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Summary. Standard model-based and model-assisted methods of survey
estimation aim to improve the precision of estimators of the population to-
tal or mean. These methods are often based on a linear regression model
defined in terms of auxiliary variables whose values are assumed known for
all population units. Friendships and other social relationships represent an-
other form of auxiliary information that might increase the precision of these
estimators. Such relationships are typically expressed in terms of a social
network. Common linear models that use social networks as an additional
source of information include autocorrelation, disturbance and contextual
models. In this paper we investigate how much of the population network
needs to be known for estimation methods based on these models to be
useful. In particular, we use simulation to compare the performance of the
best linear unbiased predictor under a model that ignores the network with
model-based estimators that incorporate network information. Our results
show that incorporating network information via a contextual model is the
best performer overall. We also show that the full population network is not
required, but that the partial network linking the sampled population units
to the non-sampled population units needs to be known. Finally, we illus-
trate the contextual model by applying it to friendship network information
collected in the British Household Panel Study.

Keywords: BLUP, social network models, linear models, model-based survey
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estimation

1 Introduction

Model-based and model-assisted methods of survey estimation, see Cham-
bers and Clark (2012) and Srndal et al. (1992), are commonly used to in-
crease the precision of estimators of the population mean or total of a survey
variable. Typically, a linear regression model linking the population values
of this variable to corresponding values of a set of auxiliary variables is
assumed, and sample weights are calibrated against the known population
totals of these auxiliary variables. Commonly used auxiliary variables are
individual level variables like age and ethnicity. Model-based methods based
on the best linear unbiased predictor (BLUP) can also adjust for correlation
between observations, e.g. the correlation between the values of the survey
variable for members of the same household, to gain further precision, see
Chapter 7 of Chambers and Clark (2012).

The British Household Panel Study (BHPS, http://www.iser.essex.
ac.uk/survey/bhps/) is an annual longitudinal survey of British households
that has been conducted from 1991. It is based on a representative sample
of approximately 5, 500 households, covering more than 10, 000 individuals.
The main objective of the survey is to further the understanding of social
and economic change at the individual and household level in Britain.

In addition to information about the surveyed individual, the BHPS pro-
vides information about his or her three closest friends. Variables collected
on the three closest friends are: age, sex, ethnicity, distance to friend (< 1
mile, 1− 5 miles, 5− 50 miles, > 50 miles) and unemployment status. This
information is available in seven waves, corresponding to the even-numbered
years 1992 - 2004. Because friends tend to share common characteristics, it
is plausible that the friendship ties provided by the BHPS are important in
modelling the survey variables. Consequently this extra information should
not be excluded in the survey estimation process.

Friendship ties is a typical example of a (social) network that connects
individuals. It is standard to represent a network by a matrix of zeros
and ones, Z = (Zij)N

i,j=1 with Zii = 0 by convention. If a relationship exists
between two individuals i and j, then Zij = 1, otherwise Zij = 0. A network
is said to be undirected if Z = Z′, otherwise it is a directed network.

Linear models that use a social network as additional information to
model a response variable include contextual network models (Friedkin,
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1990), network effects models, also known as autocorrelation (AR) mod-
els, and network disturbance models (Ord, 1975; Doreian et al., 1984; Duke,
1993; Marsden and Friedkin, 1993; Leenders, 2002). Linear versions of con-
textual network models assume that the individual response variable Yi de-
pends on individual level covariates, such as the individual’s age and sex, as
well as on a network covariate, e.g. the average age of the friends of indi-
vidual i. AR models assume that Yi depends on the average response Yj of
those j individuals named as friends by individual i. Network disturbance
models are another class of AR models, where the AR structure holds for
model residuals, i.e. the residual ri is assumed to depend linearly on the av-
erage rj of the residuals of the j individuals named as friends by individual
i.

When the social network Z is known for all N individuals in the pop-
ulation, the contextual network, AR and network disturbance models can
all be fitted. In the case of the contextual network model, this is because
knowledge of the population values of the covariates and the population
network Z implies that one can compute any function of these covariates
(including their average for the j individuals connected to individual i in
the network). In the case of the AR and network disturbance models, this
is because knowledge of the complete network allows one to re-express these
models in a marginal form where the covariance matrix of the population
values of the response variable depends only on Z.

In practice it is unlikely that Z will be known, and a more realistic sce-
nario is one where only the sub-network Zss defined by the individuals in
the sample s of size n is known, or where this sub-network as well as the
sub-network Zsr of links between the sampled individuals and the remain-
ing N − n non-sampled individuals, denoted by r, is known. That is, the
sub-network defined by the links of the non-sampled individuals with the
sampled individuals, Zrs, and the sub-network defined by the links within
the N − n non-sampled population units, Zrr, will be unknown. Clearly,
under symmetry, Zrs(= Z′sr) will be known.

When such partial network information is observed, one needs to either
use more complicated fitting methods or to impute the missing network
components. For example, the BHPS provides information on a limited
range of characteristics of the three best friends, but does not identify friends
within or outside the sample. In this case Z is unknown and application of
the AR and network disturbance models is not possible. However the average
of the collected variables (age, sex, ethnicity etc.) for a person’s three best
friends can be calculated and the contextual network model can be fitted.

The main focus of this paper is on the use of network information in
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survey estimation. In particular, we aim to address the questions: (i) Is em-
bedding network information useful for survey estimation? (ii) If the answer
to (i) is yes, then which models are potentially useful? and (iii) How much
network data needs to be collected in order to obtain potentially higher
precision for survey estimation? In this context, Section 2 defines the con-
textual network, AR and network disturbance models. In Section 3 we then
briefly discuss the EBLUP estimator of the population mean, and its ap-
plication under these models. In Section 4, the exponential random graph
model (ERGM) for a network is introduced and its use in imputation of
missing network information is described. Section 5 then describes a small-
scale simulation study that investigates the performance of the EBLUP both
when the network information is ignored and when either all or part of the
network is used. In Section 6 we use data from wave N (2004) of the BHPS
to illustrate age by sex by region estimation of population means based on a
model that includes age by sex effects and a contextual variable correspond-
ing to the maleness proportion of an individual’s three best friends. Section
7 completes the paper with a discussion of our findings as they relate to the
three questions raised above.

2 Linear Network Models

In this section we describe a number of population level linear models that
use network information. Throughout, we use a friendship social network
structure for simplicity of exposition. In order to develop our notation, the
starting point is the linear model that assumes uncorrelated errors.

2.1 The Standard Model

The classical linear model for a population of N individuals has the form

Y = Xβ + ε, ε ∼ N(0, σ2I), (1)

where Y = (Y1, . . . , YN )′ is a vector of responses, X = (X′1, . . . ,X
′
N )′

with Xi = (Xi1, . . . , Xip)′ is the model design matrix with p rows de-
fined by a set of covariates that depend on auxiliary population informa-
tion, ε = (ε1, . . . , εN )′ is the vector of residuals with εi ∼ N(0, σ2) and
β = (β1, . . . , βp)′ is the vector of regression coefficients. The population
mean vector and population covariance matrix of Y are then µ = Xβ and
V = σ2IN . Here IN denotes the identity matrix of order N .

This model does not use social network information. In the rest of this
section we therefore consider models where the response variable depends
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linearly on a set of known covariates but also uses a social network as an
additional source of information.

2.2 The Contextual Network Model

Consider an educational modelling exercise where academic performance
(AP) is the response variable and socio-economic status (SES) of the student
is the explanatory variable. A classical contextual approach might then lead
one to include the average SES of the student’s school calculated over all
students attending this school as another explanatory variable. This could
be motivated by the argument that the extra educational resources available
to a working-class student attending a school in an affluent suburb should
lead to a higher AP value than a similar student attending a school in
a poor neighbourhood. However Duke (1993), see Subsection 2.1, argues
that such models are not appropriate, because the “socio-economic status of
students in a school is a poor proxy of the actual content of the interpersonal
influences to which a student is exposed”. Given the friendship network of
a student, this immediately suggests the alternative contextual model

APi = β0 + β1SESi + β2SESi + εi, (2)

where index i stands for the ith student and εi ∼ N(0, σ2). Here the aca-
demic performance of individual i depends linearly on the average level of
socio-economic status of his/her friends (denoted SESi above) and linearly
on his/her socio-economic status, see Friedkin (1990). In general, this type
of contextual model has the form

Y = Xβ + X̄β̄ + ε, ε ∼ N(0, σ2IN ), (3)

where Y, X, β and ε have the same meaning as for model (1). The model
includes the contextual variables contained in the matrix X̄ with the vector β̄
denoting the associated contextual effects. In the above example X contains
two columns, the first is a column of ones for the intercept and the second
contains SESi, and X̄ = (SES1, . . . , SESN )′ is the vector containing the
contextual socio-economic status of all N students in the study population.
The population mean vector and population covariance matrix of Y in this
case are µ = Xβ + X̄β̄ and V = σ2IN .

Let Ξ be the matrix containing the population values of the relevant
contextual variables. In the above example, Ξ is the vector of values SESi.
In general, the set of covariates used in X can be different from those in Ξ,
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so the contextual variables contained in X̄ are not necessarily based on X.
In particular, we then have

X̄ = WΞ (4)

with W = Diag(Z1N )−1Z, where 1N is a column vector of ones of length N .

Remark
A contextual variable for person i often includes the value for this person,
for example a household contextual effect is computed over all household
members including person i. However, the contextual value for person i
defined by (4) excludes person i, because Zii = 0 by definition.

2.3 The Autocorrelation Model

Autocorrelation (AR) models, also known as network effects models, are
another class of models that incorporate network information into a linear
structure. See for example Doreian et al. (1984), Duke (1993), Marsden and
Friedkin (1993) and Leenders (2002), and in the context of spatial models,
Ord (1975).

Continuing with the academic performance example introduced in the
previous sub-section, Duke (1993) considered the model where

APi = β0 + β1SESi + θAP i + εi,

depends linearly on the socio-economic status SESi of student i and the
average academic performance, denoted AP i, of his/her friends.

As before let Y be the vector of responses, X the design matrix de-
pending on a set of covariates and ε be a vector of residuals. This model is
usually referred to as an AR model and can be expressed more generally as

Y = θȲ + Xβ + ε, ε ∼ N(0, σ2IN ), (5)

where Ȳ = (Ȳ1, . . . , Ȳ
′
N )′ and Ȳi stands for the average response of the friends

of individual i, so Ȳ = WY, with W defined in the previous sub-section.
Typically W is row-normalised, i.e.

∑N
j=1Wij = 1, implying the parameter

θ is restricted to the open interval (−1,+1).
The mean and variance of Y under (5) are µ = U−1Xβ and V =

σ2(U′U)−1 with U = IN − θW. Note that W can be defined in a variety
of ways, see Leenders (2002).
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2.4 The Network Disturbance Model

Models of this type have been considered by Ord (1975) and Leenders (2002)
among others, and correspond to imposing an AR structure on the linear
model residuals. They are referred to as network disturbance models and
are specified by

Y = Xβ + ε, ε = θε̄ + v,v ∼ N(0, σ2IN ). (6)

where ε̄ = (ε̄1, . . . , ε̄N ) and ε̄i is the average residual of the friends of person
i.

In the context of the academic performance example considered in the
preceding sub-sections, this implies that APi, the academic performance of
the ith student, depends linearly on SESi and that the associated error εi
depends linearly on the average ε̄i of the errors of the friends of student i.

The model (6) is equivalent to

Y = Xβ + ε, ε ∼ N(0, σ2(U′U)−1) (7)

with |θ| < 1. It implies that the mean and variance of the response vector
Y are then µ = Xβ and V = σ2(U′U)−1 respectively, where U is defined
at the end of the previous sub-section.

Note that the mean µ = Xβ under (7) is unaffected by the social net-
work, whereas under the AR model (5) the mean µ = U−1Xβ depends on
the network through U. The parameter θ is an indicator for the strength of
the correlations imposed by the network. For θ = 0, these correlations are
zero and V equals the variance under the standard model, i.e. V = σ2IN .
Consequently it makes more sense to refer to the network disturbance model
as a network covariance model, because the network only affects the covari-
ance structure of the response and not its mean.

2.5 Other Network Covariance Models

Although the AR and network disturbance models are popular ways of rep-
resenting the influence of a network on a response, they are not the only
ways that one can achieve this aim. Other network covariance models can
be constructed. For example, one can assume that the correlation between
two responses Yi and Yj is θ if Zij = 1, and zero otherwise, and let the
subject-level variance be σ2. This model has the form

Y ∼ N
(
µ = Xβ,V = σ2IN + θZ

)
(8)
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and reflects the idea that the responses of two people with a social connection
(Zij = 1) should be more alike in terms of their responses than two people
who are not connected (Zij = 0). To maintain the positive definiteness
and symmetry of V, Z needs to be symmetric and the parameter space
for θ must be restricted to small values. Furthermore, in order to allow
for the hypothesis that many friends have individually less influence on a
person than a single friend, one could use W instead of Z in (8), reducing
each individual’s contribution to the correlation from θ to θ divided by
the number of friends. Symmetry can be guaranteed by replacing W by
(W + W′)/2, which in turn implies that an only friend j of individual i
who in turn has many friends cannot have as much influence on i as an only
friend j who has only i as a friend.

3 Prediction of Population Totals Using Network
Models

The models discussed in the previous section are all predictive models, i.e.
when second order moments are known, they can be used to compute effi-
cient predictions of unknown values of the response variable. Here we are
specifically interested in using these models to predict the value of the popu-
lation total t =

∑
i∈P Yi = 1′NY (and hence the mean t/N) from knowledge

of the sample values in Y, the matrix of model covariates X and either part
of or all of the network matrix Z. Throughout we assume that inclusion in
sample does not depend on Z and that there is non-informative sampling
given X, see Section 1.4 of Chambers and Clark (2012). Consequently, all
unknown parameter values for the standard model (1) can be estimated from
the sample data and predicted values of Y for the non-sampled population
individuals can be computed. In this section we discuss how the more com-
plicated network models introduced in the previous section can also be fitted
to the sample data and conclusions drawn about the unknown value of t.

3.1 The Empirical Best Linear Unbiased Predictor

The best linear unbiased predictor or BLUP, see Royall (1976), is an efficient
estimator of the population total t that only requires specification of the first
and second order moments of Y given X and Z. It assumes that the mean is
linear, i.e. EY = µ = Tβ, and that Var(Y) = V is known up to a constant
of proportionality. Here T is a well-defined function of X and Z.

Let s and r denote the n sampled and N − n non-sampled population
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individuals respectively. Put T = (T′s,T
′
r)′ and Y = (Y′s,Y

′
r)′. The matrix

V can be partitioned conformably as

V =
(

Vss Vsr

Vrs Vrr

)
.

The BLUP is then the weighted sum t̂BLUP = w′sys of the sample values of
the response, where

ws = 1n + V−1
ss

{
Vsr1N−n −Ts(T′sV

−1
ss Ts)−1

(
T′sV

−1
ss Vsr −T′r

)
1N−n

}
(9)

is the vector of BLUP weights. Here 1n and 1N−n are vectors of ones of
size n and N −n respectively. An alternative expression for the BLUP is its
so-called predictive form

t̂BLUP =
∑
i∈s

Yi +
∑
i∈r

Ŷi +
∑
i∈s

γi(Yi − Ŷi) (10)

where β̂ = (T′sV
−1
ss Ts)−1T′sV

−1
ss Ys is the best linear unbiased estimator

(BLUE) of β, γi is the ith element of the vector 1N−nV′srV
−1
ss and Ŷi = Tiβ̂.

A key assumption of the BLUP is that the variance matrix V is known.
This is usually incorrect, as the variance matrix V can depend on unknown
parameters, which must be estimated. Substituting these estimates in V
defines the plug-in estimator V̂, which is then used in (9) instead of V. The
resulting estimator of the population total is called the empirical BLUP
(EBLUP).

In order to apply the EBLUP to the different network models defined in
the previous section, we need to specify T and V as well as estimators of
the unknown parameters that underpin these matrices. These are defined
as follows:

Standard Model : Here T = X and V = σ2IN . The residual mean
squared error defines an unbiased estimator of σ2.

Contextual Network Model : For the contextual model T = [X, X̄],
where X̄ = WΞ and W = Diag(Z1N )−1Z. Also, V = σ2IN and we
can unbiasedly estimate σ2 using the residual mean squared error.

Network Covariance Model : Here T = X and V = σ2IN + θ(W +
W′)/2. Estimates of σ2 and θ can be obtained via restricted max-
imum likelihood estimation (REML) using the iterative generalised
least squares algorithm (IGLS), see Goldstein (1989).
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Autocorrelation Model : In this case the pseudo-design matrix T =
U−1X with U = IN − θW and V = σ2U−1(U−1)′. Estimates of σ2

and θ can be obtained by maximum likelihood (ML). Note that REML
cannot be used here, because the mean and variance depend on the
parameter θ.

Network Disturbance Model : Here T = X and V = σ2U−1(U−1).
ML estimation of σ2 and θ can be carried out.

ML estimation for the AR and network disturbance models is not straight-
forward. Both models are not reproducible, i.e. they do not share the prop-
erty that the model for a subset of units of the population has the same form
as the model for the whole population. To see this, note that the variance of
the population response vector Y under both models is σ2(U′U)−1 so that
the variance for the sample response vector Ys is σ2[(UU)−1]ss. In gen-
eral, this will not equal σ2(U′ssUss)−1, which is the assumed variance if the
model is fitted via ML at the sample level. This misspecification can lead to
biased estimates of the model parameters. A modified approach that yields
unbiased estimates of the fixed effects in the model is described in Suesse
(2012). However this is computationally intensive. An alternative approach
replaces U−1 by a 4th order Taylor series approximation. This speeds up
computation considerably since it effectively replaces matrices of dimension
N ×N by matrices of dimension n×n. See Suesse (2012) where it is shown
that ML estimates based on this approximation are essentially identical to
those obtained using the modified ML method.

3.2 Variance Estimation for the EBLUP

The prediction variance of the BLUP is

Var(t̂BLUP − t) = w̃′Vw̃ (11)

with w̃ = (ws−1n,−1N−n). This formula assumes that the vector of survey
weights ws is fixed. We can use the same formula for the EBLUP, although
from (9) it is apparent that the EBLUP weights are not fixed, because V is
estimated, as is the design matrix for the AR model.

In general for a set of parameters η describing a model, the difference
between the true and the ML/REML estimates of the parameter values ap-
proaches zero for large n provided the model holds, i.e. η̂ − η = o(n−1/2).
In what follows, we assume that the sample size is large, so it is reason-
able to assume that the difference between the BLUP weights (9) and their
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corresponding EBLUP approximations can be ignored, justifying use of the
formula (11) with EBLUP weights as a first order approximation to the
prediction variance of the EBLUP.

Using (11) to estimate this prediction variance depends on estimation of
V. For the standard model and the contextual network model, we use a ro-
bust version of the resulting variance estimator, see Section 9.2 of Chambers
and Clark (2012), given by

V̂ar(t̂BLUP − t) =
∑
i∈s

(wis − 1)2(Yi − µ̂i)2 + (N − n)σ̂2,

where µ̂i is the predicted mean for i ∈ s, i.e. µ̂i = Xiβ̂ for the standard
model and µ̂i = Xiβ̂ + X̄i

ˆ̄β for the contextual network model, with σ̂2

corresponding to the usual unbiased estimator of σ2 under each model.
For the other models we use equation (11) with a plug-in estimator V̂. In

this context, we note that ML estimates of variance parameters are known
to be biased, which could therefore lead to a bias in V̂ and in the result-
ing plug-in estimator defined by (11). The standard approach to dealing
with this issue is to apply REML instead of ML. Unfortunately, the AR
model does not allow the application of REML, and furthermore REML is
computationally more complex when fitting these population models. Con-
sequently a bias-corrected version of ML was applied, based on the approach
set out in Goldstein (1989) which adjusts IGLS to obtain estimates that are
equivalent to REML. The details of this are outlined in the Appendix.

4 Modelling and Imputation of Social Networks

The network models discussed in the previous Section all imply a population
mean vector µ or a population variance matrix V that depends on the pop-
ulation network Z. Furthermore, our development of the EBLUP assumed
that Z is known. However this is extremely unlikely. It is far more likely
that we know either just that part of the network defined by the sampled
individuals (i.e. Zss) or that part of the network involving the sampled
individuals (i.e. Zss and Zsr). Consequently we now consider methods of
estimation that take account of this incomplete data. In particular, we de-
velop model-based imputation methods that can be used to construct an
estimate Ẑ of the full network. We start by discussing models for networks.
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4.1 Exponential Random Graph Models

The most popular class of models for a network Z is the class of (curved)
exponential random graph models (ERGMs). See Wasserman and Faust
(1994) and Carrington et al. (2005). Under an ERGM, the distribution of
Z is characterised by

Pr(Z = z) = exp
(
η(θ)′G(z)− κ(θ)

)
, (12)

where θ is the vector of model parameters, η(θ) is a mapping from p-
dimensional to q-dimensional space with p ≤ q, and

κ(θ) = log

{∑
z∈Ω

exp(η(θ)′G(z))

}

is the normalising constant where the sum is over the sample space Ω of all
exp(

(
n
2

)
log 2) undirected networks. Here G(z) is a vector of network statis-

tics which, together with θ, completely characterises the joint distribution
of the network.

Fitting such models is complicated, mainly because direct calculation of
κ(θ) is typically infeasible. One way of circumventing this problem is to sam-
ple from the network distribution (12) using a Markov-Chain-Monte-Carlo
(MCMC) algorithm in order to obtain a stochastic approximation to the
maximum likelihood estimate of θ. Such estimates are called MCMC ML
estimates (Hunter and Handcock, 2006). Describing the network distribu-
tion via simple network statistics, such as the number of triangles (a triangle
is said to exist between individuals i, j and k, if Zij = 1, Zjk = 1, Zik = 1),
then becomes problematic, because such specifications often lead to degen-
erate MCMC samples. Some authors (Snijders, 2002; Snijders et al., 2006)
have therefore proposed the use of more complex network statistics, such as
the geometrically weighted edgewise shared partner (GWESP) statistic, for
which degeneracy seems less of a problem. For more details of social net-
work modelling, see Strauss and Ikeda (1990); Hunter and Handcock (2006);
Hunter (2007); Hunter et al. (2008) and Butts (2008).

4.2 Imputation of Partly Observed Networks

As mentioned earlier, an estimate Ẑ of the full network is necessary for cal-
culation of the EBLUP under the network models considered in this paper.
However, in practice only part of network will be observed, say Zobs, and
another part will be missing, say Zmis. For example, the observed network
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Zobs could be Zss, in which case the missing network Zmis is Zsr∪Zrs∪Zrr.
In what follows we assume an undirected network, i.e. Z = Z′, so Zsr = Zrs.
We also focus on single-value imputation of Zmis. Our approach can be ex-
tended to multiple imputation.

A model-based approach to imputing the missing network components is
based on the minimum mean square error predictor E(Zmis|Zobs = zobs; θ).
Note that the expectation here is with respect to the ERGM model (12), with
unknown parameters replaced by ML estimates. To compute E(Zmis|Zobs =
zobs; θ = θ̂ML) we need the distribution of Zmis|Zobs under an ERGM, which
is

Pr(Zmis = zmis|Zobs = zobs; θ) =
exp

(
η(θ)′G((zmis, zobs))

)∑
zmis∈Ωmis exp (η(θ)′G((zmis, zobs)))

.

(13)
Here Ωmis is the sample space of the missing networks, which is typically
extremely large. We therefore consider three methods of approximating this
conditional expectation.

Method 1

The first method is via MCMC, for example the Metropolis-Hasting algo-
rithm. Given a sample zmis

1 , . . . , zmis
m from Zmis|Zobs = zobs, we can ap-

proximate E(Zmis|Zobs = zobs) by 1
m

∑m
i=1 zmis

i . Unfortunately this method
is not feasible for the larger networks that occur in surveys because the
computation of the network statistics G(z) is very time-consuming. As a
consequence we do not consider this method further in this paper. Note
however that for a single small to medium size data set (say N ≤ 2, 000),
sampling from the conditional distribution (13) is recommended.

Method 2

The second method represents a simpler, more feasible, approach. Suppose
conditionally on zobs that Zmis

ij and Zmis
kl are conditionally independent for

any two distinct pairs of individuals i, j and k, l, where both pairs are in mis
and by distinct we mean that (i, j) 6= (k, l) and (i, j) 6= (l, k) hold. Then
Pr(Zmis = zmis|Zobs = zobs) =

∏
ij∈mis Pr(Zij = zij |Zobs = zobs), where∏

ij∈mis denotes the product over which all distinct pairs is in the set mis.
It follows that we can write, for a distinct pair (i, j) ∈ mis,

Pr(Zij = 1|Zobs = zobs)
Pr(Zij = 0|Zobs = zobs)

= exp(ηT (θ)∆Gmis
ij ), (14)
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where ∆Gmis
ij is the change statistic, i.e. the difference in G between (Zij ,

zmis−(i,j), zobs) = (1, zmis−(i,j), zobs) and (Zij , zmis−(i,j), zobs) = (0, zmis−(i,j), zobs).
Note that mis − (i , j ) here denotes the set mis with the distinct pair (i, j)
excluded. It remains to observe that (14) implies that it is only necessary to
compute ∆Gmis

ij in order to obtain E(Zij |Zobs = zobs) = Pr(Zij = 1|Zobs =
zobs) for any distinct pair (i, j) ∈ mis. Since the conditional independence
assumption underpinning this method is generally unwarranted, it can only
be considered as approximating E(Zmis|Zobs = zobs). However, it is compu-
tationally feasible for realistic sample and population sizes.

Method 3

An even simpler approach is to calculate the proportion of Zij = 1 in zobs and
use this proportion to impute zmis. This corresponds to fitting an ERGM
model with just the EDGES statistic to the network, which in turn is equiv-
alent to assuming that each Zij in the network matrix Z is an independent
Bernoulli variable with a common probability of a success.

5 Simulation Study

5.1 Study Design

The aim of the study is to investigate the effect of using networks as an
additional source of information when estimating the population total t of
a survey variable Y . A population size of N = 1, 000 is assumed, balancing
computation time against the number of different scenarios that are explored
in the study. Sample sizes were set at n = 100 and n = 200, and simple
random sampling without replacement was employed.

Network Generation

Two types of networks were investigated. In the first scenario (ERGM net-
work), Z was generated via an ERGM with an EDGES statistic equal to
−4.18 and a weight parameter of 1.0 for the GWESP statistic distribution.
These values were chosen in order to generate a realistic network density of
approximately 15 network connections for each subject.

The second scenario (Gang network) simulates a network consisting of
100 gangs each of size 10. It is assumed that each gang member only knows
every other gang member of his/her gang. In this case Z is a block diagonal
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matrix with 100 blocks, with each block equal to the identity matrix of order
10 minus a 10× 10 matrix of ones.

Figures 1 and 2 show a simulated ERGM network and the Gang network.
Note that the ERGM network only shows the network connections between
300 randomly chosen individuals out of the population of N = 1, 000. On
average every individual has 7.541 connections for the ERGM network. By
definition, every individual has 9 connections for the Gang network.

Imputation of Partly Observed Networks

In the simulation study we restricted ourselves to two realistic scenarios
where part of the network is unobserved and so must be imputed. In the first
scenario, denoted by SS in what follows, only Zss is observed and Zsr and Zrr

are missing. This could be the case where clusters of individuals are sampled,
and the components of the network defined by the individuals making up
each cluster are measured (assuming that there are no network connections
between individuals in different clusters). In the second scenario, denotes
SS-SR in what follows, Zss and Zsr are observed and Zrr is missing. This is a
more realistic situation, where network information relating to all individuals
in the population is collected from the sampled individuals.

For the ERGM network both imputation Method 2 and imputation
Method 3 lead to the same imputed value of Zmis in the SS scenario. In
contrast, these methods lead different imputed values in the SS-SR scenario
under the ERGM network. We therefore denote the application of imputa-
tion Method 2 in the SS-RS scenario for the ERGM network by SS-SR-C,
and the corresponding application of imputation Method 3 by SS-SR-S. The
SS, SS-SR-C and SS-SR-S imputation scenarios were all considered in our
simulation of the ERGM network.

In contrast, imputation of the Gang network can be carried out relatively
effectively without using the methods described in the previous Section. This
is because the gang structure implies transitivity, i.e. in many situations the
true value of Zij for (i, j) ∈ mis can be deduced. When no conclusion can
be drawn about the true value of Zij then the observed proportion is used
as a predictor. That is, for the Gang network we considered two missing
network data scenarios, SS and SS-SR-S.

Finally, we also considered the situation where no network data are used
(the standard model) and where the network is fully known.

15



Figure 1: Simulated ERGM network for a random sample of 300 individu-
als from a population of N = 1, 000, with parameters EDGES= −4.18 and
GWESP= 1.0. Note that although the isolated individual has no connec-
tions with the 299 other individuals that make up this sample, this does not
mean that this individual does not have connections with the remaining 700
individuals in the population.
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Figure 2: Gang network for N = 1, 000 individuals with 100 gangs, each of
size 10.
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Parameter Specification for Linear Network Models

We generated data under all four of the linear network models discussed in
Section 2. In each case all of these models were fitted to the resulting sample
data, and EBLUP estimates of the population total t were then computed
based on these fits (see the discussion in Section 3). In all cases the auxiliary
variable took values randomly in the set Xi = 1, . . . , 9, σ2 = 1, β0 = 40 and
β1 = 5. The network models used were

Contextual Network Model :

Yi = β0 +Xiβ1 + X̄iβ̄ + εi, εi ∼ N(0, σ2)

Here the contextual variable X̄i is defined by the network Z and Xi,
i.e. X̄ = WΞ, where Ξ = (X1, . . . , XN )′, and β̄ = 2.0.

Network Covariance Model :

Y = β0 + Xβ1 + ε, ε ∼ N(0,V)

with V = σ2I + θ(W + W′)/2; θ = 1.0; σ2 = 1, β0 = 40 and β1 = 5.

Autocorrelation Model :

Y = θWY + β0 + Xβ1 + ε, ε ∼ N(0, σ2IN )

with θ = 0.5, σ2 = 1, β0 = 40 and β1 = 5.

Network Disturbance Model :

Y = β0 + Xβ1 + ε, ε = θWε + v, v ∼ N(0, σ2IN )

with θ = 0.5, σ2 = 1, β0 = 40 and β1 = 5.

5.2 Simulation Results

Results for the n = 100 case are presented jointly for the ERGM and Gang
networks. Table 1 shows the relative mean squared error (RMSE) of the
estimates of t, while Table 2 shows the average lengths of nominal 95%
Wald-type confidence intervals with their corresponding coverages shown as
subscripts. Results for n = 200 are similar and are not presented here. No
results are presented for the network covariance model, because these are
similar to those of the network disturbance model. Also bias results are
omitted, because these are effectively zero for all methods. These results
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include the cases where the network is ignored (the standard model) and
when the network Z is fully known (the known network model). For partially
observed network data we show results for the SS case (only Zss known),
the SS-SR-C case (Zss and Zsr known, Method 2 imputation) and the SS-
SR-S case (Zss and Zsr known, Method 3 imputation). Also, all results are
shown relative to those for the BLUP, i.e. where the underlying network
model and its parameter values are known. Clearly both this situation and
the known network situation are unrealistic. However, they do allow one to
gauge the relative benefit of putting more effort into collecting more network
information and in carrying out more intensive network modelling.

Interestingly, when Z is known, but not the associated network and vari-
ance parameters, there is no loss in efficiency under the contextual network
model. This is because knowing the variance parameter for the contextual
model has no impact on the value of the EBLUP under this model. In con-
trast, we see an effect for the AR model, corresponding to a loss of efficiency
of around 8 − 10%, mainly because the pseudo-design matrix U−1(θ)X for
this model depends on the estimated value of θ. This problem is much less
of an issue for the network disturbance model because the design matrix
under this model is X.

It is clear from the results shown in Table 1 that ignoring the network
(i.e. using the standard model) can lead to a large loss in efficiency if either
the AR or the contextual network models are true. Interestingly, our results
also seem to indicate that adopting the contextual network model when
in fact the AR model is true seems as good as adopting the correct AR
model specification. This is in contrast to the situation where the contextual
network model is true and the EBLUP is based on either the AR model or
the network disturbance model. Note that when the network disturbance
model (or the network covariance model) is true, then ignoring the network
information in the data only leads to a marginal loss in efficiency. Similarly,
the efficiencies of the EBLUPs based on the different network models are
also almost fully efficient in this case, irrespective of whether the assumed
network model is true.

In order to see why the contextual network model yields similar results
as the AR model when the AR model holds, we note that the mean of the
AR model is µ = U(θ)−1X. If we approximate U(θ)−1 by a first order
Taylor series around zero, i.e. U(θ)−1 = (I− θW)−1 ≈ I + θW, then

µ ≈ Xβ + θWXβ = Xβ + X̄β̄

with β̄ = θβ and X̄ = WΞ, where Ξ = X. That is, the implied mean
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structure under the AR model is approximately the same as that under a
contextual network model.

When Zss and Zsr are observed, the EBLUP based on the contextual net-
work model appears to perform well generally. This is because the EBLUP
under this model does not depend on Zrr and hence is unaffected by impu-
tation of this part of the network. This is in contrast to the performance of
this EBLUP when only Zss is observed. Here we see that the need to im-
pute Zsr leads to a significant loss of efficiency. Since estimation of θ in the
pseudo-design matrix U(θ)−1X under the AR model has a larger negative
effect than the approximation of the AR model by the contextual network
model, we conclude that the EBLUP based on the contextual network model
seems a generally more robust method for estimating the population total
than the EBLUP based on the AR model.

Turning now to the impact of the different network types used in the
simulation, we see that for the ERGM network, our results indicate that
the imputation method SS-SR-C, based on the conditional independence
method (Method 2), performs worse than SS-SR-S, the simple proportion
approach (Method 3). While this result is somewhat surprising, it could
be explained by the roughness of the approximation implicit in the im-
putes generated using SS-SR-C and the robustness of the simple proportion
method used in SS-RC-S. A priori, however, we would expect that a model-
based approach using E(Zmis|Zobs = zobs) as a predictor, say obtained by
the MCMC technique, should lead to higher efficiency than using SS-SR-S.
In particular, it is possible that a multiple imputation version of SS-SR-C
might yield better results. However such methods still need to be developed
for ERGMs, see for example Koskinen et al. (2011). In any case, it should
be noted that the small observed differences between SS-RS-S and the com-
plete network known case indicates that the possible gains from the use of
these more sophisticated methods may be minimal.

Finally, for the Gang network the differences between SS and SS-SR-S for
the contextual network and AR models are larger. A possible reason might
be that for the Gang network some of the missing network structure can be
deduced from the sample data, so that in fact part of the missing network,
for example part of Zrr, is known in the SS-SR case. In contrast, in the
SS case less can be inferred about the missing components of the network,
explaining the larger differences compared with those obtained under the
ERGM network structure. This suggests that obtaining as much additional
information about the missing network components as possible is valuable.
For example, if a social relationship can be ruled out for certain groups of the
population, then these zero valued entries in Z represent valuable observed
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Table 1: Estimated relative MSE of EBLUP, relative to BLUP, for ERGM
network (left) and Gang network (right) and n = 100, N = 1000

ERGM network Gang Network
True Model True Model

Fitted model Cont AR ARerr Cont AR ARerr
BLUP - actual MSE 9, 390 8, 739 8, 736 9, 421 12, 330 12, 315
full network known 1.00 1.10 1.02 1.00 1.08 1.01
standard 2.30 3.50 1.00 2.87 10.5 1.04
contextual SS 2.28 3.38 1.00 2.66 9.57 1.05
model SS-SR-C 1.19 1.39 1.00 – – –
(Cont) SS-SR-S 1.14 1.31 1.00 1.01 1.07 1.06
autocorrelation SS 2.30 3.34 1.01 2.57 8.67 1.05
model SS-SR-C 1.45 1.42 1.00 – – –
(AR) SS-SR-S 1.31 1.30 1.00 1.24 1.10 1.06
disturbance SS 2.30 3.52 1.02 2.54 8.79 1.01
model SS-SR-C 2.30 3.48 1.02 – – –
(ARerr) SS-SR-S 2.30 3.49 1.02 3.14 11.2 1.01

network information. In particular, it seems clear that there are significant
advantages in collecting information about the complete network associated
with the sampled individuals, i.e. both Zss and Zrs.

6 Application to the British Household Panel Study

The British Household Panel Study (BHPS) is an annual multi-purpose
household panel survey in the United Kingdom that focuses on gaining in-
sight into the social and economic change at the individual and household
level in Britain and the UK, see http://www.iser.essex.ac.uk/survey/
bhps/ for more details.

We focus on an individuals annual income in British pounds as the vari-
able of interest. Our aim is to investigate how the use of network informa-
tion available in BHPS impacts on average income estimates for the cross-
classification age by gender by region, using six categories for age 15 − 18
(1), 19− 21 (2), 22− 30 (3), 31− 50 (4), 51− 64 (5), 65+ (6) (in years), two
for gender (1: male, 0: female) and five regions defined as: (1) ‘Not London
- North’ consisting of East Midlands, West Midlands Conurbation, Rest of
West Midlands, Greater Manchester, Merseyside, Rest of North West, South
Yorkshire, West Yorkshire, Rest of Yorks & Humberside, Tyne & Wear, Rest

21



Table 2: Estimated relative length of nominal 95 per cent confidence interval
(CI) for EBLUP, relative to BLUP, for ERGM network (left) and Gang
network (right) and n = 100, N = 1000, actual coverage shown in subscript

ERGM Network Gang Network
True Model True Model

Fitted Model Cont AR ARerr Cont AR ARerr
BLUP - actual CI length 37094.5 38296.2 38296.4 37094.0 41893.9 41893.4

full network known 1.0094.4 0.9995.0 0.9895.3 1.0094.0 1.0092.8 1.2794.1

independence 1.5994.8 1.8496.0 0.9995.7 1.7293.8 3.2392.8 1.0193.6

contextual SS 1.5493.5 1.7995.4 0.9995.5 1.6594.4 3.0791.8 1.0093.2

model SS-SR-C 1.0092.3 1.0192.2 0.9995.6 – – –
(Cont) SS-SR-S 1.0092.9 1.0192.7 0.9995.8 1.0093.7 1.0193.0 1.0193.7

autocorrelation SS 1.5494.1 1.7795.3 0.9995.4 1.6294.2 2.8992.4 1.0093.4

model SS-SR-C 1.1092.2 1.0192.2 0.9995.5 – – –
(AR) SS-SR-S 1.1093.1 1.0192.8 0.9995.6 1.0693.7 0.9992.4 1.0093.4

disturbance SS 1.5994.8 1.8395.7 0.9895.1 1.5993.5 2.9392.3 0.9893.2

model SS-SR-C 1.5994.8 1.7794.4 0.9794.4 – – –
(ARerr) SS-SR-S 1.6094.8 1.8095.2 0.9894.9 2.0190.1 53.689.5 1.2794.1

of North; (2) ‘Not London - South’ containing Rest of South East, South
West and East Anglia; (3) ‘London’ includes inner and outer London; and
finally (4) ‘Scotland’ and (5) ‘Wales’. We exclude Northern Ireland from our
analysis because BHPS sample sizes were too small to cross-classify by age
and gender. We also exclude persons who did not report a positive income.

We start by noting that the estimates that we report are not meant to
be an improvement on standard BHPS estimates. They have been calcu-
lated purely in order to illustrate how network information can be used in
a realistic application, and the potential impact. In this context, we ob-
serve that BHPS collects information from a respondent on his/her three
best friends, corresponding to the genders and ages of these friends, du-
ration of friendships, frequency of contact, distances to the friends, their
job/employment statuses, and their ethnicities. If we define Z in this case
as the best friendship network for the BHPS target population then Z is un-
known. We therefore use the contextual network model to incorporate the
network information into estimation. We consider two models, a standard
model based on age and gender and a contextual model that, in addition to
age and gender, includes a variable equal to the arithmetic average of the
gender indicators for a respondents three best friends. We use wave N of
the BHPS (2004), the last available wave for which friendship information is
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collected. Sample size for this wave of the BHPS is 7, 968 people, of which
285 (3.6%) either report zero income or are from Northern Ireland and so
are excluded, resulting in a final sample size of n = 7, 683.

The estimated mid-2004 population for Great Britain (England, Scotland
and Wales) is 58, 124, 700. In the 2001 census the percentage of people aged
less than 15 was 18.8% (Source: Office for National Statistics; National
Assembly for Wales; General Register Office for Scotland). As a rough
estimate we therefore have N = 58, 124, 700× (1− 0.188)× (7713/7968) =
46, 984, 706 people aged 15 years and older living in in Great Britain and
with a positive income at the time of wave N of the BHPS.

Let Agei = 1, . . . 6 be the age category person i = 1, . . . , N falls in,
Regi = 1, . . . , 5 the region person i lives in and Genderi = 0, 1 the gender
of person i. A standard linear model for the population P that uses age by
gender categories as auxiliary variables is

Yijkl = α+βjk +εijkl, i = 1, . . . , n; j = 1, . . . , 6; k = 0, 1; l = 1, . . . , 5 (15)

where Yijkl is income of person i with Age = j, Gender = k and Region = l.
Prediction using the BLUP based on this model requires that population
totals for each age by gender cell be known. Wave N BHPS weights were
used to obtain these totals, which were then adjusted so that they summed
to the (estimated) population value of N derived above.

We next define a contextual network model by adding a contextual vari-
able to the standard model (15). This is the variableMALEi = 0, 1/3, 2/3, 1,
defined as the average value of the gender indicators for an individuals three
best friends. This leads to the model

Yijkl = α+βjk +γMALEi + εijkl, i = 1, . . . , n; j = 1, . . . , 6; k = 0, 1. (16)

BLUP weights under both (15) and (16) can be calculated using the
formula (9), and mean annual income for any domain A ⊂ P can then be
estimated via the weighted domain mean∑

i∈A∩swiYi∑
i∈A∩swi

. (17)

There are two issues with calculating the BLUP weights under the mod-
els (15) and (16). The first is that under the contextual model (16) these
weights require that we know the population total of the contextual variable
MALEi. In the results shown below, we substituted an estimate of this
population total based on the wave N BHPS weights. Specifically, we esti-
mated the non-sample mean of this variable by its corresponding (BHPS-)
weighted sample mean.
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Table 3: Average proportion of male friends MALE

Regions in Great Britain
England England Average

Sex Age Group London North South Scotland Wales Proportion
≤ 18 27.46 30.14 31.69 17.26 28.66 27.04

female 19− 21 20.33 25.63 26.49 31.86 35.31 27.92
22− 30 26.23 19.80 18.27 16.08 14.22 18.92
31− 50 16.04 13.36 12.51 12.49 11.19 13.12
51− 64 11.29 10.44 11.70 8.61 10.48 10.50
≥ 65 15.32 13.72 15.90 10.14 13.19 13.66
≤ 18 80.87 72.54 71.98 73.52 78.80 73.7

male 19− 21 67.95 72.23 70.48 59.23 78.80∗ 70.5
22− 30 73.06 74.70 70.48 69.17 74.06 73.2
31− 50 69.74 72.94 71.22 75.83 71.77 73.0
51− 64 59.05 65.17 63.30 68.54 67.48 64.3
≥ 65 61.29 53.45 55.88 51.64 53.89 55.2

∗ sample size is one and estimated proportion from age group ≤ 18 is used
instead
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Figure 3: Estimated variance versus fitted values for standard model and
contextual model

The second issue is that the covariance structure of the errors in both
(15) and (16) requires specification. Figure 3 shows estimated residual vari-
ance (for each level of predicted value) versus predicted value under stan-
dard model (15) and the contextual model (16) based on an assumption
of homoskedastic errors for both models. Curves corresponding to the het-
eroskedasticity model Var(Yijkl) = φE(Yijkl)k for k = 0, 1, 2 were fitted to
these values in order to assess whether the homoscedasticity assumption is
reasonable. The four points that appear to be outliers in the contextual
model plot were omitted from this fit. The fitted curves for k = 0, 1, 2
clearly indicate that k = 2 is the best choice and that the assumption of
homoscedasticity (k = 0) is inappropriate for the BHPS income variable
under both (15) and (16). This conclusion is supported by Figure 4 which
shows plots of studentized residuals versus predicted values for k = 2.

We accommodate this heteroskedasticity when fitting (15) and (16) via
ML by assuming that the model errors follow the Tweedie distribution (Jor-
gensen, 1997). This allows a general power link of the form EYijkl =
(Xijklβ)p, where Xijkl is a vector of predictors and β is the vector of
regression coefficients, and a general power-variance function of the form
Var(Yijkl) = φE(Yijkl)k. The variance power coefficient k can take any real
value outside the open interval 0 < k < 1. Special cases are the Normal
distribution (k = 0), the Poisson distribution (k = 1) and the Gamma dis-
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Figure 4: Residuals versus fitted values for standard model and contextual
model

tribution (k = 2). The standard assumption of normally distributed errors
seems unrealistic for a strictly non-negative response variable like income.
Consequently we fitted both (15) and (16) under the assumption of a linear
link (p = 1) and Gamma errors (k = 2).

Table 4 shows the fitting results for the two models. The log-likelihood
under (15) is L = −80, 785.75 while that under (16) is L = −80, 750.07,
indicating that the contextual model represents a significant improvement
over the standard model (the likelihood ratio statistic has a p-value of 0.00).

Average income estimates for age by gender by region under the stan-
dard model are displayed in Table 5. Corresponding estimates under the
contextual model (expressed relative to those obtained under the standard
model) can be found in Table 6. This also shows where the estimates gen-
erated under the two models have absolute differences larger than 1,2,3 and
4 standard errors. We see that 49 out of the 60 differences are larger than
two standard errors.

The results of Table 6 show that ignoring network information, i.e. con-
textual effects, can lead to significantly different survey estimates in practice.
Based on the results of the simulation study reported in Section 5, there is
an indication that the estimates derived under the contextual network model
(i.e. the model that allows for network effects) may also be more accurate.
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Table 4: Fitting results for the standard model and contextual model for
k=2

Standard Model Contextual Model
Std. Std.

Variable estimate Error p-value estimate Error p-value
Intercept 2,944 218 < 2e-16 2,439 237 < 2e-16
Age 19-21 4,181 525 < 1.99e-15 4,107 518 2.38e-15
Age 22-30 10589.8 536 < 2e-16 10,725 532 < 2e-16
Age 31-50 13,029 418 < 2e-16 13,182 415 < 2e-16
Age 51-64 8,098 3956 < 2e-16 8,391 396 < 2e-16
Age 65+ 4,833 324 < 2e-16 5,019 323 < 2e-16
Male -15.4 307 0.960 -925 338 0.0063
Male - Age 19-21 1,303 831 0.117 1,219 815 0.1349
Male - Age 22-30 3,939 883 8.25e-06 3,619 875 3.56e-05
Male - Age 31-50 10,526 786 < 2e-16 10,157 781 < 2e-16
Male - Age 51-64 11,043 845 < 2e-16 10,741 837 < 2e-16
Male - Age 65+ 5,233 604 < 2e-16 5,260 595 < 2e-16
Contextual Male – – – 2,146 409 1.55e-07
Log-likelihood -80,785.75 -80,750.07
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Table 5: Mean annual income in British pounds for age by sex by region
with weighting based on a standard linear model with covariates age by sex

Regions in Great Britain
England England

Sex Age Group London North South Scotland Wales
≤ 18 2,668 3,666 2,279 1,678 4,120

female 19− 21 6,989 7,134 6,818 7,036 8,976
22− 30 17,068 12,759 13,403 14,147 12,774
31− 50 20,266 14,881 16,514 16,043 14,565
51− 64 12,129 10,725 10,931 11,822 11,279
≥ 65 8,582 7,283 7,952 7,851 8,793
≤ 18 1,257 3,896 2,180 2,578 4,897

male 19− 21 10,102 7,600 9,735 6,735 16,270
22− 30 15,617 15,617 18,294 20,719 15,960
31− 50 23,884 23,884 29,216 29,216 21,947
51− 64 20,186 20,186 23,293 27,237 19,305
≥ 65 11,775 11,775 14,540 12,055 12,613

7 Discussion

As stated at the end of Section 1, our aim in this paper was to address
the questions: (i) Is embedding network information useful for survey esti-
mation? (ii) If the answer to (i) is yes, then which models are potentially
useful? and (iii) How much network data needs to be collected in order to
obtain potentially higher precision for survey estimation? Given the simula-
tion results that we present in Section 5, our answer to (i) is yes, and to (ii)
is the contextual network and AR models when either model is true. When
the network disturbance model or the network covariance model is true, our
results suggest that ignoring the network does not result in a significant loss
of efficiency. Ignoring the network under the AR and contextual network
models leads to a mis-specification of the mean model, but this does not
apply for the network covariance and network disturbance models. Further-
more, our answer to (iii) is that in realistic applications it will usually be
impossible to collect the full network, and our simulation results show that
when either the contextual network model or the AR model is true then both
Zss and Zsr must be collected in order to obtain efficiency gains. Knowledge
of Zss alone is not enough.
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Table 6: Change in mean annual income for the contextual model relative
to standard model, positive/negative values show an increase/decrease in
mean annual income

Regions in Great Britain
England England

Sex Age Group London North South Scotland Wales
≤ 18 162 −102 −1104 4584 3914

female 19− 21 3241 474 0 −1274 −3724

22− 30 222 24 −34 −104 −74

31− 50 772 −24 −64 −34 −294

51− 64 −8 −14 54 −64 −24

≥ 65 −7 54 −1 44 44

≤ 18 −1763 −204 994 1064 −7714

male 19− 21 1391 −54 −154 714 −7104

22− 30 −23 414 −474 −894 204

31− 50 −1341 304 −604 1144 −144

51− 64 −2141 404 −504 2094 564

≥ 65 1191 −54 −23 −744 124

1,

2, 3, 4 Difference larger than 1,2,3,4 standard errors
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In practice, we suggest a careful model fitting exercise be carried out
before attempting to use either the contextual network model or the AR
model for survey estimation. Given the numerical difficulties with fitting the
AR model, see Suesse (2012), we recommend that the contextual network
model be used if it is a good fit to the data, otherwise caution is warranted
and ignoring the network might be the best option.

Clearly, more extensive information on networks needs to be collected
in conjunction with standard survey data to gain further insight into the
usefulness of network models for survey estimation. In this paper we have
focused on undirected networks, so knowing Zsr is equivalent to knowing
Zrs. For directed networks, this equivalence does not apply and conclu-
sions, particularly for the case when Zss and Zsr are known, are likely to be
different. The issue of imputation methods for the missing network infor-
mation has been addressed in this paper, but many questions remain. Is an
appropriate single value imputation (let alone multiple imputation) method
using E(Zmis|Zobs = zobs) (Method 2) better than the simple proportion ap-
proach (Method 3)? The numerical intensity of the MCMC methods used
to fit network models like the ERGM when population sizes are large meant
that we could not fully explore this issue. There is current research that tries
to address some of these issues, see (Koskinen et al., 2011), but more is re-
quired. However, given that we observed only small differences in efficiency
between the SS-RS-S case and the full network known case, we anticipate
that more sophisticated imputation methods will not lead to substantial
efficiency gains.

Finally, we note that all network models considered in this paper assume
that the value of the response variable Y for an individual in the study
population depends on a linear combination of the values of this variable
for the other individuals in the population that are linked to this person in
the network. If there is an implicit ordering in the strength of these links,
then this can be allowed for in the network model for Y . For example, in
the case of a best friend network, where the friendships are ordered by their
strength, one can modify the contextual network model so that there is a
separate parameter for each level of best friend. To illustrate, in the BHPS
application reported in the previous Section, the effect of the first male
friend is 948.24, the effect of the second male friend 648.23 and that of the
third male friend 513.66. The corresponding coefficient for the contextual
network model with a common effect is 2, 146/3 = 715.33. A Wald test for
equality of these effects (based on the model (16) with heteroskedasticity
parameter k = 2) returns a p-value of 0.43, supporting the assumption of a
common effect.
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A Bias-Correction for Variance Estimator

For any linear model with µ = Xβ and variance V, the ML estimator for β
as a function of the variance V is β̂ML = MY with M = (X′V−1X)−1XV−1.
One can then show that

Erdr′d = V −X(X′V−1X)−1X′, (18)
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where rd := Y−Xβ̂ = (I−XM)Y, see Goldstein (1989). The iterative gen-
eralised least squares method (IGLS) for fitting a multi-level model is equiv-
alent to ML under normality (Goldstein, 1986). This is true for any variance
function V(α) depending on α and not just for a multi-level model where the
variance model is in fact also a linear model. However, ML estimates for the
variance components θ are biased, because Erdr′d 6= V, see (18). However,
adjusting the pseudo-observations S = rdr′d to S∗ = S + X(X′V−1X)−1X′

and applying least squares to S∗ instead of S to obtain estimates for the
parameter α of the variance model is equivalent to applying REML. In this
context, the added term can be seen as a bias correction (Goldstein, 1989).

For the population disturbance and AR models V(θ, σ2) = σ2U(θ)−1

(U(θ)−1)′. Instead of applying this bias correction within each iteration of
the fitting algorithm, we use the ML estimates θ̂ML and σ̂2

ML to define

V̂ = V(θ̂ML, σ̂
2
ML) + X(X′V(θ̂ML, σ̂

2
ML)−1X)−1X′

as an estimate for V that retrospectively accounts for the bias of the ML es-
timates of the variance components and consequently that of V(θ̂ML, σ̂

2
ML).

For the AR model the residuals are defined as rAR := Y−U−1Xβ̂. We
can show that

ErARr′AR = V − σ2U−1X(X′X)−1X′(U−1)′. (19)

This formula can also be obtained from (18) by replacing X by U−1X and
using V(θ, σ2) = σ2U(θ)−1(U(θ)−1)′. Assuming ρ is known, and again
adjusting S to S∗ = S + σ2U−1X (X′X)−1X′(U−1)′ makes IGLS equiva-
lent to REML. However this only holds when θ is known, since otherwise
∂S(ρ)/∂ρ 6= 0, and IGLS and REML are equivalent only if ∂S(θ)/∂θ = 0,
i.e. the residuals forming S do not depend on unknown variance parameters.
For the AR model the mean and the variance depend on θ, so this equiv-
alence does not hold for unknown θ. However the assumption of known θ
still allows us to apply a partial bias correction, in that it does not account
for the variation in θ̂ML. This bias corrected estimate for V is

V̂ = V(θ̂ML, σ̂
2
ML) + σ̂2

MLU(θ̂ML)−1X(X′X)−1X′(U(θ̂ML)−1)′.

Note that simulation results for the AR model reported in Suesse (2012)
indicate that θ̂ML is unbiased.
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