e|yo and u|yo respec-
tively. Using (6) it can be shown that

e|yo ∼ N
(
RPyo,WC−1W T

)
u|yo ∼ N

(
GZTPyo,C

ZZ
)

where W = (X Z) is a n × (t + b) matrix. Using these two
results we can write

Q(P )(σ2,ϕ;θ(w)) = −1

2

[
log{det(R)}+ ẽ(w)T R−1ẽ(w)

+tr
(
R−1WC−1(w)

W T
)]
,

Q(P )(γ;θ(w)) = −1

2

[
log{det(G)}+ ũ(w)T G−1ũ(w)

+tr
(
G−1CZZ(w))]

,

where ẽ(w) = R(w)P (w)yo and ũ(w) = G(w)ZTP (w)yo. A
distinguishing feature of the E–step associated with using
the complete data specification y(P )

c is that Q(P )(σ2,ϕ;θ(w))
requires calculating the trace of n× n matrix which involves
the inverse of the full coefficient matrix associated with Hen-
derson’s mixed model equations.

The M-step of a REML EM algorithm for linear mixed
models using y(P )

c involves maximising Q(P )(σ2,ϕ;θ(w)) and
Q(P )(γ;θ(w)) with respect to σ2,ϕ and γ respectively. An
estimate for β can be obtained at the end of the REML EM
algorithm by using the generalised least squares estimate of
β. Although we have presented the random effects approach
to implementing a REML EM algorithm it is worth noting
that Cullis et al. (2004) and Knight, E. (2008) derived exactly
the same parameter updates by considering β as fixed. The
difference between their fixed effects approach and the ran-
dom effects approach was that in the E–step the conditional
expectation is with respect to y2 rather than yo.

3.2 A new implementation of a REML EM algorithm for the
linear mixed model

We consider a linear mixed model specified in the same way
as in Section 2.1. We define a new complete data specification
y(U)
c = (yT

2 ,u
T )T . This differs from the previously published

specification y(P )
c = (yT

o ,β
T ,uT )T by considering the in-

complete data to be the transformed observed data vector



associated with the marginal log–density function in (5) which
is used for the REML estimation of variance parameters. To
form the complete data log density function requires the joint
distribution of y2 and u, i.e.,(

y2

u

)
∼ N

{(
0
0

)
,

(
LT

2 HL2 LT
2 ZG

GZTL2 G

)}
.

The complete data log density function using y(U)
c can be

written (excluding constants)

log{f(y(U)
c ;κ)} = −1

2

[
log{det(LT

2 RL2)}+ log{det(G)}

+(yo −Zu)TS(yo −Zu) + uTG−1u
]
.

(8)

The relationship between the complete data log density
functions based on y(U)

c and y(P )
c can be shown to be

log{f(y(P )
c ;θ)} = log{f(y(U)

c ;κ)}+ log{f(y1|y2;θ)},

which is similar to the relation presented in (4) based on
the Verbyla (1990) conditional derivation of REML. This
suggests that using the complete data specification y(P )

c would
be similar to using ℓ(θ;LTyo) for the REML estimation of
variance parameters. While it is possible to use both com-
plete data specifications for the REML estimation of variance
parameters the task is simplified when considering the com-
plete data specification y(U)

c . The advantages of using y(U)
c

compared to y(P )
c are more apparent when considering the

E–step of a REML EM algorithm based on the complete data
specification y(U)

c . The E–step involves taking the conditional
expectation of the complete data log density function in (8)
with respect to y2 and at the current iterate of κ, denoted
κ(w), i.e.,

Q(U)(κ;κ(w)) = E
[
log{f(y(U)

c ;κ)}|y2;κ
(w)
]

= E
[
log{f(LT

2 e;σ
2,ϕ)}|y2;κ

(w)
]

+E
[
log{f(u;γ)}|y2;κ

(w)
]

= Q(U)(σ2,ϕ;κ(w)) +Q(U)(γ;κ(w)).

Computation of Q(U)(σ2,ϕ;κ(w)) and Q(U)(γ;κ(w)) only
requires the conditional distribution u|y2 which is equivalent
to u|yo when using the random effects approach of y(P )

c =
(yT

o ,β
T ,uT )T . We can write

Q(U)(σ2,ϕ;κ(w)) = −1

2

[
log{det(LT

2 RL2)}

+(yo −Zũ(w))TS(yo −Zũ(w))

+tr
(
ZTSZCZZ(w))]

,

Q(U)(γ;κ(w)) = Q(P )(γ;θ(w)).

The M-step of a REML EM algorithm for linear mixed
models using y(U)

c involves maximising Q(U)(σ2,ϕ;κ(w)) and
Q(U)(γ;κ(w)) with respect to σ2,ϕ and γ respectively.

It is worth noting that although y2 comprises the incom-
plete data of y(U)

c it does not need to be explicitly formed. In
regard to the E–step there are two advantages to using y(U)

c

compared to y(P )
c . Firstly, only one conditional distribution is

required, namely u|y2, when using y(U)
c . Secondly, y(U)

c only
requires calculating traces of matrices of order b. These involve
only a subset of the inverse of the coefficient matrix associated
with Henderson’s mixed model equations, i.e., CZZ . The
complete data specification y(P )

c requires calculating the trace
of a matrix of order n which involves the full inverse of the
coefficient matrix associated with Henderson’s mixed model
equations. The E–step of a REML EM algorithm for linear
mixed models is the same as the E–step of a REML PX–EM
algorithm. Therefore, either algorithm where the incomplete
data is considered to be y2 will be computationally more
efficient. This increase in computational efficiency depends
on the size of n and the relative sizes of n and b.

3.3 Sketch of a proof that using y(U)
c = (yT

2 ,u
T )T will

converge to a (local) maximum of the residual
log–likelihood function

We only sketch a proof here since a thorough derivation can be
obtained by following the example of Dempster et al. (1977)
Section 3. We begin by defining g(y2;κ) as the marginal
density function of y2 and k(u|y2;κ) as the conditional
density function of u given y2 so that we can write

log{f(y(U)
c ;κ)} = log{g(y2;κ)}+ log{k(u|y2;κ)} (9)

Rearranging and taking the conditional expectation of both
sides of (9) with respect to y2 and at the current iterate of κ,
denoted κ(w), i.e., the E-step of the EM algorithm, we have

ℓ(κ;y2) = Q(U)(κ;κ(w))−H(U)(κ;κ(w))

where Q(U)(κ;κ(w)) = E[log{f(y(U)
c ;κ)}|y2;κ

(w)] and
H(U)(κ;κ(w)) = E[log{k(u|y2;κ)}|y2;κ

(w)]. By choosing an
update of κ(w), denoted κ(w+1), such that Q(U)(κ;κ(w+1)) >
Q(U)(κ;κ(w)), i.e., the M-step of the EM algorithm, will
result in convergence to a (local) maximum of the residual
log-likelihood function since the difference H(U)(κ;κ(w+1))−
H(U)(κ;κ(w)) can be bounded through the use of Jensen’s
inequality.

3.4 Conditions necessary for a REML EM algorithm based
on y(U)

c = (yT
2 ,u

T )T to have a faster rate of convergence
than y(P )

c = (yT
o ,β

T ,uT )T

For ease of notation we define the complete data information
matrices associated with the variance parameters for y(U)

c and
y(P )
c , and the observed information matrix as

I(U)
c = I(U)

c (κ⋆;y(U)
c ) = −

{
∂2Q(U)(κ;κ⋆)

∂κ∂κT

}
κ=κ⋆,

I(P )
c = I(P )

c (κ⋆;y(P )
c ) = −

{
∂2Q(P )(κ;κ⋆)

∂κ∂κT

}
κ=κ⋆,

Io = Io(κ
⋆;yo),

where κ(w) has converged to κ⋆. The observed information
matrix can be calculated using the method of Louis (1982) or
Oakes (1999). We define the rate matrices

J (U)(κ⋆) = Id − I(U)−1

c Io,

J (P )(κ⋆) = Id − I(P )−1

c Io,
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which can be written as

Id −J (U)(κ⋆) = I(U)−1

c Io,

Id −J (P )(κ⋆) = I(P )−1

c Io.

The rate of convergence associated with the complete data
specification y(U)

c and y(P )
c is λmin{Id − J (U)(κ⋆)} and

λmin{Id−J (P )(κ⋆)} respectively (McLachlan and Krishnan,
1997, Section 3.9.1). The term λmin(.) refers to the minimum
eigenvalue. We aim to show

λmin{Id −J (U)(κ⋆)} > λmin{Id −J (P )(κ⋆)}, (10)

i.e., the rate of convergence of a REML EM algorithm using
the complete data specification y(U)

c is faster than the rate
of convergence of a REML EM algorithm using the complete
data specification y(P )

c . We have not been able to prove that
this inequality always holds. However, in our experience the
rate of convergence when using y(U)

c has always been faster
than that when using y(P )

c . By considering a Loewner partial
ordering (Horn and Johnson, 1990, Chapter 7) of the complete
information matrices associated with y(U)

c and y(P )
c we are

able to present the conditions under which the inequality in
(10) will hold.

If we consider the difference between I(P )
c and I(U)

c to be
positive definite then we can define the following Loewner
partial ordering

I(U)
c ≼ I(P )

c ,

and as a consequence we can write

I(U)−1

c ≽ I(P )−1

c ,

and

det(I(U)−1

c ) > det(I(P )−1

c ), (11)

det(I(U)
c ) 6 det(I(P )

c ), (12)

where going from (11) to (12) uses a result pertaining to the
determinant of a matrix inverse. Multiplying both sides of
(12) by det(Io) we have

det(I(U)−1

c ) det(Io) > det(I(P )−1

c ) det(Io),

det(I(U)−1

c Io) > det(I(P )−1

c Io),

det{Id −J (U)(κ⋆)} > det{Id −J (P )(κ⋆)}.

It follows that

λk

{
Id −J (U)(κ⋆)

}
> λk

{
Id −J (P )(κ⋆)

}
,

where λk(.) is a vector of k eigenvalues. If the k eigenvalues of
Id−J (U)(κ⋆) and Id−J (P )(κ⋆) are arranged in descending
order then

λmin

{
Id −J (U)(κ⋆)

}
> λmin

{
Id −J (P )(κ⋆)

}
,

which concludes the proof. The key part of the proof is the
inequality in (12). Elements of the complete data information
matrices for both y(U)

c and y(P )
c can be used to check if

the difference between I(P )
c and I(U)

c is positive definite for
particular cases.

4. A new REML PX–EM algorithm for linear mixed
models

From a practical implementation point of view a REML PX–
EM algorithm is preferred to a REML EM algorithm as there
is nothing to lose and often a lot to gain. Nothing to lose in
the sense that the REML PX–EM algorithm, like the REML
EM algorithm, has monotonic convergence and parameter
updates remain in their parameter space. Furthermore, the
E–step of a REML PX–EM algorithm is exactly the same
as the E-step of a REML EM algorithm. The gains in using
the PX–EM algorithm compared to the EM algorithm are in
rates of convergence. Liu et al. (1998) show that the PX–EM
algorithm has a rate of convergence that is no slower than the
EM algorithm but is often much faster.

Foulley and Van Dyk (2000) considered a REML PX–EM
algorithm for linear mixed models using the random effects
approach, i.e., where yo comprised the incomplete data and
where the vector of fixed effects β is considered a random
effect with variance tending to infinity. However, a REML
PX–EM algorithm where y2 comprises the incomplete data
has not been considered previously.

4.1 Linear mixed model formulation when using a REML
PX–EM algorithm

For the REML PX–EM algorithm the linear mixed model is
formulated by introducing the auxiliary parameter λ (say) so
that the linear mixed model in (1) is expanded to

yo = Xβ +ZΛf + ϵ, (13)

whereX andZ are n×t and n×b design matrices respectively,
and Λ = Λ(λ) is a b × b real invertible matrix which is
a function of the v × 1 auxiliary parameter vector λ. It is
assumed that the joint distribution of f and ϵ is(

f
ϵ

)
∼ N

{(
0
0

)
,

(
D 0
0 R∗

)}
,

where D = D(d) and R∗ = σ2
∗Σ∗(ϕ∗) are symmetric positive

definite matrices. The marginal distribution of yo under the
parameter expanded model is

yo ∼ N(Xβ,H∗)

where H∗ = ZΛDΛTZT + R∗. The expanded parameter
set for the model in (13) is K = (κ∗,λ

T )T where κ∗ =
(σ2

∗,d
T ,ϕT

∗ )
T . The subscript ∗ is used to distinguish variance

parameters associated with the linear mixed model specified
in (13) and the linear mixed model specified in (1). The
expanded parameter vector K must satisfy two conditions:

(1) K can be reduced to the original parameter vector
κ = (σ2,γT ,ϕT )T by a many-to-one reduction
function. For the model specified in (13) this reduction
function, labelled R is κ = (σ2,γT ,ϕT )T = R(K) =
(σ2

∗, vech(ΛDΛT ),ϕT
∗ )

T .

(2) When the auxiliary parameter λ is set to its null value
λ0 (say) the expanded complete data model is reduced to
the original complete data model. If we define u = Λf
then G = ΛDΛT and when Λ(λ0) = Ib the expanded
model in (13) is reduced to the original model in (1) with
u = f and G = D.



Liu et al. (1998) note that the idea of parameter expansion
is to perform a covariance adjustment between the imputed
missing data and the known incomplete data vector. In the
context of a REML PX–EM algorithm for a linear mixed
model the auxiliary parameter λ is used to “correct” the esti-
mate of G to produce an adjusted estimate. At convergence
there is no longer any need to adjust the estimate of G and
Λ(λ) = Ib.

4.2 REML PX–EM algorithm using y2 as the incomplete
data

For a REML PX–EM algorithm for the linear mixed model
we consider the complete data specification y(U)

cX
= (yT

2 ,f
T )T

where the subscript X is used to distinguish between a REML
PX–EM algorithm and a REML EM algorithm. For the pa-
rameter expanded model based on y(U)

cX
the joint distribution

of the incomplete and missing data is(
y2

f

)
∼ N

{(
0
0

)
,

(
LT

2 H∗L2 LT
2 ZΛD

DΛTZTL2 D

)}
.

(14)

where H∗ = ZΛDΛTZT + R∗. The complete data log
density function for y(U)

c is

log{fX (y(U)
c ;K)} = −1

2

[
log{det(LT

2 R∗L2)}

+ log{det(D)}+ fTD−1f

+(yo −ZΛf)TS∗(yo −ZΛf)
]
,

(15)

where S∗ = R−1
∗ − R−1

∗ X(XTR−1
∗ X)−1XTR−1

∗ . The E–
step of the REML PX–EM algorithm involves taking the
conditional expectation of the complete data log density func-
tion in (15) with respect to y2 and at the current iterate of

K(w) = {κ(w)T

∗ , (λ = λ0)
T }T . Setting the auxiliary parameter

equal to its null value at each iterate reduces the computations
in the REML PX–EM algorithm E–step to those of the REML
EM algorithm E–step. We can write

Q
(U)
X (K;K(w)) = E

[
log{fX (y(U)

c ;K)}|y2;K
(w)
]

= E
[
log{fX (LT

2 ϵ;K)}|y2;K
(w)
]

+E
[
log{fX (f ;d)}|y2;K

(w)
]

= Q
(U)
X (σ2

∗,ϕ∗,λ;K
(w)) +Q

(U)
X (d;K(w)),

where

Q
(U)
X (σ2

∗,ϕ∗,λ;K
(w)) = −1

2

[
log{det(LT

2 R∗L2)}

+E
{
(yo −ZΛf)TS∗(yo −ZΛf)|y2;K

(w)
}]

,

Q
(U)
X (d;K(w)) = −1

2

[
log{det(D)}

+E
(
fTD−1f |y2;K

(w)
)]

.

The M–step of the REML PX–EM algorithm in-
volves maximising Q

(U)
X (K;K(w)) with respect to K =

(σ2
∗,d

T ,ϕT
∗ ,λ

T )T and then applying the reduction function

R(K) = (σ2
∗, vech(ΛDΛT ),ϕT

∗ )
T to obtain estimates of κ =

(σ2,γT ,ϕT )T . If we assume for simplicity that R∗ = σ2
∗In

then it can be shown that the parameter updates for K are

σ2(w+1)

∗ =
1

n− t

{
(yo −Zũ(w))TK(yo −Zũ(w))

+tr
(
ZTKZCZZ(w))}

where K = In −X(XTX)−1XT .

d(w+1) =
1

b

{
ũ(w)T ũ(w) + tr

(
CZZ(w))}

,

λ(w+1) = A−1(w)

b(w)

where the elements of the b2 × b2 matrix A(w) are

a
(w)
gh,qr = ũ(w)T JT

qrZ
TS(w)Z

∂Λ(w)

∂λ
(w)
gh

ũ(w)

+tr
(
JT

qrZ
TS(w)Z

∂Λ(w)

∂λ
(w)
gh

CZZ(w)
)

where g, h, q, and r are 1, . . . , b and Jqr is a b × b indicator
matrix with a unit entry in row q, column r and zeros
elsewhere. The elements of the b2 × 1 vector b(w) are

b
(w)
gh = yT

o S
(w)Z

∂Λ(w)

∂λ
(w)
gh

ũ(w).

5. Example: lamb weight data

We apply a REML EM algorithm using the complete data
specifications y(P )

c and y(U)
c and a REML PX–EM algorithm

using the complete data specifications y(P )
cX

and y(U)
cX

. We only
present the parameter updating equations associated with the
REML PX–EM algorithms. The updating equations for the
REML EM algorithms are a special case of these equations
and can be obtained by making the substitution Λ = Ib.
We use equivalent starting values for both the REML EM
and REML PX–EM algorithms, however starting values are
reported in terms relevant to the REML EM algorithm as we
use an identity matrix of order b as the starting value for Λ
in the REML PX–EM algorithms. We use the convergence
criteria proposed by Foulley et al. (2000), i.e., the algorithm
is stopped when√

(κ(w+1) − κ(w))T (κ(w+1) − κ(w))/κ(w)T κ(w) < 10−8

We consider the lamb weight data presented in Callanan
and Harville (1991) which consists of birth weights (in
pounds) of single birth male lambs that are the progeny of
62 ewes. The age of the ewes are categorised into 3 groups.
The lambs were sired by one of 23 rams that belonged to 5
different population lines. A possible model for this data is to
fit sire as a random effect and the overall mean, age and line as
fixed effects. We define yo as a 62×1 vector of observed birth
weights, X = (1 Xa Xl) as a 62×7 design matrix of full col-
umn rank parameterized with the corner point constraint. The
term 1 is a 62×1 vector of 1’s. The design matricesXa andXl

are indicator matrices for the second and third age groups and
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the second to the fifth population line respectively. The vector
of fixed effects is similarly partitioned as β = (µ,βT

a ,β
T
l )

T .
It is assumed that u ∼ N(0, σ2

sI23), the vector of rescaled
random effects is f ∼ N(0, dI23), and the 62×23 matrixZ are
their associated design matrix. It is assumed that the vector
of residuals is distributed ϵ ∼ N(0, σ2

∗I62). The invertible
matrix associated with the working parameter is Λ = λI23

where λ is scalar. We define the variance parameter vector of
interest as κ = (σ2, σ2

s)
T and the expanded parameter vector

as K = (σ2
∗, d, λ)

T . We consider two sets of starting values,
κ(0) = (1, 0.01)T and κ(0) = (1, 5)T . The updating equations
for a REML PX–EM algorithm based on the complete data
specification y(P )

cX
= (yT

o ,β
T ,fT )T are

d(w+1) =
1

23

{
ũ(w)T ũ(w) + tr

(
CZZ(w))}

σ2(w+1)

∗ =
1

62

{
ẽ(w)T ẽ(w) + tr

(
WC−1(w)

W T
)}

λ(w+1) =
ũ(w)T ZT (yo −Xβ(w)) + tr

(
ZTXCXZ(w))

ũ(w)T ZTZũ(w) + tr
(
ZTZCZZ(w))

where β(w) is the generalised least squares estimate of β at
the w-th iterate. When using the complete data specification
y(U)
cX

= (yT
2 ,f

T )T the updating equation for d is the same as

that when using y(P )
cX

. The updating equations for the other
parameters are

σ2(w+1)

∗ =
1

55

{(
yo −Zũ(w))TK(yo −Zũ(w)

)
+tr
(
ZTKZCZZ(w))}

λ(w+1) =
yT
o KZũ(w)

ũ(w)T ZTKZũ(w) + tr
(
ZTKZCZZ(w))

Using these updating equations, the reduction function κ =
R(K) = (σ2

∗, dλ
2)T , and applying the convergence criteria to

the parameter vector κ = (σ2
s , σ

2)T , the REML estimates
of the variance parameters σ2 and σ2

s are σ̂2 = 2.9616 and
σ̂2
s = 0.5171.

Table 1
Iterations to convergence and rate of convergence (r)
for two REML EM and REML PX–EM algorithms

applied to the lamb weight data.

Algorithm yc Iter. r

REML EMa y(P )
c 1296 0.96307

REML EMa y(U)
c 1296 0.96300

REML PX–EMa y(P )
cX

83 0.81679

REML PX–EMa y(U)
cX

57 0.74350

REML EMb y(P )
c 342 0.96307

REML EMb y(U)
c 341 0.96300

REML PX–EMb y(P )
cX

78 0.81679

REML PX–EMb y(U)
cX

55 0.74350

aκ(0) = (1, 0.01)T

bκ(0) = (1, 5)T

1 2 3 4 5

1

2

3

4

5

σ̂s

2

ycX

(P) = (yo
T, βT, fT)T

ycX

(U) = (y2
T, fT)T

σ̂
2

Figure 1. Contour plot of the residual log-likelihood surface
for the lamb weight data and the first 4 iterations of the
REML PX–EM algorithms using the complete data specifi-

cation y(U)
cX

and y(P )
cX

. The starting values of σ2(0) = 1 and

σ2(0)

s = 5 are represented by the black circle. The REML
estimates of σ̂2 = 2.962 and σ̂2

s = 0.517 are represented by
the “target”.

6. Discussion

The new incomplete data specification, referred to as y2 and
based on the transformed observed data vector associated
with the marginal distribution in the conditional derivation
of REML (Verbyla, 1990) is a useful alternative to the in-
complete data specification yo. Table 1 highlights the benefit
of using a REML PX–EM algorithm compared to a REML
EM algorithm and using the complete data specification y(U)

cX

rather than y(P )
cX

. In the lamb weight data case, using a REML
PX–EM algorithm where the incomplete data is defined as
y2 results in a faster rate of convergence and convergence is
achieved in approximately 30% fewer iterations for both sets
of starting values considered. A contour plot of the REML log–
likelihood surface and the first four iterations of the REML
PX–EM algorithms using the complete data specification y(U)

cX

and y(P )
cX

is provided in Figure 1. This figure illustrates the
faster rate of convergence associated with using the com-
plete data specification y(U)

cX
. When using this complete data

specification a larger initial step is taken towards the REML
solution. By the third iterate a REML PX–EM using y(U)

cX
is

approximately equivalent to the fourth iterate of the REML
PX–EM algorithm using the complete data specification y(P )

cX
.

Figure 1 also highlights another feature of EM algorithms in
general, which is that they often get close to a solution quite
quickly but then take a long time to converge.

Our experience using a REML PX–EM based on specifying
the incomplete data as y2 is that it will result in a faster rate



of convergence and converge in fewer iterations than a REML
PX–EM algorithm where the incomplete data is specified as
yo. We have used Loewner partial ordering to describe the
conditions necessary for this to be the case. The other major
benefit in using a REML EM or REML PX–EM algorithm
where the incomplete data is specified as y2 is in regard to
computational efficiency.

There are two related aspects to the improvement in com-
putational efficiency when specifying the incomplete data as
y2. Firstly, the E–step of a REML EM or REML PX–EM
algorithm using the new incomplete data specification only
requires knowledge of one conditional distribution, namely
u|y2. In contrast, the E–step of a REML EM and REML
PX–EM algorithm using yo as the incomplete data requires at
least two conditional distributions, namely u|y2 and typically
e|y2. Secondly, REML EM and REML PX–EM algorithm
parameter updates involve computing the trace of a matrix.
For the new incomplete data specification this matrix is either
the b × b matrix CZZ or the b × b matrix ZTUZCZZ

where U is a projection matrix. When the incomplete data
is specified as yo this matrix is either CZZ or the n × n
matrix WC−1W T where W = (X Z). The latter involves
the inverse of the entire coefficient matrix associated with
Henderson’s mixed model equations whereas the former only
involves a smaller partition of this matrix. It is computing the
trace of WC−1W T which makes a REML EM or REML PX–
EM algorithm where the incomplete data is specified as yo less
computationally efficient than a REML EM or REML PX–
EM algorithm based on the new incomplete data specification.

Although the REML EM and REML PX–EM algorithm for
linear mixed models based on the new incomplete data speci-
fication is a step forward in terms of computational efficiency
further work is required before either of these two algorithms
can be easily implemented within existing software packages
using Newton-Raphson type algorithms. In the case of the
average information algorithm (Gilmour et al., 1995) the
only term computed in terms of the inverse of the coefficient
matrix associated with Henderson’s mixed model equations is
CZZ . The REML EM and REML PX–EM algorithm require
computing ZTUZCZZ . A potential area of future research
would be to study approximations of the trace of this matrix
only using terms that form part of the average information
algorithm computing strategy.

The improvements to the REML EM and REML PX–EM
algorithms presented in this paper make these two algorithms,
particularly the latter, more likely to be implemented along-
side Newton–Raphson type algorithms in statistical software
packages for linear mixed models. In such a situation this
would provide users of these models a viable alternative in
the event of a Newton–Raphson type algorithm failing.
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