
University of Wollongong
Research Online

Centre for Statistical & Survey Methodology
Working Paper Series Faculty of Engineering and Information Sciences

2010

Estimating Shared Copy Number Aberrations for
Array CGH Data: the Linear-Median Method
Yan-Xia Lin
University of Wollongong, yanxia@uow.edu.au

V. Baladandayuthapani
University of Texas

V Bonato
Pfizer Global Research and Development, USA

K A. Do
University of Texas

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Recommended Citation
Lin, Yan-Xia; Baladandayuthapani, V.; Bonato, V; and Do, K A., Estimating Shared Copy Number Aberrations for Array CGH Data:
the Linear-Median Method, Centre for Statistical and Survey Methodology, University of Wollongong, Working Paper 9-10, 2010, 21.
http://ro.uow.edu.au/cssmwp/98

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/cssmwp
http://ro.uow.edu.au/cssmwp
http://ro.uow.edu.au/eis


Estimating Shared Copy Number Aberrations for Array CGH

Data: the Linear-Median Method

Y.-X. Lin 1, V. Baladandayuthapani2, V. Bonato 3 and K.-A. Do 2

1Centre for Statistical and Survey Methodology,

School of Mathematics and Applied Statistics, University of Wollongong

NSW 2522, Australia
2Department of Biostatistics, Box 1411, The University of Texas M.D. Anderson

Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
3 NonClinical Statistics Department, Pfizer Global Research and Development

445 Eastern Point Road, Groton, CT 06340-5157, USA

Abstract

Motivation: Existing methods for estimating copy number variations in

array comparative genomic hybridization (aCGH) data are limited to estima-

tions of the gain/loss of chromosome regions for single sample analysis. We

propose the linear-median method for estimating shared copy numbers in DNA

sequences across multiple samples, demonstrate its operating characteristics

through simulations and applications to real cancer data, and compare it to

two existing methods.

Results: Our proposed linear-median method has the power to estimate

common changes that appear at isolated single probe positions or very short

regions. Such changes are hard to detect by current methods. This new method

shows a higher rate of true positives and a lower rate of false positives. The

linear-median method is non-parametric and hence is more robust in estimating

copy number. Additionally, the linear-median method is easily computable for

practical aCGH data sets compared to other copy number estimation methods.

Supplementary Information: Supporting materials are available at Cancer

Informatics online.

Contact: yanxia@uow.edu.au

1 Introduction

During cell division, a cell replicates its genome by synthesizing a new copy of each

chromosome, using the original DNA as a template. The expected copy number

of 2, may be less/greater than 2 when alterations occur during the replication pro-

cess. Research has suggested that such abnormalities in the number of DNA copies

in a cell are associated with the development and progression of disease, includ-

ing cancer1.Laboratory research to estimate the altered copy numbers in a DNA

1to whom correspondence should be addressed
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sequence often uses aCGH. The technology used to produce aCGH data, however,

may result in data that contain uncontrollable noise2. The use of appropriate sta-

tistical methods to normalize the data and produce meaningful estimates of copy

number variation in a DNA sequence is integral to this research. Developing im-

proved statistical methods for this application is the focus of this paper.

Different statistical methods have been suggested for use with aCGH data to

estimate copy numbers in DNA sequences. Methods to analyze copy numbers in

terms of identifying the locations of gains or losses of chromosome regions have been

developed. Assuming that there is a connection between copy number changes in

a cancer cell and the development/progression of the cancer, there must exist some

common change regions in DNA sequences collected from different patients with

the same cancer diagnosis. Techniques for analyzing shared copy number regions

have been developed3,4. For detecting copy number regions in a single sample,

Olshen at al.5 and Venkatraman et al.6had developed an widely used method, the

faster circular binary segmentation (CBS) method. In this paper, we propose a new

method, the linear-median method, for estimating shared copy number alterations

in DNA sequences collected from the same type of cancer cells. The linear-median

method is able to optimally use the information available across independent DNA

sequences.

This paper is organized as follows. In Section 2.1, we discuss current existing

statistical models used to assess aCGH data and describe a new model for analyzing

multiple independent aCGH data sets. We introduce the linear-median method in

Section 2.2. In Section 3.1, we present three simulation studies. We study how

much extra information on copy number aberration can be obtained by using the

linear-median method compared to the comparative genomic hybridization minimal

common region (cghMCR) method and the CBS algorithm. We present an appli-

cation of the linear-median method to real data in Section 3.2. Supporting figures

and tables are available online as Supplementary Material.

2 Methods

2.1 Modeling DNA Copy Number Alterations in aCGH Data

aCGH employs the comparative hybridization of genomic DNA that is differentially

labeled according to its source in a cancer cell versus a normal cell. The ratio of the

hybridization intensities along the chromosomes provides a measure of the relative

copy number of sequences in the genomes that hybridize to each location on the

chromosomes. Estimating copy numbers and identifying the locations of gains and
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losses in a DNA sequence are two main challenges in the analysis of aCGH data. We

label the normal genomic sequences as “reference” sample and the genomic sequences

from cancer cells as the “test” sample. Let Tp denote the “test” copy number at

probe position p and Rp denote the “reference” copy number at probe position p.

We briefly describe two current methods for modeling aCGH data. Let us denote

by Yp the aCGH data (the logarithm intensity ratio) observed at probe position p.

Model 1:

Yp = log2(Tp/Rp) + εp, (1)

where εp are i.i.d. with normal distribution N(0, σ2
ε ). This Gaussian model forms

the basis of many models for aCGH data4,6,7,8.

Model 2:

Yp = log2(
Tp + εp

Rp + ηp

), (2)

where εp and ηp are i.i.d with a normal distribution N(0, σ2)9,10.

In practice, Rp is assumed to be 2. Given the logarithm intensity ratio observa-

tions, {Yp}, we want to estimate the true copy number at position p or to estimate

if the copy number at p is greater/less than 2.

Models 1 and 2 assume very different probability structures to describe the sys-

tem. The variance of the log intensity ratios given by Model 1 is a constant, whereas

the variance of the log intensity ratios given by Model 2 is a function of Tp.

We consider which of the two models is a more appropriate model for the analysis

of aCGH data. Although Model 1 looks simpler, it is not an appropriate model for

aCGH data. The main reason for this is that aCGH data provide the ratio of the

copy number variations, not the ratio of the copy numbers. Furthermore, empirical

studies show that the standard error of the logarithm of the intensity ratios increases

as the copy number increases. Additionally, the distribution of the logarithm of

intensity ratios is skewed9. Thus, the distribution of εp should not be assumed to

be normal if Model 1 is adopted.

Compared to Model 1, Model 2 is a more appropriate model for aCGH data, as it

takes into account the ratio of the copy number variations. However, this model can

be improved further. The normality assumptions on the distributions of εp and ηp

can imply that negative values of εp and ηp will lead to log2(
Tp+ε

2+η
) being ill-defined.

Theoretically, this will cause problems for statistical inference methods based on

such an assumption.

In Model 2, the errors εp and ηp play the role of measurement errors. Given the

fact that the aCGH technique is maturing, it might be reasonable to suggest that

both εp and ηp follow a uniform distribution U(−a, a), where a can assume any value

3



between 0 and 2, depending on the nature of the underlying aCGH technique. If a

takes a value close to 2, this may mean that the underlying aCGH technique is not

very accurate, possibly leading to a very large variation in the observations of the

intensity ratios. If a takes a value close to 0, we may assume that the underlying

aCGH technique is very accurate and that there is less variation in the observations

of the intensity ratios. For explicit technical considerations see wikipedia2. For

our purpose, we restrict a to be less than 2. We apply this restriction to real data

analysis in Section 3.2. The output of the real data analysis shows the restriction is

acceptable.

Therefore, we consider a third model:

Model 3:

Xp =
Tp + εp

Rp + ηp

, (3)

where εp and ηp are independent and have uniform distribution U(−a, a) with con-

stant a ∈ (0, 2), and Xp is the observed intensity ratio at probe position p.

To allow the model to be more flexible, we can assume that the uniform distri-

butions for εp and ηp are not necessarily the same.

Model 3 is used to model one aCGH profile from one sample/patient. However,

if there is a group of independent samples of aCGH data (e.g., multiple patients)

and their data share copy number change regions, we can extend Model 3 to such

data.

Consider the following scenario. A group of n patients suffer from a common

cancer. For each patient a sample of aCGH data is collected from a cancer cell. Let

Xi,p be the observed intensity ratio for the ith sample at probe position p. We use

tp to denote the theoretical true value of the shared copy number at probe position

p for the “test” and let Ti,p be the true copy number for the ith patient at probe

position p. Ti,p is not necessarily equal to tp because, for different patients, the copy

number at position p might be affected by different uncontrollable random factors.

We use Tp to denote the observed copy number for “test” at position p. Tp is a

random variable and Ti,p is a sample from Tp. Let Ri,p be the true copy number for

the ith “reference” at position p. In this paper, we always assign Ri,p = 2 because

the true copy number for the reference (normal) genome is 2 (For the purpose of

this study we ignore some special cases.)

For multiple independent aCGH data, the extended model can be considered as

Model 4

Xi,p =
Ti,p + εi,p

Ri,p + ηi,p

, 1 ≤ p ≤ M, i = 1, 2, · · · , n, (4)
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where M is the total number of probe positions; n is the number of independent

samples in the group; εi,p and ηi,p are mutually independent random variables; Ti,p

has distribution P (Ti,p = tp) = π and P (Ti,p = 2) = 1 − π, if tp 6= 2, i.e. if at probe

position p the shared true copy number is not 2, then the copy number given by the

ith sample at probe position will follow a Bernoulli distribution with mean π; εi,p

and ηi,p will have uniform distributions U(−a, a), as defined in Model 3. (Different

uniform distributions are allowed for εi,p and ηi,p; however, such applications are

beyond the scope of this paper.)

Model 4 provides a flexible way to model multiple independent aCGH data in

terms of the following arguments:

(i) The probability distributions of εi,p and ηi,p are allowed to be different. This

means that the probability distribution of the measurement errors for the

“test” and “reference” are allowed to be different.

(ii) The true shared copy number at position p is no longer a constant. Tp is a

random variable. This means that the copy number (if it were observable) at

position p could be different from patient to patient.

Hereafter, we consider multiple independent aCGH data and assume Model 4

as the basis for developing a method to estimate the shared copy number tp, p =

1, · · · ,M .

2.2 The Linear-Median Method

Currently, all raw data used for copy number analysis are presented in the format of

a log2 intensity of the ratios of the test to the reference. From the current literature,

we know that a linear format refers to using the intensity of the ratios of the test

to the reference, and a nonlinear format refers to using a log2 intensity of the ratios

of the test to the reference, as the log2(ratio) is not linearly related to the copy

number. The variance of a linear format tends to be larger than the variance of

a nonlinear format when the relative copy number is far away from 111.This may

explain why the nonlinear format is widely used.

It is expected that the log2 of the true relative copy number, i.e. , log2(
tp
Rp

), can

be well estimated using the observations of the log2 intensity of the ratios of the test

to the reference, i.e., log2(
Ti,p+εi,p

Ri,p+ηi,p
), through the sample mean. Unfortunately, this

is generally not true. A simple reason for this is that, in general,

E

[

log2

(

Tp + εp

Rp + ηp

)]

6= log2

(

E[Tp + εp]

E[Rp + ηp]

)

= log2

(

E[Tp]

Rp

)

.
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Further, the probability distribution of log2(
Tp+εp

Rp+ηp
) is not symmetric. Therefore,

the sample mean of {log2(
Ti,p+εi,p

Rp+ηi,p
)} might be biased from E[log2(

Tp+εp

Rp+ηp
)] for smaller

samples. Figure 1 shows a histogram of simulated data drawn from the population

log2(
1+ε
2+η

), with ε and η i.i.d. uniformly distributed U(−1.8, 1.8) (the function will

not be defined if 1 + ε ≤ 0 ).

Figure 1: Histogram of log2(
1+ε
2+η

).

For the estimating procedure we propose, we will use linear format data rather

than nonlinear format data to estimate the shared copy number at probe position

p, 0 ≤ p ≤ M .

As defined in Model 4, Xi,p is a random variable of the intensity of the ratios of

the test to the reference given by the ith sample at probe position p, 1 ≤ p ≤ M ,

and satisfies the model

Xi,p =
Ti,p + εi,p

Ri,p + ηi,p

, p = 1, 2, · · · ,M, i = 1, 2, · · · , n,

where i denotes the ith sample/patient; εi,p and ηi,p are i.i.d. with uniform distribu-

tion U(−a, a); Ti,p and Ri,p are the test intensity and reference intensity, respectively,

for probe p for the ith sample.

As stated in Section 2.2, we always assign Ri,p = 2, which is the information

given by the “reference” genome. The true shared copy number tp at position p

needs to be estimated. The estimate of tp is denoted by t̂p, 1 ≤ p ≤ M .

Let xi,p be the observed values of Xi,p, i = 1, 2, · · · , n, p = 1, · · · ,M . Herein, we

assume that parameter a is unknown but has a value within (0, 2) and that parameter

π (defined in Model 4) is known or can be estimated from empirical knowledge.
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The estimation of tp, p = 1, · · · ,M , consists of three steps:

Step 1 Calculate the median of {xi,p}i=1,2,···,n for each p, denoted by Mp.

Step 2 Calculate 2(Mp − 1 + π)/π for each p.

Step 3 Determine the estimate of tp, p = 1, · · · ,M ,

t̂p =

{

[2(Mp−1+π)
π

], 2(Mp−1+π)
π

≤ [2(Mp−1+π)
π

] + 0.5,

[
2(Mp−1+π)

π
] + 1,

2(Mp−1+π)
π

> [
2(Mp−1+π)

π
] + 0.5,

where [c] denotes the integer part of the real number c.

We call this 3-step method the “linear-median method”. “Linear” indicates that

the data (the intensity of the ratios of the test to the reference) are in a linear format.

“Median” indicates that the median of the data is employed by this method.

Next, we explain theoretically why copy numbers can be accurately estimated

by this 3-step method.

Let Xp be the intensity of the ratios of the test to the reference at probe position

p,

Xp =
Tp + εp

2 + ηp

,

where εp and ηp are i.i.d. with uniform distribution U [−a, a]; and Tp is a random

variable independent of εp and ηp, and has distribution P (Tp = tp) = π and P (Tp =

2) = 1−π, if the shared copy number tp 6= 2. As explained in Section 2.1, we assume

0 < a < 2.

Following the definition of Xp and assuming the independence of Tp + εp and ηp,

we have

E(Xp) = E(
Tp + εp

2 + ηp

) = E(Tp + εp)E(
1

2 + ηp

)

= (tpπ + 2(1 − π))E(
1

2 + η
) =

tpπ + 2(1 − π)

2a
log(

2 + a

2 − a
).

Thus

tp = (
2a

log(2+a
2−a

)
E(Xp) − 2(1 − π))/π. (5)

Equation (5) gives the exact relationship between tp and E(Xp). For each probe

position p, if the mean of the intensity of the ratios of the test to the reference is

known, and the system parameters a and π are known, the shared copy number at

the probe position can be correctly identified.

However, E(Xp) is unknown in practice and the probability distribution of Xp is

not usually symmetric. It is inappropriate to estimate E(Xp) by using the sample
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mean X̄p when the sample size is not appropriately large. Therefore, it is difficult

to evaluate tp directly from (5) in practice.

To overcome this difficulty, we suggest the following way to evaluate tp:

tp = (
2a

log(2+a
2−a

)
E(Xp) − 2(1 − π))/π

= (
2a

log(2+a
2−a

)

E(Xp)

mXp

mXp
− 2(1 − π))/π,

where mXp
is the median of Xp. It is technically possible to directly evaluate the

ratio
aE(Xp)

log(2+a
2−a

)mXp

(6)

and prove that the ratio is close to 1, for any a ∈ (0, 2) and any π ∈ (0, 1].

We use the Monte Carlo method to indirectly show that the value of (6) is

close to 1 for a = 0.1, 0.2, · · · , 1.9 and π = 0.1, 0.2, · · · , 1. (see Appendix A and

Supplementary Tables 1 and 2 in the online materials for details). Therefore,

tp ≈
2(mXp

− (1 − π))

π
.

3 Implementation and Results

3.1 Simulation Studies

The linear-median method is designed for estimating shared copy number aber-

rations and mainly focuses on the information across the sample for each probe

position. Therefore, this method ignores the dependency within each individual

sample. Our focus is two-fold: (i) to determine the extent of information of shared

copy number aberrations that can be detected, regardless of the impact of depen-

dency, and (ii) to assess the differences in detection outcomes obtained from the

linear-median method versus other methods.

In a recent review of methods for detecting “recurrent” copy number alter-

ations, Rueda and Diaz-Uriarte evaluated the CGHregions method, Master HMMs,

cghMCR, GISTIC, MSA, RAE, and others 12. In this subsection, we compare the

linear-median method to the cghMCR method and the CBS method.

We present three simulation studies to highlight the performance of our proposed

linear-median method.

Example 1: A sequence of integers
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Table 1: The sample mean and sample standard error of the estimated error rate

{d(k)} given by different combinations of a and n, where a is the parameter of the

uniform distribution U [−a, a] and n is the number of the independent sequences in

the realizations.

a n

25 50 75

0.5 0.00267 0.00021 0.00003

(0.00505932) (0.00143456) (0.00054717)

0.8 0.03080 0.00578 0.00566

(0.01634096) (0.00725564) (0.01330000)

1 0.06900 0.01822 0.00771

(0.02388243) (0.01335702) (0.00880531)

1.5 0.19759 0.08208 0.04332

(0.03871163) (0.02652880) (0.02063500)

1.9 0.30161 0.15426 0.09367

(0.04409140) (0.03687835) (0.02802528)

2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

2 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

1 1 1 1 1 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

serves as a sequence of the true shared copy number tp, p = 1, 2, · · · , 100, obtained

from the experimental sample, i.e., the “test”. To simplify, we assume π = 1. Thus,

for example, t1 = 2 means that the true shared copy number shown by the “test” at

probe position 1 is 2; t11 = 3 means that the true gain in the shared copy number

by the “test” at probe position 11 is 3.

We simulated a group of independent realizations {Xi,p} from model
tp+εi,p

2+ηi,p
,

p = 1, 2, · · · , 100 and i = 1, 2, · · · , n, where εi,p and ηi,p are i.i.d. with uniform

distribution U [−a, a].

Subsequently, we generated 1000 replicates. For the kth replicate, k = 1, 2, · · ·,

1000, let d(k) be the percentage of tp − t̂p 6= 0 out of the 100 probe positions; d(k)

is used to measure the error rate in the estimation of tp. The mean and standard

error of {d(k)} are presented in Table 1.

Table 1 shows that the error rate increases with a. This is obvious because a

larger value of a is equivalent to a larger measurement error in the data. However,
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the error rate will be reduced when the number of independent samples in the group

increases. In general, the mean error rate calculated for the linear-median method

is reasonably low: the mean error rate was less than 10%, as expected, for all three

cases of varying a.

Although the underlying model involves the parameter a, Example 1 shows, in

general, that the impact of the value of a on the estimation of the copy number

is not significant in terms of the mean of d(k), except for a very large value of

a(> 1). (Further demonstrations are presented in the Supplementary Material.) In

summary, the value of a ∈ (0, 2) has minimal effect on the estimation of the shared

copy number when the sample size is reasonable large. As a result, the linear-median

method can be employed without knowing the value of a, as long as a ∈ (0, 2).

Example 2: In Table 1 of their review of 15 estimation methods, Rueda and

Diaz-Uriarte indicate that only the cghMCR method both uses an input of the log 2

ratio and produces estimations of the differences in the states of two successive

probes12. The cghMCR method is designed to identify the minimal common copy

number alteration regions among a group of independent samples; thus it is analo-

gous to the linear-median method and is an appropriate method to compare to the

linear-median method. Using segmented data (i.e., smoothed data), the cghMCR

algorithm first identifies altered segments within each subject (those above the 97th

or below the 3rd percentile of the data) and then joins adjacent segments separated

by a user-defined parameter. The R package for the cghMCR method is avail-

able at the following URL: http://www.bioconductor.org/packages/2.6/bioc/html/

cghMCR.html. See the work of Aguirre et al. for explicit details and a complete

review of the cghMCR method3.

We use simulated data to compare the performance of the linear-median method

to that of the cghMCR method. The data were simulated by assuming non depen-

dency between the intensity ratios across probe positions, which is a very simple

situation.

Consider a sequence of true shared copy number {tp} plotted in Figure 2.

The sequence tp consists of four abnormal shared copy number regions, cor-

responding to copy numbers 1, 3, 4 and 5. Some of the abnormal shared copy

regions are very short, involving only 1 or 4 probe positions. Using this example, we

compare the linear-median method to the cghMCR method in terms of each meth-

ods’s capability of correctly assessing the information of gains/losses in shared copy

numbers.
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Figure 2: Plot of the sequence of the true copy numbers.

We simulated data from the following model
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2+εi,p

2+ηi,p
, 1 ≤ p ≤ 10,

B(1,π)i,p+2∗(B(1,π)i,p−1)+εi,p

2+ηi,p
, 11 ≤ p ≤ 50,

2+εi,p

2+ηi,p
, 51 ≤ p ≤ 98,

4∗B(1,π)i,p+2∗(B(1,π)i,p−1)+εi,p

2+ηi,p
, 99 ≤ p ≤ 102,

2+εi,p

2+ηi,p
, 103 ≤ p ≤ 109,

5∗B(1,π)i,p+2∗(B(1,π)i,p−1)+εi,p

2+ηi,p
, p = 110,

2+εi,p

2+ηi,p
, 111 ≤ p ≤ 150,

3∗B(1,π)i,p+2∗(B(1,π)i,p−1)+εi,p

2+ηi,p
, 151 ≤ p ≤ 200,

2+εi,p

2+ηi,p
, 201 ≤ p ≤ 250,

(7)

i = 1, 2, · · · , n, where εi,p and ηi,p are i.i.d. with uniform distribution U(−a, a). Let

B(1, π) be a random variable with a Bernoulli distribution such that E[B(1, π)] = π.

We considered 3 × 5 × 3 different combinations for (a, π, n), where a = 0.5, 1, 1.5,

π = 0.2, 0.4, 0.6, 0.8, 1 and n = 20, 50, 100.

We applied the linear-median method and the cghMCR method to each group of

independent samples with size n for different pairs of parameters (a, π), respectively.

Then, for each triplet (a, π, n), we calculated the true positive (TP) rates and the
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false positive (FP) rates produced by each model. TP rate = P (the method shows

“copy number changed” | copy number is changed). FP rate = P (the method shows

“copy number changed” | copy number is not changed). The linear-median method

is able to provide an estimate of the shared copy number at each probe position.

Therefore, when we say that a correct detection of the shared copy number was

produced by the linear-median method at position p, it means that t̂p = tp. In con-

trast, the cghMCR method provides information on only the shared copy number

gain/loss at each probe position. It does not provide information on how many copy

numbers were gained/lost. Therefore, when we say that a correct detection was

produced by the cghMCR method at position p, it means only that a gain/loss was

correctly identified at position p.

Finally, we carried out 250 replicates for the case where n = 20; 100 replicates for

the case where n = 50, and 50 replicates for the case where n = 100. The resulting

TP and FP rates, means, and standard errors obtained from both methods are

shown in Supplementary Tables 3-5.

In terms of the TP rates, the linear-median method worked reasonably well

in each case and performed vastly better than the cghMCR method, which showed

poor performance, especially when a was larger and π was smaller. In this particular

example of a true shared copy number sequence, the cghMCR method tended to

give a lower FP value, i.e., it did not call as many gains/losses, and hence was very

conservative. Compared to the cghMCR method, the linear-median method gave a

lower FP value when a was not close to 2 or π was greater than 0.5. In summary,

two advantages of using the linear-median method include:

(1) The ability to estimate the actual shared copy number at each position p.

The estimation accuracy of the linear-median method is very high, as reflected

by the values of the TP and FP rates.

(2) Better power in identifying shorter alternating regions. For example, consid-

ering the data simulated from (7) with a = 1.5, π = 1 and n = 20, we can

compare the means of the estimated copy numbers given by both methods.

Since a = 1.5, the variance for U(−a, a) is relatively large and the simulated

data involve a lot of random noise. By choosing π = 1, there is no variation

on the true copy numbers shared across the independent samples. Techni-

cally, one expects that the linear-median method and the cghMCR method

will perform at the same level. However, it turns out that the linear-median

method dominates the cghMCR method. At almost every probe position, the

sample mean and median of the estimated shared copy number given by the

linear-median method was the same as the true shared copy number. In con-
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trast, the cghMCR method did not accurately identify the gain/loss regions

(see Supplementary Figures 1-3).

This simulation example (Example 2) illustrates that the cghMCR method per-

forms very poorly in high-noise scenarios, for example, a = 1.5, and the cghMCR

method is not robust for large values of a. We believe this is due to the fact that the

cghMCR method performs segmentation and calling functions independently of one

other; whereas the linear-median method borrows strength from all the samples.

Example 3: In this example we consider data Xi,p, simulated from the following

model:

Xi,p =
tp + εi,p

2 + ηi,p

=








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
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2+εi,p

2+ηi,p
1 ≤ p ≤ 100, l = 100

3+εi,p

2+ηi,p
101 ≤ p ≤ 150, l = 50

4+εi,p

2+ηi,p
151 ≤ p ≤ 152, l = 2

3+εi,p

2+ηi,p
153 ≤ p ≤ 200, l = 48

1+εi,p

2+ηi,p
201 ≤ p ≤ 202, l = 2

2+εi,p

2+ηi,p
203 ≤ p ≤ 204, l = 2

1+εi,p

2+ηi,p
205 ≤ p ≤ 300, l = 96

where εi,p and ηi,p are i.i.d uniformly distributed in [−1, 1], i = 1, 2, · · · 60. In this

example we continue to assume π = 1. The abnormal copy number regions are

[101, 150] for tp = 3; [151, 152] for tp = 4; [153, 200] for tp = 3 ; [201, 202] and

[205, 300] for tp = 1. Segments of [101, 150], [153, 200] and [205, 300] are relatively

longer. Segments of [151, 152] and [201, 202] are relatively shorter.

In this example, we compare the linear-median method to the circular binary seg-

mentation (CBS) method, which was developed by Olshen et al. 6. An R package de-

scription for the CBS method is available at the following URL: http://bioconductor.

org/packages/2.6/bioc/manuals /DNAcopy/man/DNAcopy.pdf. The CBS method

is employed to find segments along the chromosome that share constant DNA copy

numbers. Technically, it is inappropriate to directly compare the analytical results

obtained by these two methods because the CBS method is designed for application

to a single sample of data, whereas the linear-median method is applicable to a

group of independent samples.

To apply the CBS algorithm to observations {xi,p}, i = 1, · · · , 60, p = 1, · · · , 300,

we make the following adjustment. We calculate log2(xi,p) for all i and p, since the

CBS method is designed for data in a nonlinear format. Then, for each fixed p,

we calculate the median of {log2(xi,p)}, forming a new sequence. Finally, we apply

the CBS method to this sequence. We justify this comparison with the following

argument: If there are common copy number alteration regions among the group

of independent samples, the new sequence must contain the information on shared
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common regions. We consider the new sequence as if it were a single sample of data

from a “patient”. Thus, if the information of a shared common region is strong

enough, the CBS method should be able to detect the region based on the data

of the new sequence. We used the default parameters in our application of the R

package to the simulation data in this example.

Figure 3 shows the plot of the medians of {log2(xi,p)} and the estimate of

log2(tp/2) (in red), obtained by the CBS method (top panel), and the plot of the

estimation of tp obtained by the linear-median method (bottom panel). We see that

the linear-median method is able to detect all the changes in the copy number.

Comparing the plots in Figures 3 , both approaches, the linear-median method

and the CBS method, were able to detect all the longer regions of alternations.

However, all the shorter regions of alterations, [151, 152], [201, 202] and [203, 204],

were missed by the CBS method. This indicates that the linear-median method

has more power than the CBS method to detect shorter segments of alterations or

narrow gaps between segments.
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Figure 3: Application of the CBS method to the sequence of the median of the

logarithm of the ratios (top panel). The red bars show the values of the estimation

of log2(tp/2). Application of the linear-median method to the data in Example 3

(bottom panel), showing the estimates of tp at each probe position.
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3.2 Application to Real Data

We applied the linear-median method to a subset of aCGH data from 39 well-studied

lung cancer cell lines. The data, originally published by Coe et al.13 and Garnis et

al.14,are available for downloading from http://sigma.bccrc.ca/. For this study, we

used data from only the subgroup with the largest sample size, that of non-small

cell adenocarcinoma (NA), which included 18 samples.

As both the linear-median method and the cghMCR method are designed for

application to multiple aCGH data, the sample size is a critical issue. Data with more

independent samples are able to provide more information on the commonalities

across all samples.

Accurately identifying the locations of copy number aberrations has many im-

portant medical applications. As far as we know, the cghMCR method is one of the

methods used to estimate the shared copy number for multiple aCGH data. Many

other methods give an estimation of only the probability of gain/loss at each probe

position4,13.

Information on the exact shared copy number(s) at each probe position is not

available for the data we have analyzed (the NA data). Therefore, based on only

the analytic outputs of the linear-median method and the cghMCR method, it is

difficult for us to claim which method is better in terms of the accuracy of estimating

the true copy numbers. As a result, we compared the similarities between the

analytic outputs of the two methods and determined which method provides more

information on the changes in the copy numbers in the NA data. As a reference for

this comparison, we used the probability of gain/loss at each probe position that

was reported by Shah et al.4.

The total number of probe positions in the NA data (chromosome 9) is 1249.

Recalling Model 4 in Section 2.1, in order to estimate the shared copy numbers in

a “test” DNA sequence, we need to know the parameter π. This type of information

is also required for the cghMCR method. The value of π might be estimated based

on the researcher’s empirical knowledge. For the NA data, empirical knowledge on

the value of π is not available. Therefore, we applied the cghMCR method and the

linear-median method to the data for different values of π, 0.2, 0.4, 0.6, 0.8 and 1.

Then we compared the results from both methods and also compared those results

to findings reported by Shah et al.4. We expected to find little difference in the

results obtained from the three methods. Shah et al. found a loss of the shared

copy number in a significant portion of the NA data (see Figure 7 in their paper)4.

However, for π = 0.4, 0.6, 0.8 or 1, both the cghMCR method and the linear-median

method provided high proportions of neutral states, i.e., where the shared copy
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number equals 2. Therefore, it is reasonable to use π = 0.2 when analyzing the NA

data. We limit our report of the analytic results to the case where π = 0.2.

Combining all the results given by the linear-median method and the cghMCR

method for π = 0.2, 0.4, 0.6, 0.8 and 1, we were able to identify a common trend in

the outputs of the two methods for all probe positions as the value π moves from

1 to 0.2 (data not shown). For the NA data, both the linear-median method and

the cghMCR method give neutral states to all probe positions when π is assigned as

1, with the exception of a few probe positions identified as gain/loss by the linear-

median method. In our empirical study of the NA data, if a probe position a is more

likely to lose copy number(s), then the shared copy number estimation given by

both methods will decrease as π moves from 1 to 0.2; if a probe position a is more

likely to gain copy number(s), then the shared copy number estimation given by

both methods will increase as π moves from 1 to 0.2. One important phenomenon we

observed from the outputs of the two methods is that once a probe position has been

identified as having a shared copy number change when π = π0, the observation

remains the same for any π > π0. Comparing the results of the two methods,

we found that the estimation of the shared copy number at each probe position

given by the cghMCR method is reluctant to change as the value of π decreases.

In contrast, the linear-median method can show changes in the estimated shared

copy number as π decreases. This may reflect the later detection of an aberration by

the cghMCR method compared to the linear-median method when the true shared

copy number at a probe position is gained/lost, and as the value of π decreases.

Based on our analysis of the NA data, the linear-median method was able to report

the estimated shared copy number at each probe position; whereas the cghMCR

method reported only the state of the shared copy number, i.e., wether there was a

gain, loss or no change (neutral state), in the shared copy number. To simplify the

comparison between the results given by the two methods, we report only the gain,

loss, or neutral states of the shared copy number for the linear-median method. A

plot of the states for both methods is given in Figure 4. In the plot, we use “1”, “0”

and “−1” to indicate a shared copy number gain, neutrality, or loss, respectively.

We summarize the results as follows.

From probe positions 1 to 500 and 1235 to 1249, both the cghMCR method and

the linear-median method provide similar results, except for some isolated prob po-

sitions. This is what we expect to find because our simulation studies demonstrated

that the linear-median method can identify those isolated regions.

From probe positions 501 to 1234, the results obtained from the linear-median

method and the cghMCR method are quite different. The cghMCR method claims

that all the probe positions are neutral, in contrast to the findings of the linear-
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median method, which identifies gains/losses at these probe positions. One possible

explanation for the large difference between the two sets of results in this prob region

is that the π used in the estimation for this region may be too high. A lower value of

π should be used to accurately estimate copy numbers in this interval. These results

suggest that the parameter π might vary over sequences of NA data. If this is true,

then, detecting the change in π will be an interesting challenge for future studies.

Information on the true shared copy numbers for the NA data is not available;

hence, we cannot be certain which method would best estimate the shared copy

number variations in these data. However, through our comparison of the two

methods and taking into account the results given by Shah et al.4, we can claim

that the linear-median method has some capability to reasonably estimate shared

copy numbers in DNA sequences. As shown in our simulation studies, the linear-

median method can easily identify isolated probe positions with shared copy number

changes or short shared alternating segments. These changes are often missed by

the cghMCR approach.

The 1249 probe sets we studied target the shared copy number status of 1262

genes present in the chromosome 9.

In order to classify these genes as one of three general categories, we performed a

search of the OMIM database (http://www.ncbi.nlm.nih.gov/omim). The three cat-

egories we used were “not related to/unknown cancer phenotype (NR/U),” “cancer-

related phenotype, except for lung cancer (CR),” and “lung cancer-related pheno-

type (LCR).” The results are presented in Tables 2 and 3. Identifying altered regions

where important cancer-related genes are located aids the biological interpretation

of our findings and works as an empirical form of validation. Detailed locations of

the genes categorized as NR/U, CR and LCR are presented in Supplementary Ap-

pendix B. From Tables 2 and 3 we can see that the linear-median method is able to

report more CR and LCR with copy number losses/gains than the cghMCR method.

We were able to find additional information of interest from the output of the

linear-median method. Focusing on the probe positions at which the estimated

shared copy number given by the linear-median method was < 1 or > 3 when

π = 0.2, we identified 145 such probe positions out of 1249 (see Figure 5). Among

those 145 probe positions, 22 probe positions showed an estimated copy number ≥ 4

or ≤ −1. These results provided a more serious warning of copy number aberrations

— a warning that was obtained from the cghMCR method.
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Figure 4: The output of the linear-median adjusted method is shown in red and

that of the cghMCR method is in green.

Table 2: Number of genes identified by the linear-median method (LM) and the

cghMCR method in the regions of shared copy number aberrations with the status

of copy number loss, neutrality or gain. NR/U is not cancer-related or unknown

function phenotype, CR is cancer-related phenotype (except for lung cancer), and

LCR is lung cancer-related phenotype.

NR/U CR LCR Total

LM cgh LM cgh LM cgh LM cgh

MCR MCR MCR MCR

Losses 670 346 89 33 9 4 768 383

Neutral 342 758 35 103 3 9 380 870

Gains 100 8 13 1 1 0 114 9

1112 137 13
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Table 3: List of lung cancer-related genes for each phenotypic group identified by

the linear-median method (LM) and the cghMCR method.

LM cghMCR

Loss PSIP1, CDKN2A PSIP1,CDKN2A

TUSC1, IGFBPL1 TUSC1, IGFBPL1

TLE1, FRMD3

DAPK1, MIRLET7A1

PTPN3

Neutral PHF19, DAB2IP PHF19, DAB2IP

RPL12 RPL12, TLE1

FRMD3, DAPK1

MIRLET7A1, PTPN3

GAS1

Gain GAS1
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Figure 5: The plot of the estimated copy numbers (< 1 or > 3) given by the linear-

median method for π = 0.2
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4 Conclusion

We developed a new model for aCGH data analysis, the linear-median method,

which estimates shared copy numbers in DNA sequences. Using simulated data,

we found the linear-median method to be more powerful than the cghMCR method

in terms of achieving a higher rate of true positives and a lower rate of false posi-

tives. In addition to estimating the common gain/loss of chromosome regions, the

linear-median method estimates the number of DNA copies. In other words, ana-

lytic results produced by the linear-median method allow us to extract additional

information on the tested DNA sequences. In particular, the linear-median method

has the power to estimate common changes that appear at isolated single probe

positions or very short regions. The only drawback of the linear-median method

is that it ignores the dependency information in samples. However, based on our

application of the proposed method to real data, we find that most information

on shared copy number aberrations can be captured by the linear-median method

using only the information across independent samples.

Acknowledgement V. Baladandayuthapani was partially supported by US Na-

tional Science Foundation grant IIS 0914861. K-A Do was partially supported by

the University of Texas SPORE grants in Prostate Cancer P50 CA140388, Breast

Cancer P50 CA116199, and Brain Cancer P50 CA127001, and the Cancer Center

Support Grant P30 CA016672. We would also like to acknowledge LeeAnn Chastain

(UTMDACC) for her editorial contributions to the manuscript.

References

[1] Cappuzzo, F., Hirsch F. R., Rossi E., Bartolini S., Ceresoli G. L., Bemis L.,

Haney J., Witta S., Danenberg K., Domenichini I., Ludovini V., Magrini E.,

Gregorc V., Doglioni C., Sidoni A., Tonato M., Franklin W. A., Crino L., Bunn

P. A. J.r., Varella-Garcia M. (2005). Epidermal growth factor receptor gene and

protein and gefitinib sensitivity in non-small-cell lung cancer. J. Nat Cancer Inst.,

97, 643-655.

[2] http://en.wikipedia.org/wiki/Array comparative genomic hybridization

[3] Aguirre, A. J., Brennan,C., Bailey, G., Sinha, R., Feng, B., Leo, C., Zhang, Y.,

Zhang, J., Gans, J. D., Bardeesy, N., Cauwels, C., Cordon-Cardo, C., Redston, M.

S., DePinho, R. A., and Chin, L.(2004). High-resolution characterization of the

pancreatic adenocarcinoma genome. Proc. Nat Acad. Sci. USA, 101, 9067-9072.

20



[4] Shah, S. P., Xuan, X., DeLeeuw, R. J., Khojasteh, M., Lam, W. L., Ng, R. and

Murphy, K. P. (2006). Integrating copy number polymorphisms into array CGH

analysis using a robust HMM. Bioinformatics, 22, e431-e439.

[5] Venkatraman, E.S. and A. B. Olshen (2007). A faster circular binary segmenta-

tion algorithm for the analysis of array CGH data. Bioinformatics, 23, 657-663.

[6] Olshen, A.B., Venkatraman, E. S., Lucito, R., Wigler, M.(2004). Circular binary

segmentation for the analysis of array-based DNA copy number data. Biostatistics,

5, 557-572.

[7] Molinaro, A.M., van der Laan, M. J., and Moore, D. H.(2002). Compar-

ative Genomic Hybridization Array Analysis. U.C. Berkeley Division of Bio-

statistics Working Paper Series. Working Paper Series. Working Paper 106.

http://www.bepress.com/ucbbiostat/paper106

[8] Guha, S., Li,Y., Neuberg, D.(2008). Bayesian hidden Markov modeling of array

CGH data. J. Am. Stat. Assoc., 103, 485-497.

[9] Pinkel, D. and Albertson, D. G. (2005). Comparative genomic hybridization.

Ann. Rev. Genom. Hum. Genet., 6, 331-54.

[10] Pinkel, D. and Albertson, D. G. (2005). Array comparative genemic hybrization

and its application in cancer. Nat. Genet., 37, Suppl: S11-7.

[11] Pinkel, D., Davis, R., Albertson, D. (2005). De-

tection of gene dosage abnormalities using comparative genomic hybridization.

http://cancer.ucsf.edu/array/nccls pinkel.pdf

[12] Rueda, O. M. and Diaz-Uriarte, R. (2010). Finding recurrent copy number

alteration regions: a review of methods. Current Bioinformatics, 5, 1-17.

[13] Coe, B.P., Lockwood, W. W., Girard, L., Chari, R., MacAulay, C., Lam, S.,

Gazdar, A. F., Minna, J. D., and Lam, W. L. (2006). Differential disruption of

cell cycle pathways in small cell and non-small cell lung cancer. Br. J. Cancer,

94, 1927-1935.

[14] Garnis, C., Lockwood, W. W., Vucic, E., Ge, Y., Girard, L., Minna, J. D.,

Gazdar, A. F., Lam, S., MacAulay, C., Lam, W.L. (2006). High resolution analysis

of non-small cell lung cancer cell lines by whole genome tiling path array CGH.

Int. J. Cancer, 118, 1556-1564.

21


	University of Wollongong
	Research Online
	2010

	Estimating Shared Copy Number Aberrations for Array CGH Data: the Linear-Median Method
	Yan-Xia Lin
	V. Baladandayuthapani
	V Bonato
	K A. Do
	Recommended Citation


	1-10

