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Abstract

If unit-level data are available, Small Area Estimation (SAE) is usually based on

models formulated at the unit level, but they are ultimately used to produce estimates

at the area level and thus involve area-level inferences. This paper investigates the

circumstances when using an area-level model may be more effective. Linear mixed

models fitted using different levels of data are applied in SAE to calculate synthetic es-

timators and Empirical Best Linear Unbiased Predictors (EBLUPs). The performance

of area-level models is compared with unit-level models when both individual and ag-

gregate data are available. A key factor is whether there are substantial contextual

effects. Ignoring these effects in unit-level working models can cause biased estimates

of regression parameters. The contextual effects can be automatically accounted for in

the area-level models. Using synthetic and EBLUP techniques, small area estimates

based on different levels of linear mixed models are studied in a simulation study.

Keywords: Contextual Effect; EBLUP; Ecological Fallacy; Small Area Estimation;

Synthetic Estimator.

1 Introduction

There are increasing demands for statistical information not only at national levels but also

for sub-national domains in many countries. Statistical Bureaus and survey organizations

are using sample surveys to produce estimates for the total population and possibly large

regions. However, there are often difficulties in producing useful and reliable estimates

for various local areas and other small domains using standard estimation methods due

to small sample sizes. Some areas may have no sample at all.
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Small area estimation (SAE) involves using techniques based on statistical models to

produce estimates for relatively small geographic sub-populations such as cities, provinces

or states, for which the available survey data does not allow the calculation of reliable

direct estimates. A wide variety of estimation methods have been developed to handle

SAE problems. Initially, demographic and design-based methods were used, but more

sophisticated model-based methods have been increasingly employed over the last two

decades (Khoshgooyanfard and Taheri Monazah, 2006). See Rao (2003), Longford (2005),

Lehtonen & Veijanen (2009), and Datta (2009) for comprehensive discussions on different

SAE methods.

Statistical models for small area estimation purposes can be formulated at the individ-

ual or aggregated levels. When sufficient information about the geographic indicators for

target areas are available for all individuals in the sample, the usual approach is to estimate

regression coefficients and variance components based on a unit-level linear mixed model.

However, it is also possible to aggregate the data to area level and estimate these param-

eters based on a linear model for the area means. When the unit-level model is properly

specified, the parameter estimates from the individual and aggregated level analysis will

have the same expectation but we would expect that parameter estimates obtained using

unit-level data to have less variance. However, in practice the parameter estimates from

different levels of data analysis often differ due to some model misspecifications. Given

that the targets of inference are at the area-level, the use of unit-level model includes

area-level inference, as well. The question arises as to whether it is sometimes preferable

to use an area-level analysis and under what conditions an area-level analysis may be

better. In practice, if the correct population model includes the contextual effect of the

area-level means of covariates, the area-level analysis should produce less biased estimates

of the regression coefficients.

The main purpose of this paper is to evaluate unit-level and area-level modeling ap-

proaches when both individual-level and aggregate data are available. Using a Mont-Carlo

simulation motivated by actual census data, parameter estimates based on different levels

of statistical modeling are studied when area-level means are involved in the unit-level

population model as contextual effects. In this study, the estimators will be calculated

based on synthetic and Empirical Best Linear Unbiased Predictor (EBLUP) methods. The
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effects of these methods on the efficiency of small area estimates are also evaluated.

2 Linear Mixed Models in Small Area Estimation

Indirect techniques for SAE purposes mostly rely on statistical models which relate the

variable of interest to a set of covariates for which data is collected in the survey and

auxiliary population information is available for each target sample area. Parameters of the

model can then be estimated using data for the entire sample which can be combined with

the auxiliary information available for each small area to produce small area estimates.

Efficient models usually include random effects to explain the variation between target

areas within the population that is not explained by the covariates available (Chambers

and Tzavidis, 2006). As mentioned before, statistical models utilized for SAE purposes

can be unit-level or area-level.

2.1 Unit- and Area-level Population Models

Consider a population of size N divided into K small areas with Nk individuals in the

kth small area (N =
∑K

k=1Nk). A unit-level linear mixed model for the population which

relates the unit population values of the study variable to unit-specific auxiliary variables

including both fixed and random effects is:

Yik = X′
ikβ + uk + eik ; i = 1, . . . , Nk & k = 1, . . . ,K

uk
iid∼ N(0, σ2

u) ; eik
iid∼ N(0, σ2

e)
(1)

where X′
ik = [1 Xik1 . . . XikP ] is a vector of P auxiliary variables for the ith unit within

the kth area and β′ = [β0 β1 . . . βP ] denotes the vector of unknown regression parameters.

The random effect for the kth area is denoted by uk and eik is the random error for the ith

individual within the kth area. The random effects and random errors are independently

distributed in the model.

Area-level models can be derived from the unit-level model by aggregating or averaging

the data to area levels. The area-level linear mixed model obtained from (1) for the
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population area means is given as:

Ȳk = X̄
′
kβ + uk + ēk ;

Ȳk =
1

Nk

K∑
i=1

Yik , uk
iid∼ N(0, σ2

u) & ēk =
1

Nk

Nk∑
i=1

eik ∼ N(0,
σ2
e

Nk
)

(2)

where X̄
′
k = [1 X̄k1 . . . X̄kP ] is the vector of population mean values for the P auxiliary

variables within the kth area.

The linear mixed models used in SAE relate the unit (or area) values of the study

variable to P unit-specific (or area-specific) auxiliary variables within the target population

can also be presented in matrix forms as follows:

Unit-Level Population Model :

Y = Xβ + Zu+ e

u ∼ N(0, σ2
u IK) ; e ∼ N(0, σ2

e IN )
(3)

Area-Level Population Model :

Ȳ = X̄β + u+ ē

u ∼ N(0, σ2
u IK) ; ē ∼ N

(
0, diag( σ

2
e

N1
, . . . , σ2

e
NK

)
)
.

(4)

Here, Y and e are column vectors with N elements, Ȳ and ē are column vectors with K

elements, X and X̄ are respectively N × (P +1) dimensional and K× (P +1) dimensional

matrices. β and u are two column vectors with (P + 1) and K elements, respectively.

Finally, Z is a N ×K dimensional matrix that includes 1s and 0s which assigns the same

value of uk to all the rows referring to the units within the kth area. Note that, matrices

are shown by bold print in this paper.

A basic area-level model seems appropriate when the data are available just at the

area level and the estimation process is possible only based on aggregate data. We will

consider the issue of whether there are advantages in using an area-level model when the

individual-level data is available, given that the final small area estimates are produced at

the area level.
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2.2 Parameter Estimation using Unit-level Data

Sample surveys allow inference about a large population when the resources available do

not permit collecting relevant information from every member of the target population.

In this paper, a sample s of size n is assumed to be selected from the target population

U. The part of the overall sample s which falls into the kth area is sk = s
∩
Uk and is of

size nk.

A direct estimate for a target small area is based only on the available data for that

area. It is often the case that reliable direct estimates can not be obtained based on the

available sample data due to small sample sizes in all or some of the areas. In order to

calculate model-based estimators, a model should be developed to specify the relationship

between the auxiliary information and variable of interest based on the available sample

data. In this paper, the term working model is used for the statistical model to be fitted on

the sample data and population model for the correct model assumed for the population

data. The working model may not be correct in practice.

A simple unit-level working model which can be fitted on individual-level sample data

is given as:

y = xβ + zu+ e ; u ∼ N(0, σ2
u IK) & e ∼ N(0, σ2

e In) (5)

It will be noted that, lowercase letters refer to sample statistics and uppercase to popula-

tion statistics. Hence, y is a vector which contains sample values for the target variable

and x denotes the matrix of auxiliary data values for the individuals falling into the sam-

ple. The corresponding data for sk are yk and xk. Here, z is a n×K dimensional matrix

that includes 1s and 0s which assigns the same value of uk to all the rows referring to the

units within the kth area. We assume that the sampling scheme used is noninformative,

so the same model can be used for the sample and population at the individual level. We

have assumed that there is at least one sample member in each small area, although the

situation where some small areas have no sample units is easily handled.

For the model given by (5), the likelihood is:

L(σ2
u, σ

2
e ;y) = c |Σ|−

1
2 exp

[
− 1

2
(y− xβ)′ Σ−1(y− xβ)

]
(6)
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where c is a constant and Σ is the block-diagonal variance-covariance matrix given as:

Σ = diag(Σk) where: Σk = σ2
uJnk

+ σ2
eInk

& Jnk
= 1nk

1′nk
. Let l(β, σ2

u, σ
2
e ; y) to be the

associated log-likelihood function:

l(β, σ2
u, σ

2
e ; y) = ln(c)− 1

2

K∑
k=1

ln|Σk| −
1

2

K∑
k=1

ς ′k Σ−1
k ςk (7)

where:

ςk = y− xβ & Σ−1
k = σ−2

e (Ink
− γk

nk
1nk

1′nk
) (8)

in which:

γk =
σ2
u

σ2
u + σ2

e
nk

. (9)

The ML estimates are then calculated by maximizing the right-hand side of the log-

likelihood equations (Ruppert et. al., 2003). Assuming σu and σe to be known, the ML

estimator for β is:

β̂U = (x′Σ−1x)−1x′Σ−1y (10)

where β̂U denotes the ML estimated value for the parameter vector β using the unit-level

sample data.

Longford (1993) considers the Fisher scoring algorithm for estimating a value for pa-

rameter θ:

θ(t+1) = θ(t) + I−1(θ(t)) S(θ(t)) (11)

where:

I(θ(t)) = −E
(

∂2l

∂θ ∂θ′

)∣∣∣∣
θ=θ(t)

& S(θ(t)) =
∂l

∂θ

∣∣∣∣
θ=θ(t)

(12)

The notations (t) and (t+1) denote the previous and new estimated values for these

parameters, respectively. Longford (1993) suggests a reparametrization using the variance

ratio λ = σ2
u/σ

2
e , so θ∗ = (β, σ2

e , λ). For the parameter λ,

∂l(θ∗; y)

∂λ
= −1

2

K∑
k=1

1′nk
W−1

k 1nk
+

1

2σ2
e

K∑
k=1

(
ς ′kW

−1
k 1nk

)2
(13)
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and,

−E
(∂2l(θ∗; y)

∂2λ

)
=

1

2

K∑
k=1

(
1′nk

W−1
k 1nk

)2
=

1

2

K∑
k=1

(
f−1
k 1′nk

1nk

)2

−E
(∂2l(θ∗; y)

∂β ∂λ

)
= x′∂W

−1

∂λ
E(eik) = 0

(14)

where fk = 1 + nkλ and

W = σ−2
e Σ ; Wk = σ−2

e

(
σ2
u 1nk

1′nk
+ σ2

e Ink

)
= λ 1nk

1′nk
+ Ink

W−1 = σ2
e Σ−1 ; W−1

k =
−σ2

u

σ2
e + nkσ2

u

1nk
1′nk

+ Ink
.

(15)

Then, given estimates β̂U
(t) and σ̂2

e(t) of β and σ2
e , respectively, the new estimated value for

the parameter λ can be calculated as follows:

λ̂(t+1) = λ̂(t) +

[
1

2

K∑
k=1

(f−1
k(t)1

′
nk
1nk

)2
]−1[

− 1

2

K∑
k=1

(f−1
k(t)1

′
nk
1nk

) +
1

2σ̂2
e(t)

K∑
k=1

(f−1
k(t)ς̂

′
k(t)1nk

)2
]

= λ̂(t) +

[
1

2

K∑
k=1

n2
k

f2
k(t)

]−1[
− 1

2

K∑
k=1

(
nk

fk(t)
) +

1

2σ̂2
e(t)

K∑
k=1

(f−1
k(t) ς̂

′
k(t) 1nk

)2
]

(16)

where fk(t) = 1 + nkλ(t) , and ς̂k(t) = yk − x′
kβ̂

U
(t). Initial values can be based on ordinary

least squares estimates. For the other parameters in θ∗,

β̂(t+1) = (x′Σ̂−1
(t+1) x)

−1x′Σ̂−1
(t+1) y

σ̂2
e(t+1) = ς̂ ′(t+1)Ŵ

−1
(t+1)ς̂(t+1),

(17)

where ς̂(t+1) = y− x′βU
(t+1).

Given the estimates of β and σ2
e , the sample data only affect the calculation in equation

(16) through ς̂ ′k(t)1nk
= nk(ȳk − x̄′

kβ̂
U
(t)), which are the area-level residuals. Detailed

discussion on this estimation approach is presented by Pinheiro and Bates (2000).

2.3 Parameter Estimation using Area-level Data

For aggregated-level data, a similar approach can be developed for parameter estimation.

The area-level model for the sample data is assumed to be derived by aggregating the
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unit-level working model given by (5) as follows:

ȳk = x̄′
kβ + ϵk (18)

where:

x̄′
k =

[
1 x̄k1 x̄k2 . . . x̄kP

]
(19)

and ϵk = uk + ēk. In the matrix form the model is:

ȳ = x̄′β + ϵ (20)

where,

ȳ′ = [ȳ1 ȳ2 . . . ȳK ] , x̄′ = [x̄1 x̄2 . . . x̄K ] & ϵ′ = [ϵ1 ϵ2 . . . ϵK ]. (21)

Then, the log-likelihood function for the area-level model is given by:

l(β, σ2
u, σ

2
e ; ȳ) = −1

2

{
ln(2Kπ) + ln

[
det(Σ̄)

]
+ ϵ′Σ̄−1ϵ

}
(22)

where, Σ̄ = diag

(
σ2
u +

σ2
e

n1
, . . . , σ2

u +
σ2
e

nK

)
.

Assuming the variance components to be known in the area-level model, the ML esti-

mator for parameter β based on area-level sample data is:

β̂A = (x̄′Σ̄−1x̄)−1x̄′Σ̄−1ȳ. (23)

Fay and Herriot (1979) applied an area-level linear regression to survey estimates with

area random effects in the case of unequal variances for predicting the mean value per

capita income (PCI) in small geographical areas. The variance of the the sampling error is

typically assumed to account for the complex sampling error for the survey estimates for

the kth area and is considered be known in the Fay-Herriot model. However, this strong

assumption seems unrealistic in practice.

Using area-level data, expressions for the Fisher scoring algorithm for the parameter λ

is the same as in (16) (Longford, 2005; p.198). The initial value for σ2
e can be obtained from
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the unweighted OLS method. Then, using the Fisher scoring algorithm for the variance

ratio, new estimated random effects for kth area in iteration (t+1) can be calculated via:

σ̂2
u(t+1) = λ̂(t+1)σ̂

2
e(t) . (24)

Using σ̂2
u(t+1) and σ̂2

e(t), new estimators for ˆ̄Σ(t+1) and β̂A
(t+1) =

(
x̄′ ˆ̄Σ−1

(t+1)x̄
)−1

x̄′ ˆ̄Σ−1
(t+1)ȳ

can be be obtained. Then, a new estimated value for σ2
e can be calculated as follows:

σ̂2
e(t+1) =

1

K − P
ϵ̂′(t+1)

̂̄W−1

(t+1) ϵ̂(t+1) (25)

where, ϵ̂(t+1) =
(
ȳ− x̄β̂A

(t+1)

)
and:

̂̄W(t+1) = diag(λ̂(t+1) +
1

n1
, . . . , λ̂(t+1) +

1

nK
) . (26)

Note that, the algorithm for calculating parameter estimates using individual and aggre-

gated level analysis are very similar. The main difference is applied in calculating σ̂2
e(t+1)

using Ŵ(t+1) with individual-level data and ̂̄W(t+1) with aggregated-level data.

3 Synthetic and Empirical Best Liner Unbiased Predictor

Given estimates for regression parameters, the kth area mean for the target variable can be

estimated based on the fitted statistical working models through the synthetic technique

as follows: ̂̄Y SU

k = X̄
′
kβ̂

U or ̂̄Y SA

k = X̄
′
kβ̂

A . (27)

Here, ̂̄Y SU

k and ̂̄Y SA

k respectively denote the unit-level and area-level synthetic estimators

for the kth area mean and X̄k is the vector which includes population means of auxiliary

variables.

For the Linear Mixed Model (LMM) presented in (3), the Best Linear Unbiased Es-

timation (BLUE) of the fixed effects β and Best Linear Unbiased Prediction (BLUP) of

the random effects u have been defined by Henderson (1950; 1975) and Morris (2002) as
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follows:

β̃ = (X′Σ−1X)−1X′Σ−1Y & ũ = GZ′Σ−1(Y−Xβ̃) , (28)

where G = σ2
u IK . The ML estimator for the parameter vector β presented in (10) is then

the same as the BLUE for this model parameter.

For the LMM, prediction of a linear combination of the fixed and random effects

b′β+ l′u has been discussed by Henderson (1975), Prasad and Rao (1990), and Datta and

Lahiri (2000). For the special case µȲk
= X̄

′
kβ+uk, b = X̄k and l′ = (0, 0, . . . , 0, 1︸ ︷︷ ︸

k

, 0, ..., 0).

Then, the BLUP for this combination using available sample data is: [Henderson, 1975;

Ghosh and Rao, 1994]

µ̃Ȳk
= X̄

′
kβ̃ + ũ = γk

[
ȳk + (X̄

′
k − x̄′

k)β̃
]
+ (1− γk)X̄

′
kβ̃ . (29)

To calculate the BLUP in equation (29), variance components are assumed to be

known. Replacing the estimated values for the variance components in equation (29), a

two-stage estimator will be obtained. The resulting estimator is presented by Harville

(1991) as an “empirical BLUP” or EBLUP. The model parameters β, σ2
e and σ2

u can be

estimated for either individual or aggregated level analysis by the Fisher scoring algorithm,

as presented in section 2.3.

An approximation for the Mean Square Error (MSE) of EPLUPs under a general LMM

is: [Saei and Chambers, 2003b]

G1(σ) + G2(σ) + G3(σ) , (30)

where:

G1(σ) = (1− γk)σ
2
u

G2(σ) = (X̄k − γkx̄k)
′[MSE(β̃)

]
(X̄k − γkx̄k)

G3(σ) =

(
σ2
e

nk

)2(
σ2
u +

σ2
e

nk

)−3

+

[
V arξ(σ̂

2
u) +

σ4
u

σ4
e

V ar(σ̂2
e)− 2

σ2
u

σ2
e

Cov(σ̂2
u, σ̂

2
e)

]
,

(31)

in which: σ = (σu, σe). Detailed discussion of the MSE of EBLUPs is presented by Prasad

& Rao (1990) and Saei & Chambers (2003a).
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4 Contextual model

It is well known that estimation of regression coefficients obtained from individual-level

analysis can be different from those based on analysis of aggregate data. This is referred

to as the ecological fallacy and can happen when the population model should include

both unit-level and area-level fixed effects. In SAE, it is common to use mixed models at

the individual level, but sometimes some area-level covariates may need to be included in

the model.

In a contextual model, both individual level and group area-level covariates are in-

cluded simultaneously (Mason et al. 1983 , 1984). The area-level covariates are referred

to as ‘contextual effects’ and the model including both unit and area level covariates is

a ‘contextual model’. For example, the mean values of the auxiliary variables can be

included in the statistical population model as the contextual effect as in:

Yik = X∗′
ikβ

∗ + u∗k + e∗ik ; u∗k ∼ N(0, σ2
u∗) & e∗ik ∼ N(0, σ2

e∗) . (32)

Here, X∗′
ik involves both individual-level and aggregated-level covariates for ith unit within

the kth area as below:

X∗′
ik = [X′

ik | ˘̄X′
k] , (33)

where:

˘̄X′
k = [X̄k1 X̄k2 . . . X̄kP ] . (34)

Note that, Xik includes the intercept term, whereas ˘̄Xk does not. The aggregated form of

this population model is given as:

Ȳk = X̄
′
kβ

∗∗ + u∗k + ē∗k ; ē∗k = 1
Nk

∑Nk
i=1 e

∗
ik ∼ N(0,

σ2
e∗
Nk

). (35)

Here,

(
β∗I)′ = [β∗I

1 β∗I
2 . . . β∗I

P ] ,
(
β∗c)′ = [β∗C

1 β∗C
2 . . . β∗C

P ] ,

β∗′ =
[
β∗
0 |
(
β∗I)′ | (β∗C)′] & β∗∗′ =

[
β∗
0 (β∗I

1 + β∗C
1 ) · · · (β∗I

P + β∗C
P )
]
.

(36)
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Contextual models help researchers understand the issue of the ecological fallacy which

occurs when researchers want to draw a conclusion about an individual-level relationship

based on aggregated-level data analysis. This causes an error in the interpretation of

statistical data as the results based on purely aggregated-level analysis may not be appro-

priate for inference about an individual based characteristic (Seiler and Alvarez, 2000).

When contextual effects exist in the population model but are ignored in working models,

the resulting regression coefficient estimates from unit-level and area-level sample data

will be different in expectation. This is referred to as an ecological fallacy.

When area means appear in the population model as contextual effects, the resulting

correct model for the sample unit-level data is:

yik = X∗′
(s)ikβ

∗ + u∗k + e∗ik (37)

and the true model for aggregate sample data is:

ȳk = X̄
∗′
(s)kβ

∗∗ + u∗k + ē∗k (38)

where:

X∗′
(s)ik = [x′

ik | ˘̄X′
k] & X̄

∗′
(s)k = [x̄′

k | ˘̄X′
k]. (39)

Note that, X∗′
(s)ik is the same as X∗′

ik when i ∈ s. The components of X∗′
(s)ik are the sample

and population area level means.

If for some reasons the population data about the auxiliary variables are not available,

we might replace the area population means by the corresponding sample means in the

contextual model. Then an alternative working model would be:

yik = x∗′
ikβ

∗ + u∗k + e∗ik (40)

Here, x∗′
ik included auxiliary information about the ith sample individual within the kth

area as well as the kth area sample means, so:

x∗′
ik = [x′

ik | ˘̄x′
k] & ˘̄x′

k = [x̄k1 x̄k2 . . . x̄kP ] . (41)

12



The aggregated form of this model presented in (40) is given as:

ȳk = x̄′
kβ

∗∗ + u∗k + ē∗k (42)

In aggregated-level analysis, the models presented in (18) and (42) are actually the same.

This shows that the area-level models can involve existing contextual effects within the

model, automatically using the sample instead of population.

5 Working Models

There are two population models considered in this paper as displayed in Table 1.

Table 1: Population Models

Population Model 1 (P1): Y
(P1)
ik = X′

ikβ + uk + eik

Population Model 2 (P2): Y
(P2)
ik = X∗′

ikβ
∗ + u∗k + e∗ik

Population model P1 is the standard unit-level model with random effects but not

contextual effects. This model leads to model (5) for unit-level sample data and model

(20) for aggregate sample data. In the current study we call these models, working model

1 (W1 ) and working model 2 (W2 ), respectively. One of the advantages of estimating the

regression parameters using aggregate data is that area-level information can be used for

covariates that were not included in the sample data but are available in the form of area

population means. This leads to working model 3, (W3 ) as follows:

ȳ = X̄
′
β + ϵ (43)

Population Model 2 (P2 ) incorporates contextual effects and leads to mode (37) for

unit-level sample data and model (38) for aggregate sample data. We call these models

working model 5 (W5 ) and working model 6 (W6 ), respectively, which both correctly use

the population area level mean for the contextual part of the model. In practice, obtaining

the population means of the covariates may be time consuming and in some situations it

may be much easier to use the sample area level means in a unit-level contextual model,
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leading to working model 4 (W4), presented in (40). The working models discussed in this

paper are presented in Table 2.

Table 2: Summary of Possible Working Models

Working Models

W1 y
(W1)
ik = x′

ikβ + uk + eik

W2 ȳ
(W2)
k = x̄′

kβ + uk + ēk

W3 ȳ
(W3)
k = X̄

′
kβ + uk + ēk

W4 y
(W4)
ik = x∗′

ikβ
∗ + u∗k + e∗ik

W5 y
(W5)
ik = X∗′

(s)ikβ
∗ + u∗k + e∗ik

W6 ȳ
(W6)
k = X̄

∗′
(s)ikβ

∗ + u∗k + e∗ik

The six working models can be characterised as follows:

• W1: A unit-level model without considering any contextual effects.

• W2: An area-level model which involves the sample area means in the model as the

auxiliary information.

• W3: An area-level model which involves the population area means in the model as

the auxiliary information.

• W4: A unit-level model which involves the sample area means in the model as

possible contextual effects.

• W5: A unit-level model which involves the population area means in the model as

possible contextual effects.

• W6: A area-level model which involves both sample and population area means.

The expectation of the regression parameters estimations associated with each working

model can be obtained under both population model.

When P1 is the true population model:

• W1 is the correct unit-level model under P1 leading to unbiased estimates.

• W2 is the correct area-level model under P1 leading to unbiased estimates, but with

larger variances than those estimated using W1, because of the use of aggregate data.
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• Estimates based on W3 are biased under P1 and the bias term is due to the difference

between the area population means and area sample means.

• For W4, W5 and W6, the regression parameter estimates are unbiased but these

contextual models are inefficient due to over-fitting of model parameters.

When P2 is the true population model:

• For W1, model parameter estimates are biased due to omission of the existing con-

textual effects in P2.

• For W2, the resulting estimates are slightly biased as W2 does not include area

population means, but implicitly includes sample area means.

• For W3, the resulting estimates are slightly biased as W3 does not include area

sample means.

• For W4, the parameter estimates are slightly biased and the bias term is due to the

difference between area sample and population means.

• W5 is the correct unit-level model under P2 leading to unbiased estimates.

• W6 is the correct area-level model under P2 leading to unbiased estimates, but the

co-linearity between sample and population area means is an issue to be considered

in this case.

For each working model we can consider the associated synthetic estimation and EBULP

given by (27) and (29).

6 An Empirical Study

This section presents the results of a model-assisted design-based simulation study to

empirically assess the bias and Mean Square Error (MSE) of synthetic estimators and

EBLUPs based on the unit-level and area-level working models discussed in section 5. As

an example, we suppose that there is an interest in the mean value of income for the 57

statistical sub-divisions within Australia. It is assumed that there is a linear relationship

between the weekly gross salary as the variable of interest and the weekly hours worked
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for individuals aged 15 and over. In the simulation presented here, population data is

generated based on two different population models, separately as presented in Table 1.

Parameter values for the population models of the relation between weekly gross salary

and hours worked for individuals over 15 were obtained from the Australian Australian

2006 Census. Table (4) presents the model parameter values used in generating the popula-

tions of individuals. Sample units are then selected based on a stratified random sampling

design in which the sample sizes in the 57 areas are allocated proportionally to their pop-

ulation sizes. The six working models presented in Table 2 are then fitted on the sample

data in order to compare the resulting estimates based on these models. A total sample

Table 3: Parameter Values Considered in the Population Models
Population Model 1

β′ = [β0 β1] σu σe λ

[322.45 14.93] 114.3530 384.6394 0.0884

Population Model 2

β′ =
[
β∗
0 β∗I

1 β∗C
1

]
σ∗
u σ∗

e λ∗

[-123.6008 14.93 3.7724] 114.3530 384.6394 0.0884

of 2133 was used and the resulting sample sizes varied from 1 to 398 with an average of

37. The details of the sample allocation are given in Appendix 1 (Table 9) .

The estimation techniques in this study were evaluated by calculating the relative Root

Mean Squared Error (rRMSE) for each area using the different working models as follows:

rRMSEk =

√
MSE

( ̂̄Y k

)
Ȳk

; k = 1, . . . , 57 (44)

where,

MSE( ̂̄Y k) =
1

M

M∑
m=1

[ ̂̄Y k(m) − Ȳk
]

(45)

Note that a list of M = 1000 samples were selected in this study. Here, ˆ̄Yk(m) is the esti-

mate of the kth area mean based on mth sample. Using side by side box plots, Figure 1

and 2 show the resulting rRMSEs for the synthetic estimates and EBLUPs obtained based

on six working models (presented in Table 2), considering two working models (presented

in Table 1) using the 1000 samples selected.
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Figure 1: rRMSE under Population 1

As can be seen in Figure 1, for synthetic estimation, using W1 leads to the smallest

mean (and median) rRMSE for 57 areas and smallest deviation in the rRMSE. However,

the performance of W2 and W3 in terms of rRMSE is not greatly worse. Using W4, W5

or W6 which allow for contextual effects have noticeable larger mean and median rRMSE.

In particular W4 has the worse performance. Looking at the results for the EBLUPs in

Figure 1, the resulting estimates using W1 performs much better than any other estimates.

Use of W5 produced EBLUPs with similar average and median rRMSE. Use of the EBLUP

technique leads to considerable gains related to the synthetic estimates in terms of rRMSE

for W1, W4, and W5. On the other hand, the average rRMSE increases for W2 and W3

compared with corresponding synthetic estimates.

In figure 2, P2 is considered as the true population model. For the synthetic method,

resulting estimators using the area-level working model W2 are better in terms of rRMSE

than those calculated based on unit-level model W1. The best approach is to fit unit-level

contextual working models using either the sample or population area means as the area-

level or contextual effects, as in W4 and W5. However, use of the EBLUP technique seems

to correct much of the problem with W1. As can be seen, EBLUP estimates based on W1

and W2 have similar properties under P2 in terms of rRMSE. However, using W4 or W5

leads to the best estimators in such a case, while W6 performs better than W1, W2 and W3.
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Figure 2: rRMSE under Population 2

Assuming P2 applies for the population, fitting working model W1 leads to biased

parameter estimates. For the aggregate data the true sampling model is the one presented

in (38). Therefore, parameter estimates based on W2 may also be biased as sample area

means (x̄k) and population area means (X̄k) may differ. However, W2 includes P+1

regression coefficients to be estimated while 2P+1 regression coefficients are included in

models (37) and (38). Therefore, the dimension reduction in calculating model parameter

estimates is an advantage of applying W2.

The relative performance of the different working models can be examined by looking

at the mean of the Root MSE, as summarised in Table 4.

Table 4: Mean of Empirical Root MSE over areas and 1000 simulations averaged over 57
areas

Syn. Est. EBLUP

Working Model Level Contextual Effect P1 P2 P1 P2

W1 Unit None 76.1 111.4 61.3 91.3

W2 Agg Sample 81.9 79.9 92.3 90.1

W3 Agg Pop 84.1 80.3 91.1 91.1

W4 Unit Sample 93.8 54.0 80.9 82.3

W5 Unit Pop 92.4 53.9 71.2 82.8

W6 Agg Pop 93.3 78.6 92.9 89.3

As can be seen in Table 4, for P1, i) W1 seems to be the best choice for both syn-

thetic estimation technique and EBLUP. ii) W2 is not a lot worse that W1 for synthetic

estimation but it is for EBLUP. iii) EBLUPs are better than synthetic estimators for
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the unit-level models but not for the aggregated-level models. iv) allowing for contextual

effects makes things worse for synthetic estimators and EBLUPs in terms of root MSE.

For P2, i) W1 is the worst choice considering the synthetic estimation method but the es-

timation results are improved by using EBLUP. ii) Unit-level models with the contextual

effects perform best for synthetic estimations and EBLUPs, while EBLUPs have larger

root MSEs. Something is going on with the EBLUPs through estimation of variance

components when adding the contextual effects in the working models. iii) Using sample

means as contextual effects is as good as using population means.

If we are restricted to using regression synthetic estimates, then perhaps W2 is a

reasonable compromise choice. If EBLUP approach is to be used, then W1 or W5 is a

reasonable choice. I would be noted that, estimation results depend on the strength of

contextual effects. The difference between parameter estimates using W1 and W2 may be

due to other omitted variables and the effect of aggregation on the regression parameters

relating these omitted variables and the included covariates.

Here, the properties of the resulting estimates using W1 and W2 are examined when

P2 is the true population model. These two models are those that are most commonly

considered and will examine the properties of the resulting estimation using these models

in more details. Considering the area means as the main targets of inference, the bias of

the unit- and area-level synthetic estimate under P2 are:

Biasξ(P2)

(̂̄Y SU

k

)
= X̄

′
kEξ(P2)

[β̂(W1) − β∗∗] ,

Biasξ(P2)

(̂̄Y SA

k

)
= X̄

′
kEξ(P2)

[β̂(W2) − β∗∗] .
(46)

The subscript ξ denotes the expectation, bias, MSE and variance under the assumed

population model. It can be shown that Eξ(P2)

[
β̂(W1)

]
≈ β∗I and Eξ(P2)

(β̂(W1) − β∗∗) ≈

[0 β∗C ]′. Therefore, the bias of the unit-level synthetic estimator for kth area mean is

X̄kβ
∗. For β̂(W2), the components of β∗∗ associated with β∗I are unbiasedly estimated and

the components associated with β∗C are subject to attenuation because of the difference

between x̄ and X̄. However, we would expect the attenuation not to completely eliminate

the component associated with β and therefore β̂(W2) to be a less biased estimate of β∗∗

than β̂(W1).
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The bias of the unit-level EBLUP for kth area mean is calculated as follows:

Biasξ

(˜̄Y (W1)

k

)
=
[
X̄

′
k − Eξ(γ̂k)x̄

′
k

]
Eξ

(
β̃(W1) − β∗∗

)
+ Covξ

[
γ̂k,
(
ȳk − x̄′

kβ̃
(W1)

)]
. (47)

We see that the first term reduces the bias compared with the unit-level synthetic esti-

mation. The second term should be negligible. A similar result holds for area-specific

EBLUP obtained from the appropriate aggregate working model, W2.

Figure 3 summarizes the empirical results by giving the ratio of MSEs for the SAEs

based on unit-level model (W1) and area-level model (W2) for the 57 areas in the simula-

tion. When a contextual effect is present in the assumed population model, the ratio varies

below and above 1 for the synthetic method, but is generally below 1 for the resulting

EBLUPs. The variance of estimators obtained based on the individual-level analysis are

less than the variance in the aggregated-level approach. However, the resulting bias in

the estimation of β∗∗ is greater. Using the synthetic method in this simulation, for about

half the areas the area-level approach is better than the unit-level approach in terms of

MSE. However, when the EBLUP is applied, the reduction in biases leads to the unit-level

approach having lower MSE in all but a few areas.

Figure 3: The Relative Efficiency of Unit-level Model to Area-level Model

A comparison between the resulting bias based on the synthetic estimation approach

and EBLUP technique is presented in Figure 3 for the target areas. For positive biases

of the synthetic estimates, unit-level and area-level results look similar in terms of bias

values. However, when the resulting biases for unit-level synthetic estimates are negative,

less biased synthetic estimates can be calculated based on area-level model (W2). For
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calculated EBLUPs, the bias of the unit-level estimates are predominately larger than

that of aggregated-level estimates. The bias seemes to be decreased in unit-level estimation

based on the EBLUP technique comparing with the synthetic estimation method. This

is due to reduced weight given to the regression component in the presented EBLUP

technique. Ignoring the difference between the sample and population area means for the

auxiliary variable in kth area, the bias for the unit-level synthetic estimator and EBLUP

for kth area mean are:

Biasξ

(˜̄Y (W1)

k

)
≈ (1− γk)X̄

′
kBiasξ

(
β̃(W1)

)
=

(
σ2
e

nk

σ2
u+

σ2
e

nk

)
X̄

′
kBiasξ

(
β̃(W1)

)
Biasξ

(˜̄Y (SU)

k

)
≈ X̄

′
kBiasξ

(
β̃(W1)

)
.

(48)

As shown in (48), there is less bias in the unit-level EBLUP comparing with the unit-level

synthetic estimator for kth area. This reduction depends on nk.

Figure 4: Resulting Bias for Synthetic Estimators and EBLUPs

Means and variances of the parameter estimates (including the variance components

estimated for calculating the EBLUPs) using working models used in this numerical study

are presented in Table 5. As expected, estimated values for the intercept and slope are

less biased in the aggregated-level analysis. We see that the unit-level slope estimate is

unbiased for β1, and the area-level slope estimate is closer to β∗I
1 + β∗C

1 = β∗∗
1 , but still

smaller, consistent with the attenuation effect noted above. As expected, the standard

error of all the parameter estimates are larger for area-level analysis. Interestingly, the bias

for the estimate of λ appears to be less for the area-level approach. The generally smaller

21



bias of the area-level analysis but larger MSEs, suggests that existing contextual effects

in the population model being considered in W2 causes less bias of parameter estimates

with smaller bias comparing with that of W1.

Table 5: Parameter Estimates under Population 2

W1 W2

¯̂
β

(
71.14
13.78

)
¯̂
β∗∗

(
−88.71
17.29

)
Bias(

¯̂
β)

(
18.74
−4.92

)
Bias(

¯̂
β∗∗)

(
11.10
−2.07

)
SE(

¯̂
β)

(
7.83
0.71

)
SE(

¯̂
β∗∗)

(
11.94
4.02

)
¯̂σu 129.45 ¯̂σ∗

u 51.47

Bias(¯̂σu) 7.99 Bias(¯̂σ∗
u) -17.47

SE(¯̂σu) 6.18 SE(¯̂σ∗
e) 21.41

¯̂σe 285.36 ¯̂σ∗
e 369.07

Bias(¯̂σe) -26.72 Bias(¯̂σ∗
e) -7.49

SE(¯̂σe) 17.50 SE(¯̂σ∗
e) 24.08

λ̄ 0.112 λ̄∗ 0.074

Bias(λ̄) 0.010 Bias(λ̄∗) 0.007

SE(λ̄) 0.022 SE(λ̄∗) 0.071

In the simulation presented in this section, MSEs have been calculated by the simu-

lation. In real situations the data would come from surveying the target population and

the required MSEs will be estimated. Then, the equation presented in (31) can be used in

order to estimate the MSE of resulted predictions. Figure 5 shows the estimated relative

efficiency for 57 area EBLUPs based on W1 over W2 under P2. As can be seen in Figure

5, the resulting area-level EBLUPs calculated based on W2 have smaller estimated MSEs

in many areas.

As can be seen in Figure 5 the estimated EBLUPs calculated based on W1 comparing

with those calculated based on W2 have smaller estimated MSEs for some areas and have

larger estimated MSEs for some others. If similar results are obtained in practice, this can

be a sign of possible area-level or contextual effects to be present in the actual population
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Figure 5: Estimated Relative Efficiency for EBLUPs based on W1 over W2 under P2

model. Based on previous discussions, W2 can be fitted on the sample data leading to

reasonably precise estimates in terms of estimated MSE, when area means are the main

targets of inferences while the matrix dimensions in W1 calculating required estimates are

much less than those in W2. This may make W2 to be preferred in practice.

7 Conclusion

The goal of this paper is to evaluate SAE techniques based on statistical models at different

levels and to study the effect of possible area-level contextual effects in the population

model. The possible effects of ignoring these important area-level factors is explained

for unit-level working models being fitted on sample data. In order to consider realistic

situations, individual-level data from the Australian 2006 Census are used to estimate the

parameter values in population model.

If unit-level data are available, information from individuals can be used in the working

model. Estimators can then be obtained at the area level using aggregating techniques. If

data are unaccessible for unit-level modeling while area-level data are available, area-level

models can be developed for aggregated-level analysis and parameters used in producing
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estimates at district levels are estimated from an area-level model, directly. When area

means appear in the unit-level population model as contextual effects but are ignored in

the individual-level working model, the resulting parameter estimates are biased while the

area-level model will automatically include these effects in estimation. In such a case, the

resulting parameter estimates would be unbiased or less biased, and an area-level analysis

may be preferable even if individual-level data are available.

Choosing individual-level analysis helps to produce small area estimates with smaller

variances. However, if the unit-level model is misspecified by exclusion of important

auxiliary variables, parameter estimates obtained from the individual and aggregate-level

analysis will have different expectations. In particular, if an important contextual variable

is omitted, the parameter estimates obtained from an individual-level analysis will be

biased, whereas an aggregated-level analysis can produce less biased estimates. Even if

contextual variables are included in an individual-level analysis, there may be an increase

in the variance of parameter estimates due to the increased number of variables in the

population model.

We need to be careful about area effects related to contextual variables, as random

effects do not account for these. Based on the discussions presented in this paper, the

presence of contextual effects can be assessed by i) comparing parameter estimates arising

from W1 and W2, ii) fitting W4, which uses sample area means iii) fitting W5, which

uses population area level means. If P1 seems to apply, then use W1, preferably using

EBLUP. If P2 seems to apply, then use regression synthetic technique based on W5 or

W4. The size of the contextual effect will be an important feature in determining the

relative efficiency of unit-level and area-level approaches. When individual-level analysis

is being used, the theory and empirical results suggest using EBLUP technique as it is

more efficient than the synthetic method.
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Appendix

Table 6: The Population Size for Different Statistical Subdivisions

STATE No. Statistical Subdivisions Population(15 an over) Total

ACT 1 Canberra 276469 276469

2 Murray 141384
3 Northern 207344
4 Murrumbidgee 179500
5 Sydney 2643880
6 Richmond-Tweed 301849

NSW 7 South Eastern 211561 5554876
8 Central West 123473
9 Mid-North Coast 351211
10 Illawarra 541424
11 Hunter 707457
12 Far West 26961
13 North Western 118832

NT 14 Northern Territory - Bal 74040 163164
15 Darwin 89124

16 Brisbane 1481729
17 Central West 7683
18 Far North 189129
19 South West 13461
20 Fitzroy 112659

QLD 21 Moreton 427387 2942559
22 North West 20137
23 Mackay 125319
24 Wide Bay-Burnett 226345
25 Northern 159776
26 Darling Downs 178934

27 Adelaide 947857
28 Outer Adelaide 93348
29 Northern 65062

SA 30 Murray Lands 55298 1244878
31 Eyre 28617
32 Yorke and Lower North 37557
33 South East 17139

34 Northern 112182
TAS 35 Greater Hobart 166825 390217

36 Mersey-Lyell 81914
37 Southern 29296

38 Melbourne 3038339
39 Central Highlands 121149
40 Ovens-Murray 78547
41 Gippsland 135565
42 Goulburn 159950

VIC 43 Mallee 75144 4138085
44 Loddon 143693
45 Barwon 221846
46 Wimmera 37877
47 Western District 57861
48 East Gippsland 68114

49 Lower Great Southern 41606
50 Perth 1246870
51 Pilbara 11127
52 South West 111080

WA 53 South Eastern 45401 1568149
54 Upper Great Southern 13544
55 Central 31724
56 Kimberley 26603
57 Midlands 40194
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Table 7: Weekly Gross Salary

STATE No. Statistical Subdivisions Income Std. Dev. N Std. Err. Mean
(Mean)

ACT 1 Canberra 963.72045 836.09364 229557 1.7450571

2 Murray 566.09301 24932.468 20105 3.720431
3 Northern 573.95819 549.74003 115688 1.6162674
4 Murrumbidgee 606.5969 552.63812 97902 1.766221
5 Sydney 835.26184 831.12165 2699536 0.505848
6 Richmond-Tweed 545.82145 521.12234 152499 1.3344619

NSW 7 South Eastern 653.21868 633.20965 135506 1.7201577
8 Central West 610.23421 591.73768 114364 1.7497845
9 Mid-North Coast 511.63105 489.75066 198991 1.0978887
10 Illawarra 644.48308 645.54542 268424 1.2459945
11 Hunter 624.19457 642.47515 408379 1.005367
12 Far West 546.21759 552.16024 14964 4.5137893
13 North Western 592.19592 572.21542 72193 2.1296685

NT 14 Northern Territory - Bal 636.95568 675.38653 49167 3.0458993
15 Darwin 855.21733 688.49003 66787 2.6641071

16 Brisbane 746.18657 705.6472 1193749 0.6458492
17 Central West 653.14114 595.454117 7163 7.0355956
18 Far North 643.69176 587.31543 148088 1.5262079
19 South West 655.83141 598.83141 16021 4.7281915
20 Fitzroy 749.75586 740.05698 121241 2.1253987

QLD 21 Moreton 540.54207 483.38593 32745 2.6712929
22 North West 852.6017 761.7846 18142 5.6557422
23 Mackay 818.56413 812.15257 95597 2.6267304
24 Wide Bay-Burnett 516.11945 494.0813 173635 1.1857135
25 Northern 697.82914 632.53831 130340 1.752056
26 Darling Downs 601.26056 562.16546 143547 1.4837718

27 Adelaide 659.51368 629.83834 786097 0.7103805
28 Outer Adelaide 614.42725 568.4696 85614 1.9428302
29 Northern 600.54169 587.54169 50536 2.613131

SA 30 Murray Lands 524.94057 475.45577 46271 2.2103227
31 Eyre 587.70572 547.67934 22360 3.6626082
32 Yorke and Lower North 515.84562 484.75968 31261 2.7417324
33 South East 612.26209 556.75698 29581 3.2371233

34 Northern 565.56349 525.92225 93276 1.7220136
TAS 35 Greater Hobart 643.08777 598.88874 140360 1.5985435

36 Mersey-Lyell 546.35121 504.07257 74278 1.8495368
37 Southern 512.5 447.13588 24060 3.0760562

38 Melbourne 750.5854 748.62431 2416087 0.4816235
39 Central Highlands 589.57634 554.42658 97166 1.7786352
40 Ovens-Murray 599.27068 534.71235 64341 2.1080277
41 Gippsland 596.30416 585.77684 107966 1.7827428
42 Goulburn 582.17638 530.10244 130811 1.465675

VIC 43 Mallee 544.57239 491.10582 59294 2.0168319
44 Loddon 597.91793 578.27649 115318 1.7028915
45 Barwon 633.6784 615.37539 177890 1.4590305
46 Wimmera 555.73123 511.61537 33806 2.782538
47 Western District 611.63216 588.14523 67567 2.2626494
48 East Gippsland 567.13903 571.55861 54990 2.4373557

49 Lower Great Southern 605.56038 585.84961 35110 3.019516
50 Perth 785.10057 770.44457 975121 0.7802111
51 Pilbara 1297.373 1102.2988 22259 7.388337
52 South West 660.28024 672.58787 138739 1.8057137

WA 53 South Eastern 896.80946 837.11511 31468 4.7190069
54 Upper Great Southern 637.20282 586.34493 11651 5.4321478
55 Central 680.06813 640.86909 36182 3.3691709
56 Kimberley 694.42033 666.30042 16820 5.1375622
57 Midlands 641.67349 612.86733 32967 3.3754117
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Table 8: Hours Worked
STATE No. Statistical Subdivisions Hours Worked Std. Dev. N Std. Err. Mean

(Mean)

ACT 1 Canberra 38.535109 19.013724 164616 0.046831

2 Murray 43.046029 22.485444 12351 0.2023254
3 Northern 41.348493 21.544124 67769 0.0827586
4 Murrumbidgee 41.176176 20.973207 62097 0.0841646
5 Sydney 40.357063 19.686667 1784299 0.014738
6 Richmond-Tweed 37.085496 20.199353 80688 0.0711104

NSW 7 South Eastern 39.892999 20.630821 81728 0.0721657
8 Central West 40.926679 21.169946 68384 0.0809548
9 Mid-North Coast 36.814685 20.119273 95702 0.0650357
10 Illawarra 37.762631 19.707078 149514 0.0509661
11 Hunter 38.433551 19.976324 230982 0.0415649
12 Far West 41.230153 21.998809 7432 0.2551798
13 North Western 41.996767 21.555434 43617 0.1032117

NT 14 Northern Territory - Bal 42.058692 21.149081 29595 0.1229369
15 Darwin 43.780662 19.654855 500078 0.0878307

16 Brisbane 40.133727 19.846652 810831 0.0220406
17 Central West 47.562737 22.054888 5268 0.3038659
18 Far North 41.655183 20.601954 100001 0.0651488
19 South West 47.034528 22.646135 11831 0.2082013
20 Fitzroy 43.382941 21.363771 81809 0.0746826

QLD 21 Moreton 41.056225 21.196183 19822 0.1505511
22 North West 47.656069 21.294848 13494 0.1833176
23 Mackay 44.777687 21.519457 67956 0.0825501
24 Wide Bay-Burnett 39.970465 20.872827 88862 0.0700202
25 Northern 42.418276 20.825458 87826 0.0702721
26 Darling Downs 41.702297 21.335674 91064 0.0707022

27 Adelaide 38.097493 19.203949 477231 0.0277988
28 Outer Adelaide 39.303404 20.698605 52824 0.0900586
29 Northern 41.083465 21.483465 28449 0.1273959

SA 30 Murray Lands 40.628643 21.005359 27417 0.1268587
31 Eyre 41.524671 22.051422 14288 0.1844807
32 Yorke and Lower North 40.984263 22.236633 16363 0.1738351
33 South East 39.90694 20.484917 18762 0.1495528

34 Northern 38.136817 19.935228 53050 0.0865523
TAS 35 Greater Hobart 37.042095 18.737503 83633 0.0647922

36 Mersey-Lyell 39.074302 20.224338 40369 0.1006585
37 Southern 37.797148 20.333716 12832 0.1795021

38 Melbourne 39.408675 19.757399 1580782 0.0157866
39 Central Highlands 38.504711 20.303516 58162 0.0841883
40 Ovens-Murray 39.762735 20.649661 40775 0.1022624
41 Gippsland 39.116529 21.027399 62092 0.0843855
42 Goulburn 40.592672 21.107216 80213 0.0745261

VIC 43 Mallee 41.084178 20.919517 35793 0.1105739
44 Loddon 38.625031 20.739254 68439 0.0792759
45 Barwon 37.945018 20.035356 106835 0.0612972
46 Wimmera 40.984469 21.557419 20218 0.1516099
47 Western District 40.634364 21.828231 42158 0.103111
48 East Gippsland 39.545577 21.725615 30355 0.1246973

49 Lower Great Southern 41.378171 22.002367 21682 0.1494238
50 Perth 39.746568 20.361196 656483 0.0251299
51 Pilbara 49.725775 21.904649 17905 0.1637002
52 South West 40.374651 21.257887 83523 0.073558

WA 53 South Eastern 47.308024 22.966973 23292 0.1504875
54 Upper Great Southern 47.166524 23.523255 8164 0.260343
55 Central 43.531958 22.095074 23343 0.1446163
56 Kimberley 42.819141 21.710507 11755 0.2002436
57 Midlands 45.17157 22.916712 21210 0.1573555
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Table 9: The Sample Size for Different Statistical Subdivisions

STATE No. Statistical Subdivisions Sample Size Total

ACT 1 Canberra 36 36

2 Murray 19
3 Northern 27
4 Murrumbidgee 23
5 Sydney 347
6 Richmond-Tweed 40

NSW 7 South Eastern 28 730
8 Central West 16
9 Mid-North Coast 46
10 Illawarra 71
11 Hunter 93
12 Far West 4
13 North Western 16

NT 14 Northern Territory - Bal 10 22
15 Darwin 12

16 Brisbane 194
17 Central West 1
18 Far North 25
19 South West 2
20 Fitzroy 15

QLD 21 Moreton 56 386
22 North West 3
23 Mackay 16
24 Wide Bay-Burnett 30
25 Northern 21
26 Darling Downs 23

27 Adelaide 121
28 Outer Adelaide 12
29 Northern 9

SA 30 Murray Lands 7 160
31 Eyre 4
32 Yorke and Lower North 5
33 South East 2

34 Northern 15
TAS 35 Greater Hobart 22 52

36 Mersey-Lyell 11
37 Southern 4

38 Melbourne 398
39 Central Highlands 16
40 Ovens-Murray 10
41 Gippsland 18
42 Goulburn 21

VIC 43 Mallee 10 542
44 Loddon 18
45 Barwon 29
46 Wimmera 5
47 Western District 8
48 East Gippsland 9

49 Lower Great Southern 5
50 Perth 163
51 Pilbara 1
52 South West 15

WA 53 South Eastern 6 205
54 Upper Great Southern 2
55 Central 4
56 Kimberley 4
57 Midlands 5
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